
Formal Verification of Hybrid Systems

Rajeev Alur
University of Pennsylvania
alur@cis.upenn.edu

ABSTRACT
In formal verification, a designer first constructs a model,
with mathematically precise semantics, of the system un-
der design, and performs extensive analysis with respect
to correctness requirements. The appropriate mathemati-
cal model for embedded control systems is hybrid systems
that combines the traditional state-machine based models
for discrete control with classical differential-equations based
models for continuously evolving physical activities. In this
article, we briefly review selected existing approaches to for-
mal verification of hybrid systems, along with directions for
future research.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; J.7 [Computers in other systems]: Real time,
Process control

General Terms
Verification.

Keywords
Hybrid systems, Control systems, Model checking, Formal
methods

1. REVIEW OF CURRENT APPROACHES

Model-based design offers a promising approach for detect-
ing and correcting errors in early stages of system design [33,
37, 49]. In this methodology, a designer first constructs a
model, with mathematically precise semantics, of the sys-
tem under design, and performs extensive analysis with re-
spect to correctness requirements before generating the im-
plementation from the model. Embedded systems, such as
controllers in automotive, medical, and avionic systems, con-
sist of a collection of interacting software modules reacting
to a continuously evolving environment. The appropriate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$5.00.

mathematical model for design of embedded control systems
is hybrid systems that combines the traditional models for
discrete behavior with classical differential- and algebraic-
equations based models for dynamical systems. Such models
can capture both the controller — the system under design,
and the plant — the environment with continuously evolving
physical activities in which the system operates. Given that
(1) automated verification tools have recently been success-
ful in finding bugs in “real-world” hardware protocols and
device drivers [13, 15], (2) tools such as Stateflow/Simulink
are commonly used in automotive and avionics industry for
modeling, and (3) high assurance is a necessity in safety-
critical applications that deploy embedded software, formal
verification of hybrid systems has been a vibrant research
area for the past 20 years. This article is an overview of cur-
rent research directions, aimed at providing an introductory
“roadmap” rather than a comprehensive survey.

Modeling

In early 1990s, formal models for discrete reactive systems
were integrated with models for dynamical systems [2, 41].
The model of hybrid automata [1,2,29] has emerged to be a
popular choice. A hybrid automaton is an extended finite-
state machine whose state consists of a mode that ranges
over finitely many discrete values and a finite set of real-
valued variables. Each mode is annotated with constraints
that specify the continuous evolution of the system, and
edges between modes are annotated with guards and up-
dates that specify discrete transitions. For example, the
behavior of a self-regulating thermostat can be described
by a hybrid automaton with two modes, on and off, and
a single real-valued variable T modeling the temperature.
To specify how the temperature changes in the mode on,
we can annotate the mode with a differential equation, say,
Ṫ = k(70 − T), for a constant parameter k. Alternatively,

we can use a differential inequality, say, k1 ≤ Ṫ ≤ k2, for
two constants k1 and k2, to specify the dynamics approx-
imately using only bounds on the derivative. Associating
the mode on with an invariant constraint T ≤ 70 specifies
that the system must exit this mode before the temperature
exceeds 70. An edge from the mode on to the mode off with
the guard T ≥ 68 specifies that, whenever the temperature
exceeds 68, the system can discretely change its state by
updating the mode to off. A hybrid automaton can nat-
urally be interpreted as an infinite-state transition system,
and this forms the basis for formalizing classical notions such

as safety verification, property-preserving abstractions, and
simulation relations, for hybrid systems.

Hybrid automata are analogs of state machines, with lit-
tle support for structured descriptions, and consequently, a
number of formalisms have been proposed to facilitate mod-
ular descriptions of complex systems. These include mod-
eling environments such as Shift [17] and Ptolemy [19]
for hierarchical specifications of hybrid behavior; models
such as hybrid I/O automata [40], hybrid modules [6], and
Charon [3], for compositional treatment of concurrent hy-
brid behavior; and differential dynamic logic for logic-based
specification and compositional analysis of sequential hybrid
behavior [43].

The commercial modeling tools such as Stateflow/Simulink
(see www.mathworks.com) and Modelica (see www.modelica.
org) are routinely used in a wide range of industries. Con-
ceptually, it should be possible to compile models expressed
in such tools into formal notations such as hybrid automata.
This has turned out to be difficult in practice due to the
richness of features in commercial tools and the lack of a
standardized formal semantics of such features (see [35] for
efforts aimed at semantics-preserving transformations across
modeling notations).

