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ABSTRACT
Quantitative analysis and controller synthesis problems for reac-
tive real-time systems can be formalized as optimization problems
on timed automata, timed games, and their probabilistic extensions.
The limiting average cost and the discounted cost are two standard
criteria for such optimization problems. In theory of finite-state
probabilistic systems, a number of interesting results areavailable
relating the optimal values according to these two different perfor-
mance objectives. These results, however, do not directly apply to
timed systems due to the infinite state-space of clock valuations.
In this paper, we present some conditions under which the exis-
tence of the limit of optimal discounted cost objective implies the
the existence of limiting average cost to the same value. Using
these results we answer an open question posed by Fahrenbergand
Larsen, and give simpler proofs of some known decidability results
on (probabilistic) timed automata. We also show the determinacy
and decidability of average-time games on timed automata, and ex-
pected average-time games on probabilistic timed automata.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Real-time systems and embed-
ded systems; B.5.2 [Design Aids]: Optimization, Verification

General Terms
Theory, Verification

Keywords
Timed Automata, Quantitative Analysis, Blackwell optimality, and
Tauberian Theorems

1. INTRODUCTION
A number of recent case-studies [8, 15, 14, 4] demonstrate the

applicability of timed automata [1] for model based design and
analysis of embedded real-time systems. Probabilistic extensions
of timed automata, such as probabilistic timed automata [21], and
duration probabilistic automata [23] are useful in modeling uncer-
tainties (component failure, probability distribution ondelays etc.),
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while two-player games [3, 7] on timed automata are natural can-
didates for modeling open real-time systems. The success oftimed
automata as a model of real-time systems can be partly attributed to
its theoretical properties, such as decidable model checking prob-
lems, and partly to the availability of an excellent set of tools such
as UPPAAL [29], Kronos [20], RED [27], and, PRISM [25].

Performance analysis and optimal controller synthesis questions
for real-time embedded systems can be reduced to optimization
problems on priced extensions of (probabilistic) timed automata for
a given performance metric [4, 2]. The limiting average costand
the discounted cost are two standard criteria for associating a per-
formance metric with an (infinite) execution of a reactive system.
For a given executionr let π(r) = 〈pi ∈ R〉∞i=0 be the sequence
of numbers such thatpi is the price at stepi. Then, the limiting
average cost of the executionr is the limit, if exists, of finite length
averages:

Avg(π(r))
def
= lim

N→∞

1

N + 1

N
X

i=0

pi.

On the other hand, the discounted cost of the executionr for a
discount factorλ ∈ (0, 1] is the total discounted sum of prices,
where the price at stepi is discounted by(1 − λ)i:

Disctλ(π(r))
def
= λ

∞
X

i=0

(1 − λ)ipi.

The notions of limiting average cost and discounted cost are, loosely
speaking, quite opposite to each other: while the limiting average
cost criterion is insensitive to prices appearing in the initial prefixes,
the discounted cost criterion gives more weight to prices appearing
early in a sequence than the later ones. Hence it is perhaps surpris-
ing at first to learn that these two criteria are related to each-other.
Hardy and Littlewood [11] showed that for a bounded (or positive)
sequenceπ, if the limit limλ→0+ Disctλ(π) exists then the average
cost Avg(π) exists as well, and it is equal tolimλ→0+ Disctλ(π).
In this paper we study optimization problems on timed automata
(and its generalizations) with discounted cost and averagecost cri-
teria, and show the relation between their optimal values. In ad-
dition to their purely theoretical interest, such relations yield new
proofs of decidability of certain average cost games on timed au-
tomata.

Connections between optimal discounted cost and average cost
criteria are well-studied for probabilistic systems. Mertens and
Neyman [24] showed that for two-player zero-sum stochasticgames
(and hence for Markov decision processes (MDPs)) with finitely
many states and actions, the value of the game with average cost
objective is equal to the limit of values of games with discounted
cost objectives. Lehrer and Sorin [22] showed a more generalresult
in the context of MDPs with infinite state spaces. They provedthat



uniform convergence of the limit of optimal discounted costobjec-
tive implies uniform convergence of the average reward objective
to the same value. The concept of Blackwell-optimal strategy is
tightly coupled with the relation between the limit of optimal dis-
counted cost and the optimal average cost. Blackwell [5] showed
the existence of strategies in finite Markov decision processes that
are optimal for all discount factors sufficiently close to0. It is well
known [11, 26] that every positional Blackwell-optimal strategy is
also average optimal, while the opposite is not true. The result
of Mertens and Neyman show the existence of Blackwell-optimal
strategies on finite stochastic games. To the best of our knowledge
no analog of such results is known for timed automata, and the
results from finite state probabilistic systems do not automatically
generalize to timed systems due to infinite state space of clock val-
uations.