Symbolic reachability analysis

In the safety verification problem for hybrid systems, we are
given a hybrid systems model M , a set I of initial states of
M , and a set S of “safe” states of M , and we want to check
whether every execution of M starting in an initial state al-
ways stays within the set of safe states, and if not, report
a violating execution as a counter-example. For instance,
given the hybrid systems model of a collision avoidance pro-
tocol, we want to check whether the distance between two
vehicles stays greater than the safety threshold for given
initial conditions. Let us first note that the safety verifica-
tion problem of hybrid systems cannot be solved algorith-
mically: with the exception of classes that severely restrict
the allowed dynamics of real-valued variables such as timed
automata [5] and initialized rectangular automata [32], the
safety verification problem is undecidable [1, 32]. Symbolic
reachability algorithms for safety verification try to compute
the set R of reachable states of a hybrid system M in an it-
erative manner starting from the set I of initial states. The
algorithm checks, at every step of the iteration, if the cur-
rent set R of reachable states is a subset of the set S of safe
states, and if not, it terminates with a counter-example. In
general, there is no termination guarantee, as the algorithm
may keep adding more and more states to R without being
able to deduce that the system is safe. The key challenge to
efficient implementation is to identify a suitable representa-
tion for the set of states that supports the operations used
by the iterative reachability computation.

The tool HyTech was the first model checker to implement
symbolic reachability analysis for hybrid systems [7,31]. For
a hybrid automaton with n real-valued variables, each reach-
able set is represented by associating a finite union of n-
dimensional polyhedra with each mode, where a polyhedron
is represented as a conjunction of linear inequalities over
variables. Such a polyhedra-based representation is appeal-
ing due to the use of polyhedra in many computing ap-
plications and the availability of open-source libraries for

manipulating them (c.f. [12]). The models are restricted
to the class of linear hybrid automata (LHA): guards, up-
dates, and invariants involve only linear expressions, and
the dynamics is specified using differential inequalities that
are linear constraints over first-order derivatives. For exam-
ple, the LHA-admissible dynamics ẋ = ẏ ∧ 1 ≤ ẋ ≤ 2 de-
scribes two-dimensional motion along the diagonal line with
bounds on speed. For LHA, the polyhedral representation
is closed under both discrete transitions corresponding to
mode-switches and continuous evolution according to differ-
ential constraints in a mode: given a polyhedron R describ-
ing the set of current states, the set R′ of states that the
system can reach after a discrete mode-switch to a mode m,
is a polyhedron that can be computed effectively from R,
and the set R′′ of states that the system can reach as a re-
sult letting it evolve continuously according to the dynamics
associated with the mode m, is also a polyhedron that can
be computed effectively from R′.

The most commonly used dynamics in mathematical design
of control systems involves linear differential equations: if
x represents the vector of state variables, u represents the
vector of input variables, a linear system is described by the
equation ẋ = Ax+Bu, where A and B are matrices of ap-
propriate dimensions. Such dynamics is not allowed in LHA.
Linear hybrid systems (LHS) refers to the class of hybrid au-
tomata where guards, updates, and invariants involve only
linear expressions, and the dynamics is specified using linear
differential equations. First note that the polyhedral repre-
sentation is not closed under continuous evolution specified
by linear differential equations: if x = 1 is the initial state
and the dynamics is given by the linear differential equation
ẋ = x, the set of reachable states is the exponential curve
given by et, for real numbers t ≥ 0. Since manipulating
transcendental functions is computationally difficult, a pop-
ular strategy, first advocated by the tool Checkmate [14],
and later refined by the tool d/dt [11], is to compute over-
approximations of reachable sets using polyhedral represen-
tations. Given a polyhedron R representing the set of cur-
rent states, to compute the set R′ of states that are reachable
within a fixed time horizon Δ according to a given linear dif-
ferential equation, the algorithm implements the following
strategy. For every corner vertex v of R, it first computes
the state v′ of the system at time Δ starting in state v. Then
it computes the convex hull R1 of all the corner vertices v
of R and their respective images v′. We are guaranteed that
all the system trajectories start in the polyhedron R1 and
end in R1 at time Δ, but are not necessarily inside R1 at
intermediate times. The final step involves computing the
polyhedron R2 obtained by “face-lifting” R1: the number
and normal vectors for facets of R2 coincide with R1, but
the facets are shifted outwards so as to include all reachable
states upto time Δ. All these steps can be efficiently imple-
mented for linear systems, and the resulting polyhedron R2

is guaranteed to be a superset of the desired set R′. The
process can be repeated for successive time intervals, and
the resulting approximation of the reachable set is called
the flowpipe approximation.

The complexity of operations on polyhedra is exponential in
the number of dimensions (that is, the number of real-valued
variables of the hybrid system), and since such operations
are invoked repeatedly in symbolic analysis based on poly-
hedral representation, a significant body of work has been

aimed at battling this complexity and/or replacing polyhe-
dra with alternative representations [11, 21, 36, 42]. Repre-
sentation using zonotopes and support functions [22,26] has
so far resulted in the most scalable approach for the analysis
of linear hybrid systems, leading to the tool SpaceEx that
is able to analyze, for instance, a complex 28-dimensional
helicopter controller [20].

Deductive verification

In deductive verification, a designer interacts with a mech-
anized theorem prover to generate proofs of correctness of
systems. For safety verification of discrete systems, a clas-
sical proof principle relies on the notion of inductive invari-
ants: to show that all executions of a system M starting in
an initial set I stay within a safe set S, we identify a state
property ϕ such that (1) all initial states satisfy ϕ; (2) ϕ is a
subset of the desired safety property S; and (3) the property
ϕ is preserved locally across system transitions (that is, no
transition of the system changes the value of ϕ from 1 to 0).
In interactive verification, the user proposes a property ϕ,
and the analysis tool checks if ϕ is an inductive invariant.

The concept of inductive invariants for discrete systems has
been generalized and adopted to continuous-time dynamical
(and hybrid) systems. We will informally explain the first
such notion, called barrier certificates [47,48]. To show that
a dynamical system M with dynamics ẋ = f(x) with initial
set I satisfies a safety property S, we identify a function ψ
from the states to reals such that (1) in all initial states, the
value of ψ is nonnegative; (2) in all unsafe states (that is,
states not in the safe set S), the value of ψ is negative; and
(3) the Lie derivate of ψ with respect to the vector field f
is positive on the boundary set (called the barrier) charac-
terized by ψ(x) = 0. The first two conditions ensure that
the barrier separates the initial states from the unsafe states,
and the third condition ensures that system trajectories can-
not escape the barrier from inside as at the barrier the flow
field points inwards. Together, these conditions imply that
ψ(x) ≥ 0 is an inductive invariant of the system. Typically,
the desired function ψ is a polynomial function of the system
variables. It is also worth noting that the barrier certificates
are closely related to the notion of Lyapunov certificates for
stability in classical control theory. The notion of differen-
tial invariants generalizes barrier certificates [44]: it relaxes
the third condition, and also allows more general forms of
logical assertions as potential invariants.

Verification of safety properties based on identifying induc-
tive invariants avoids the iterative calculation of reachable
state sets and is not limited to linear systems. The tool
KeYmaera offers support to prove correctness of hybrid
systems using deductive verification [43,44]. To check whether
a given polynomial certificate satisfies all the conditions nec-
essary for it to be a barrier certificate, the tool needs to
perform symbolic differentiation, and calculations such as
simplification and quantifier elimination, with formulas in
the theory of reals with arithmetic operators. To fully auto-
mate deductive verification, such a tool needs to automati-
cally generate candidates for inductive invariants, and this
remains an active area of research (see [28,50] for automatic

generation of invariants by instantiating templates and [45]
for generating invariants by fixpoint computation).

Abstraction

An abstraction A of a model M is a “simplified” model ob-
tained from M such that proving safety and temporal prop-
erties of A is a sufficient condition for proving the corre-
sponding properties of M . Abstraction is an effective strat-
egy for scalability of verification tools, provided there is a
way to compute A from M in a tool-supported manner, and
a way to refine the current abstraction A if it is not ade-
quate to prove the desired properties. In the case of hybrid
systems, the simplicity of the abstract model A can be of
various forms: A can be discrete while M is continuous; A
can have linear dynamics while M has non-linear dynamics;
and A can be a linear model of dimensionality lower than
that of M . There is an extensive literature on automatic
abstraction of hybrid systems. We note three representative
examples.