The main contribution of this paper are the theorems relating the
limit of optimal discounted cost and the optimal average cost crite-
ria on timed automata. We also show the existence ofε-Blackwell
optimal (Blackwell optimal up to a given precisionε > 0) strate-
gies in priced timed automata. We generalize these results for
probabilistic timed automata, and games on probabilistic timed au-
tomata. Our results yield a simpler proof of decidability and deter-
minacy of optimal average-time games on timed automata, andthe
first proof of decidability and determinacy for expected average-
time games on probabilistic timed automata. We also prove a con-
jecture of Fahrenberg and Larsen [9] on the connection between
continuously-discounted cost and average cost (per time-unit) opti-
mization problem on timed automata.

The rest of the paper is organized in the following manner. We
begin the technical part of the paper by introducing the concepts
and the notations in a general setting of MDPs and stochasticgames
with infinite states and actions. In Section 3 we introduce priced
timed automata and present our main result. In Section 4 and 5
we discuss the extensions of our results for probabilistic timed au-
tomata and two player games, respectively.

2. PRELIMINARIES
We writeN for the set of natural numbers,R for the set of real

numbers, andR≥0 for the set of non-negative reals. For setsX and
Y , we write [X → Y ] for the set of functionsF : X → Y and
[X ⇁ Y ] for the set of partial functionsF : X ⇁ Y .

A (discrete)probability distributionover a (possibly uncount-
able) setX is a functionF : X → [0, 1] such that support set of
F , i.e.,supp(F ) = {x ∈ X : F (x) > 0}, is a countable set and
P

x∈X F (x) = 1. LetP(X) denote the set of all probability distri-
butions overX. We say that a probability distributionF ∈ P(X)
is apoint distributionif F (x)=1 for somex ∈ X.

2.1 Optimization Problems
The semantics of priced timed automata are weighted state tran-

sition systems with uncountably infinite states and actions, while
the semantics of probabilistic timed automata are Markov decision
processes with uncountably infinite states and actions. Before we
introduce priced timed automata, and priced probabilistictimed au-
tomata, let us first introduce various concepts and definitions in this
general framework.

DEFINITION 1 (MARKOV DECISION PROCESSES). AMarkov
decision process(MDP) is a tupleM = (S, A, T, π) where:

– S is a (possibly uncountable) set ofstates;

– A is a (possibly uncountable) set ofactions;

– T : S × A ⇁ P(S) is a probabilistic transition function
such that the setA(s) = {a ∈ A : T (s, a) is defined} is
nonempty for every states ∈ S;

– π : S × A ⇁ R≥0 is a bounded and measurable price
function.

A weighted state-transition system is an MDPM=(S, A, T, π)
such thatT (s, a) is a point distribution for every states ∈ S and ac-
tion a ∈ A(s). We say that an MDP (or a weighted state-transition
system)M is finite if both S andA are finite.

We say that(s, a, s′) ∈ S×A×S is a transition of the MDPM
if T (s, a)(s′) is positive. A finite run ofM is a finite sequence
〈s0, a1, s1, . . . , an, sn〉 such that(si, ai+1, si+1), for eachi<n, is
a transition ofM. Similarly, an infinite run is an infinite sequence
〈s0, a1, s1, a2, . . .〉 such that(si, ai+1, si+1), for eachi ∈ N, is
a transition ofM. For a finite runr we write last(r) and len(r)
for its last state and number of transitions, resp. For example if
r=〈s0, a1, . . . , an, sn〉 then last(r)=sn and len(r)=n. We write
first(r) for the first state of a (finite of infinite) runr=〈s0, a1, . . .〉,
herefirst(r)=s0. Let FRunsandRunsbe the set of finite and infi-
nite runs ofM, and letFRuns(s) andRuns(s) be the set of finite
and infinite runsr such thatfirst(r)=s.