We have already seen that the dynamics admissible in the
model of linear hybrid automata is simple enough to per-
mit exact computation of reachable states using polyhedral
representation. In phase portrait approximation [30], the dy-
namics ẋ = f(x) in a mode m of a hybrid system is replaced
by l ≤ ẋ ≤ u, where the vectors l and u represent the lower
and upper bounds on the function f over the range of val-
ues specified by the invariant constraint associated with the
mode m. This clearly yields an over-approximation of the
allowed system trajectories in each mode. The error intro-
duced by the approximation can be reduced if we split the
mode m into submodes, each corresponding to a different
region of the state-space.

Predicate abstraction is a powerful technique for extracting
finite-state models from complex, potentially infinite-state,
systems, and has been extended and adopted for hybrid sys-
tems [4, 16]. In this approach, the input to the verifica-
tion tool consists of a linear hybrid system, the safety prop-
erty to be verified, and a finite set of Boolean predicates
over system variables to be used for abstraction. An ab-
stract state is a valid combination of truth values to the
Boolean predicates, and thus, corresponds to a polyhedral
set of the concrete state-space. The verifier performs an
on-the-fly search of the abstract system by symbolic manip-
ulation of polyhedra, where the computation of continuous-
time successors of abstract states can be performed using
flow-pipe approximations. The key computational benefit is
that the continuous reachability computation is applied only
to an abstract state, instead of intermediate sets of arbitrary
complexity generated during iterative computation. If the
initial choice of predicates is too coarse, the search finds ab-
stract counter-examples that are infeasible in the original
hybrid system, and such counter-examples can be analyzed
to discover new predicates that will rule out related spurious
counter-examples.

A classical notion of equivalence of nondeterministic systems
is simulation: a relation between states of two systems is a
simulation relation, if (1) two related states have identical
observations, and (2) whenever two states are related, for
every transition from the first state, there exists a matching
transition from the second state such that the targets of the
transitions remain related. For simpler classes of hybrid sys-

tems such as timed automata and O-minimal systems, one
can algorithmically compute the maximal simulation rela-
tion over the states of a given system, and use the discrete
quotient with respect to this relation as the abstract system
which can replace the original system for verification pur-
poses [8]. In the context of hybrid systems, since states con-
tain real-valued vectors, there is a natural metric over states,
and this can be used to also define a coarser notion of sim-
ulation called approximating simulations: an approximating
simulation relation with parameter ε requires observations
of two related states to be ε-close of one another, and tran-
sitions can be matched step-by-step by staying ε-close [23].
The resulting theory of approximating relations leads to al-
gorithms for constructing lower-dimensional abstractions of
linear systems [52].

2. EMERGING RESEARCH DIRECTIONS

Automated verification is a computationally intractable prob-
lem. Consequently, even though there are many demonstra-
tions of interesting analyses using tools for verification of
hybrid systems, scalability remains a challenge, and a signif-
icant fraction of the current research is aimed at addressing
this challenge. A complementary challenge is to integrate
verification tools and techniques in the design flow so as to
improve the overall system reliability. We conclude this arti-
cle by discussing some promising research directions towards
this goal.

Symbolic simulation

In simulation, a possible execution of the model upto a fi-
nite time horizon is obtained using numerical methods, and
this is a well-accepted industrial practice. A single simula-
tion corresponds to a specific choice of inputs. A promising
idea is to analyze a simulation trace corresponding to a par-
ticular choice of inputs using symbolic analysis techniques
to compute the space of inputs that are close enough to
the chosen one so that no inputs from this space need to
be considered for subsequent simulations (see [9, 18, 34] for
recent efforts). This integration of simulation and symbolic
analysis can lead to improved coverage, and is similar to con-
colic testing which has proved to be effective in debugging of
large-scale software systems [24]. An added benefit is that
such an approach can be implemented directly within the
native simulation engine of an industrial-strength modeling
environment such as Simulink/Stateflow.

Synthesis

Historically, synthesis refers to the process of computing an
implementation (the “how”) from a specification of the de-
sired behavior and performance (the “what”) and the as-
sumptions on the environment (the “where”). In the more
recent view, the synthesis tool facilitates the design by con-
sistently integrating different views: a designer expresses
her insights about the design using synthesis artifacts of
different kinds such as models that may contain ambigui-
ties and declarative specifications of high-level requirements,
and the synthesis tool composes these different views about
the structure and functionality of the system into a unified
concrete implementation using a combination of algorith-
mic techniques. Illustrative examples of this new view of
synthesis include programming by examples for spreadsheet

transformations in Microsoft Excel [27], and sketching of
bit-streaming programs using program skeletons [51]. We
believe that these ideas emerging in the programming lan-
guages community should be explored in the context of de-
sign of hybrid systems to integrate synthesis in a pragmatic
way in the design cycle (see [53] for recent work on synthe-
sizing switching conditions in hybrid automata).

From models to code

Generating embedded software directly from high-level mod-
els, such as hybrid systems, is appealing, but challenging due
to the wide gap between the two. In current practice, this
gap is bridged with significant manual effort by exploiting
the run-time support offered by operating systems for man-
aging tasks and interrupts. A key challenge to systematic
software generation from hybrid models is to ensure that one
can infer properties of the software from the properties of
the model, and this problem is receiving increasing atten-
tion from researchers. Sample research directions include
integration of control and scheduling [10] and static analysis
of errors introduced by finite precision computations [25].

Industrial applications

The value of formal modeling and verification on industrially
relevant problems has been demonstrated on a number of
case studies. Examples of these include design and analysis
of vehicle platooning protocols [17], identification of optimal
tolerances for audio control protocol [31], safety verification
of collision avoidance protocol for aircrafts [46,54], and ver-
ification of adaptive cruise control [39]. Yet, the level of
commitment from embedded software industry remains lim-
ited to exploratory projects in collaboration with academic
researchers. This is in contrast to, say, Intel’s investment in
formal hardware verification and Microsoft’s investment in
static analysis of software, which can be attributed to the
identification of specific classes of errors that can be largely
eliminated using verification techniques (for example, dead-
locks in cache coherence protocols and misuse of API rules
by third-party device driver code). Thus, a key challenge
for research in formal verification of hybrid systems is to
identify a compelling class of errors that designers routinely
make and can be eliminated using verification techniques.
An alternative path to industrial adoption is to integrate
verification tools in the certification process, and this seems
plausible in safety-critical domains such as software for med-
ical devices [38].

Acknowledgments: This research was partially supported
by NSF awards CNS 0931239, CNS 1035715, and CCF 0915777.
We thank Oded Maler and André Platzer for their feedback
on this article.

3. REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs,

T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138:3–34, 1995.

[2] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho.
Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems. In
Hybrid Systems, volume LNCS 736, pages 209–229.
Springer-Verlag, 1993.

[3] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic,
V. Kumar, I. Lee, P. Mishra, G. Pappas, and
O. Sokolsky. Hierarchical modeling and analysis of
embedded systems. Proceedings of the IEEE, 91(1),
2003.

[4] R. Alur, T. Dang, and F. Ivancic. Predicate
abstraction for reachability analysis of hybrid systems.
ACM Transactions on Embedded Computing Systems,
5(1):152–199, 2006.

[5] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[6] R. Alur and T. Henzinger. Modularity for timed and
hybrid systems. In CONCUR ’97: Eighth
International Conference on Concurrency Theory,
LNCS 1243, pages 74–88. Springer-Verlag, 1997.

[7] R. Alur, T. Henzinger, and P.-H. Ho. Automatic
symbolic verification of embedded systems. IEEE
Transactions on Software Engineering, 22(3):181–201,
1996.

[8] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas.
Discrete abstractions of hybrid systems. Proceedings of
the IEEE, 88(7):971–984, 2000.

[9] R. Alur, A. Kanade, S. Ramesh, and K. Shashidhar.
Symbolic analysis for improving simulation coverage of
Simulink/Stateflow models. In Proceedings of the 8th
Annual ACM Conference on Embedded Software
(EMSOFT), pages 89–98, 2008.

[10] R. Alur and G. Weiss. RTComposer: a framework for
real-time components with scheduling interfaces. In
Proceedings of the 8th ACM & IEEE International
Conference on Embedded Software, pages 159–168,
2008.