A strategyµ : FRuns→P(A) is a function mapping finite runs
to probability distributions on the set of enabled actions,i.e. for
all finite runsr ∈ FRunswe havesupp(µ(r)) ⊆ A(last(r)). We
say that a strategyµ is pure if µ(r) is a point distribution for all
r ∈ Runs, while we say that it isstationaryif last(r) = last(r′)
implies µ(r) = µ(r′) for all r, r′ ∈ Runs. We also say that a
strategy is positional if it is both pure and stationary. We write
Σ for the set of all strategies andΠ for the set of all positional
strategies of the MDPM.

For a strategyµ ∈ Σ and a starting states ∈ S we write
Run(s, µ) for the set of all runs consistent with the strategyµ. No-
tice that ifM is a weighted state-transition system andµ is a pure
strategy thenRun(s, µ) is a singleton set. Given a finite runr ∈
FRunsa basic cylinder setCyl(r) is defined as the set of all infinite
runs with prefixr. Let F be theσ-algebra generated by all cylin-
der sets. To analyze an MDPM under a strategyµ and a starting
states we define the probability space(Runs(s, µ),F , Prob(s, µ))
over the set of infinite runsRuns(s, µ) in the standard manner [26].
Note thatProb(s, µ) is the unique probability measure satisfying

Prob(s, µ)(Cyl(r))=
n
Y

i=1

T (si−1, ai)(si) · µ(ri−1)(ai),

for all finite runsr=〈s0, a1, . . . , sn〉, whereri=〈s0, a1, . . . , si〉.
Given areal-valued random variablef : Runs→ R over the set

of infinite runs, using standard techniques from probability theory,
we define the expectationE(s, µ) {f} of this variable with respect
to the strategyµ ∈ Σ when starting in the states ∈ S.

To compare the performance of an MDP under different strate-
gies, we define optimality criteria (also known as performance cri-
teria, or payoffs) associated with a starting state and a strategy.
Discounted cost and average cost are two well-studied criteria in
performance analysis of MDPs. For a runr = 〈s0, a1, s1, . . .〉 we
define itsλ-discounted costDλ (for λ ∈ (0, 1]) and N -average
costAN (for N ≥ 1) as:

Dλ(r)=λ
∞
X

i=0

(1−λ)iπ(si, ai+1) andAN (r)=
1

N

N−1
X

i=0

π(si, ai+1).

Observe thatDλ(r) is always defined for every runr sinceπ is
a bounded function. Due to non-negativity of price functions the
following result follows from a result [13] of Hardy and Littlewood.



THEOREM 1. For every runr of an MDPM we have that

lim inf
N→∞

AN (r) ≤ lim inf
λ→0+

Dλ(r)

≤ lim sup
λ→0+

Dλ(r) ≤ lim sup
N→∞

AN (r).

Moreover, if the middle inequality is an equality, then all inequali-
ties are equalities.

The notion ofλ-discounted costDλ (for λ ∈ (0, 1]) andN -average
costAN (for N ≥ 1) of a run can be generalized toλ-discounted
costDλ(s, µ) andN -average costAN (s, µ) of a strategyµ of M
with starting states as:

Dλ(s, µ) = E(s, µ)
˘

Dλ

¯

andAN (s, µ) = E(s, µ)
˘

AN

¯

.

Finally, we define optimalλ-discounted costDλ(s) and optimal
N -average costAN (s) of M with starting states as:

Dλ(s) = inf
µ∈Σ

Dλ(s, µ) andAN (s) = inf
µ∈Σ

AN (s, µ).

It is natural to ask whetherDλ(s) andAN (s) are also related in
a manner similar to Theorem 1. Lehrer and Sorin [22] gave a par-
tial answer to this question in the case of uniform convergence of
Dλ andAN . We say that a sequence〈fn : S→R〉 of functions
converges uniformly to a limiting functionf : S→R if for every
ε>0 there existsNε ∈ N such that for alls ∈ S and allN ≥ Nε

we have|fN (s) − f(s)| ≤ ε. On the other hand, the ordinary
(point-wise) convergence only require that for everyε > 0 and
s ∈ S there existsNε,s ∈ N such that for allN ≥ Nε,s we have
|fN (s) − f(s)| ≤ ε.