[11] E. Asarin, O. Bournez, T. Dang, and O. Maler.
Approximate reachability analysis of piecewise-linear
dynamical systems. In Hybrid Systems: Computation
and Control, Third International Workshop, LNCS
1790, pages 21–31. Springer, 2000.

[12] R. Bagnara, P. M. Hill, and E. Zaffanella. The parma
polyhedra library: Toward a complete set of numerical
abstractions for the analysis and verification of
hardware and software systems. Sci. Comput.
Program., 72(1-2):3–21, 2008.

[13] T. Ball, V. Levin, and S. K. Rajamani. A decade of
software model checking with SLAM. Commun. ACM,
54(7):68–76, 2011.

[14] A. Chutinan and B. Krogh. Verification of
polyhedral-invariant hybrid automata using polygonal
flow pipe approximations. In Hybrid Systems:
Computation and Control, Second International
Workshop, LNCS 1569, pages 76–90. Springer, 1999.

[15] E. M. Clarke, E. A. Emerson, and J. Sifakis. Model
checking: algorithmic verification and debugging.
Commun. ACM, 52(11):74–84, 2009.

[16] E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh,
O. Stursberg, and M. Theobald. Verification of hybrid
systems based on counterexample-guided abstraction
refinement. In Tools and Algorithms for the
Construction and Analysis of Systems, 9th
International Conference, LNCS2619, pages 192–207,
2003.

[17] A. Deshpande, A. Göllu, and P. Varaiya. SHIFT: a
formalism and a programming language for dynamic

networks of hybrid automata. In Hybrid Systems III,
LNCS 1567. Springer, 1996.

[18] A. Donzé and O. Maler. Systematic simulation using
sensitivity analysis. In Hybrid Systems: Computation
and Control, 10th International Conference, LNCS
4416, pages 174–189. Springer, 2007.

[19] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Luvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity–the Ptolemy approach. Proceedings of
the IEEE, 91(1):127–144, 2003.

[20] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid
systems. In Proc. 23rd International Conference on
Computer Aided Verification (CAV), LNCS 6806,
pages 379–395. Springer, 2011.

[21] A. Girard. Reachability of uncertain linear systems
using Zonotopes. In Hybrid Systems: Computation
and Control, 8th International Workshop, LNCS 3414,
pages 291–305. Springer, 2005.

[22] A. Girard, C. L. Guernic, and O. Maler. Efficient
computation of reachable sets of linear time-invariant
systems with inputs. In Hybrid Systems: Computation
and Control, 9th International Workshop, LNCS 3927,
pages 257–271, 2006.

[23] A. Girard and G. Pappas. Approximation metrics for
discrete and continuous systems. IEEE Transactions
on Automatic Control, 52(5):782–798, 2007.

[24] P. Godefroid, N. Klarlund, and K. Sen. DART:
directed automated random testing. In Proceedings of
the ACM Conference on Programming Language
Design and Implementation, pages 213–223, 2005.

[25] E. Goubault and S. Putot. Static analysis of finite
precision computations. In Verification, Model
Checking, and Abstract Interpretation - 12th
International Conference, LNCS 6538, pages 232–247,
2011.

[26] C. L. Guernic and A. Girard. Reachability analysis of
hybrid systems using support functions. In Computer
Aided Verification, 21st International Conference,
LNCS 5643, pages 540–554, 2009.

[27] S. Gulwani. Automating string processing in
spreadsheets using input-output examples. In
Proceedings of 38th ACM Symposium on Principles of
Programming Languages, pages 317–330, 2011.

[28] S. Gulwani and A. Tiwari. Constraint-based approach
for analysis of hybrid systems. In Computer Aided
Verification, 20th International Conference, LNCS
5123, pages 190–203, 2008.

[29] T. Henzinger. The theory of hybrid automata. In
Proceedings of the 11th IEEE Symposium on Logic in
Computer Science, pages 278–293, 1996.

[30] T. Henzinger and P. Ho. Algorithmic analysis of
nonlinear hybrid systems. In Proceedings of the
Seventh Conference on Computer-Aided Verification,
LNCS 939, pages 225–238. Springer-Verlag, 1995.

[31] T. Henzinger, P. Ho, and H. Wong-Toi. HyTech: a
model checker for hybrid systems. Software Tools for
Technology Transfer, 1(1-2):110–122, 1997.