THEOREM 2 ([22]). For a Markov decision processM and
a functionF : S → R we have thatlimλ→0+ Dλ = F uniformly
onS if and only iflimN→∞ AN = F uniformly on S.

Lehrer and Sorin [22] showed that in the absence of uniform con-
vergence this relation does not hold by giving an example of an
MDP with countably infinite states and finite action sets where both
limn→∞ AN (s) andlimλ→0+ Dλ(s) exist and differ.

A strategyµ isDλ-optimal if for alls ∈ S we have thatDλ(s) =
Dλ(s, µ). Observe that since the optimalλ-discounted costDλ is
defined as infimum overλ-discounted costs for an infinite set of
strategies, no strategy may achieve the optimal cost. Hence, for a
given precisionε>0, we define the concept ofε-optimal strategies.
For ε>0 we say that a strategyµ is ε-Dλ-optimal if for all s ∈ S
we have thatDλ(s) + ε ≥ Dλ(s, µ). The concepts ofAN -optimal
andε-AN -optimal strategies are defined analogously.

For a givenε > 0 we say that a strategy isε-Blackwell-optimal
if for every starting states ∈ S there exists aλ0 ∈ (0, 1] such that
it is ε-Dλ-optimal for allλ ∈ (0, λ0]. The concept of Blackwell-
optimal strategy is defined in straightforward manner. Forε > 0 we
say that a strategyµ is ε-limit-average optimal if for every starting
states ∈ S there existsN0 ∈ N such thatµ is ε-AN -optimal for
all N ≥ N0.

For a given states ∈ S we also define the long-run average
A(s, µ) of a strategyµ ∈ Σ and the optimal average costA(s) as:

A(s, µ) = lim sup
N→∞

AN (s, µ) andA(s) = inf
µ∈Σ

A(s, µ).

The concepts of average optimal andε-average-optimal strategies
are defined in straightforward manner. The following resultrelates
these average and discounted cost criteria for finite Markovdeci-
sion processes.

THEOREM 3 ([24],[26]). For a finite Markov Decision Pro-
cessM and staring states we have that

lim
λ→0+

Dλ(s) = lim
N→∞

AN (s) = A(s).

Moreover, there exist positional Blackwell-optimal, positional ε-
limit-average optimal, and positional average-optimal strategies.

2.2 Two-Player Games
Two player zero-sum games are a well-established paradigm to

study competitive optimization problems arising from performance
evaluation of open systems. In these games two players correspond
to the controller and the environment, and the goal of the controller
is to choose the controllable actions in such a way that optimizes
some global objective. We are interested in games played on the
infinite graph of configurations of timed automata, where thetwo
players, player Min (typically the controller) and player Max (the
environment), aim to minimize and maximize, resp., the objective
function over the infinite runs of the system. We are interested
in showing the relation between the optimal value of discounted
cost objective and average cost objective. In this subsection, we
introduce various concepts in the setting of stochastic games with
infinite state and action spaces, and review some classical results.

DEFINITION 2 (GAME ARENA). A (stochastic) game arena
is a tupleΓ = (M = (S, A, T, π), SMin, SMax)) where

– M is a Markov decision process,

– SMin and SMax are the sets of states controlled by player
Min and player Max, respectively, such thatSMin andSMax

form a partition ofS, i.e., SMin ∪ SMax = S and SMin ∩
SMax = ∅.

We say that a game arenaΓ = (M, SMin, SMax) is deterministic
if M is a weighted state-transition system. Also, we say that a
game arena isfinite if M is finite.

A strategyof player Min is a (partial) functionµ : FRuns⇁P(A)
that is defined for a finite run ending in states controlled by player
Min, and returns a distribution over actions available in the last
state of the run. Formally, a strategyµ is defined for finite runs
r ∈ FRunsif last(r) ∈ SMin and it is such thatsupp(µ(r)) ⊆
A(last(r)). A strategyχ of player Max is defined analogously. The
concepts of pure, stationary, and positional strategies ofplayers are
defined in a manner analogous to MDPs. We writeΣMin andΣMax

for the sets of strategies of players Min and Max, respectively, and
ΠMin andΠMax for the set of positional strategies of players Min
and Max, resp.