[32] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya.
What’s decidable about hybrid automata. In

Proceedings of the 27th ACM Symposium on Theory of
Computing, pages 373–382, 1995.

[33] T. Henzinger and J. Sifakis. The embedded systems
design challenge. In FM 2006: 14th International
Symposium on Formal Methods, LNCS 4085, pages
1–15, 2006.

[34] A. Julius, G. Fainekos, M. Anand, I. Lee, and
G. Pappas. Robust test generation and coverage for
hybrid systems. In Hybrid Systems: Computation and
Control, 10th International Conference, LNCS 4416,
pages 329–342. Springer, 2007.

[35] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-integrated development of embedded software.
Proceedings of the IEEE, 91(1):145–164, 2003.

[36] A. Kurzhanski and P. Varaiya. Ellipsoidal techniques
for reachability analysis. In Hybrid Systems:
Computation and Control, Third International
Workshop, LNCS 1790, pages 202–214. Springer, 2000.

[37] E. Lee. What’s ahead for embedded software. IEEE
Computer, pages 18–26, September 2000.

[38] I. Lee and O. Sokolsky. Medical cyber physical
systems. In Proc. 47th Design Automation Conference,
pages 743–748, 2010.

[39] S. M. Loos, A. Platzer, and L. Nistor. Adaptive cruise
control: Hybrid, distributed, and now formally
verified. In FM 2011: Formal Methods, 17th
International Symposium on Formal Methods, LNCS
6664, pages 42–56. Springer, 2011.

[40] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg.
Hybrid I/O automata. In Hybrid Systems III:
Verification and Control, LNCS 1066, pages 496–510,
1996.

[41] O. Maler, Z. Manna, and A. Pnueli. From timed to
hybrid systems. In Real-Time: Theory in Practice,
REX Workshop, LNCS 600, pages 447–484.
Springer-Verlag, 1991.

[42] I. Mitchell and C. Tomlin. Level set methods for
computation in hybrid systems. In Hybrid Systems:
Computation and Control, Third International
Workshop, LNCS 1790, pages 310–323. Springer, 2000.

[43] A. Platzer. Differential dynamic logic for hybrid
systems. J. Autom. Reasoning, 41(2):143–189, 2008.

[44] A. Platzer. Logical Analysis of Hybrid Systems -
Proving Theorems for Complex Dynamics. Springer,
2010.

[45] A. Platzer and E. M. Clarke. Computing differential
invariants of hybrid systems as fixedpoints. In
Computer Aided Verification, 20th International
Conference, LNCS 5123, pages 176–189, 2008.

[46] A. Platzer and E. M. Clarke. Formal verification of
curved flight collision avoidance maneuvers: A case
study. In FM 2009: Formal Methods, LNCS 5850,
pages 547–562, 2009.

[47] S. Prajna and A. Jadbabaie. Safety verification of
hybrid systems using barrier certificates. In Hybrid
Systems: Computation and Control, 7th International
Workshop, LNCS 2993, pages 477–492, 2004.

[48] S. Prajna, A. Jadbabaie, and G. J. Pappas. A
framework for worst-case and stochastic safety
verification using barrier certificates. IEEE
Transactions on Automatic Control, 52(8):1415–1429,
2007.

[49] A. Sangiovanni-Vincentelli. Quo Vadis SLD:
Reasoning about trends and challenges of system-level
design. Proceedings of the IEEE, 95(3):467–506, 2007.

[50] S. Sankaranarayanan, H. B. Sipma, and Z. Manna.
Constructing invariants for hybrid systems. Formal
Methods in System Design, 32(1):25–55, 2008.

[51] A. Solar-Lezama, R. Rabbah, R. Bod́ık, and
K. Ebcioglu. Programming by sketching for
bit-streaming programs. In Proc. 2005 ACM
Conference on Programming Language Design and
Implementation, pages 281–294, 2005.

[52] P. Tabuada. Verification and control of hybrid
systems. Springer, 2009.

[53] A. Taly and A. Tiwari. Switching logic synthesis for
reachability. In Proceedings of the 10th International
Conference on Embedded software, pages 19–28, 2010.

[54] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict
resolution for air traffic management: A study in
muti-agent hybrid systems. IEEE Transactions on
Automatic Control, 43(4):509–521, 1998.