We write Runs(s, µ, χ) for all the runs ofΓ starting from state
s where player Min plays according to the strategyµ ∈ ΣMin and
player Max plays according to strategyχ ∈ ΣMax. The proba-
bility space(Runs(s, µ, χ),F , Prob(s, µ, χ)) and the expectation
E(s, µ, χ) {f} of the real-valued random variablef : Runs→ R

are defined in a straightforward manner.
A game on a game arena is characterized by the optimality crite-

rion players associate with a run. In a zero-sum game it is sufficient
to define the performance criterion of player Min, and the criterion
of player Max is the opposite. Similar to the optimization prob-
lems discussed in Section 2.1, we considerDλ-game,AN -game,
A-game corresponding toλ-discounted cost,N -average cost, and
the average cost criteria, respectively.

We define the concept of theDλ-value of a strategyµ of player
Min in a gameΓ with starting states as:

Dλ(s, µ) = sup
χ∈ΣMax

E(s, µ, χ) {Dλ} ,



andDλ-value of a strategyχ of player Max in a gameΓ with start-
ing states as:

Dλ(s, χ) = inf
µ∈ΣMin

E(s, µ, χ) {Dλ} .

The upper valueuval(Dλ) of a Dλ-game is then defined as the
upper limit on the value of optimization criterion that player Min
can ensure irrespective of the strategy used by player Max, and is
equal to

uval(Dλ)(s) = inf
µ∈ΣMin

Dλ(s, µ).

The concept of the lower valuelval(Dλ) of theDλ-game is analo-
gous:

lval(Dλ)(s) = sup
χ∈ΣMax

Dλ(s, χ).

It is easy to verify thatlval(Dλ)(s) ≤ uval(Dλ)(s). If for every
states ∈ S we have thatlval(Dλ)(s) = uval(Dλ)(s) then we say
thatDλ-game is determined. In such a case, we say that the value
Dλ(s) exists, whereDλ(s) = lval(Dλ)(s) = uval(Dλ)(s).

For a givenε > 0 we say that a strategyχ is ε-Dλ-optimal if

Dλ(s, χ) ≥ Dλ(s) − ε.

and a strategyχ is Dλ-optimal if Dλ(s, χ) = Dλ(s). TheDλ-
optimality of the strategies of player Min is defined analogously.
Notice that if theDλ-game is determined, then each player has an
ε-optimal strategy for allε>0. We say thatDλ-game ispositionally
determinedif

Dλ(s) = inf
µ∈ΠMin

sup
χ∈ΣMax

E(s, µ, χ) {Dλ}

= sup
χ∈ΠMax

inf
µ∈ΣMin

E(s, µ, χ) {Dλ}

for all s ∈ S. It is straightforward to see that ifDλ-game is po-
sitionally determined, then both players havepositionalε-optimal
strategies for allε>0. The concepts of upper value, lower value,
optimal andε-strategies, etc., forN -average cost games are defined
in a similar fashion. For average cost games the only noteworthy
difference is:

A(s, µ) = sup
χ∈ΣMax

E(s, µ, χ) {A∗}

A(s, χ) = inf
µ∈ΣMin

E(s, µ, χ) {A∗} ,

whereA∗(Run(s, µ, χ)) = lim supN→∞ AN (Run(s, µ, χ)), while
A∗(Run(s, µ, χ)) = lim infN→∞ AN (Run(s, µ, χ)).

For a givenε > 0 we say that a strategy of player Min (Max) is
ε-Blackwell-optimal if for every starting states ∈ S there exists a
λ0 ∈ (0, 1] such that it isε-Dλ-optimal for allλ ∈ (0, λ0]. The
concept of a Blackwell-optimal strategy of each player is defined
in straightforward manner. We also defineε-limit-average optimal
strategies for both players. It is well known that for finite game are-
nasε-limit-average optimality is a stronger notion thanε-Blackwell
optimality.

PROPOSITION4 ([24]). For every finite stochastic game arena
Γ, ε > 0, and for both players we have that everyε-limit-average
optimal strategy is alsoε′-Blackwell optimal forε′ = 2ε.

The following result relates the value of discounted cost game to
the value of average cost game in a game arena.

THEOREM 5 ([24],[11]). For a finite game arenaΓ, all Dλ-
games,AN -games andA-games are determined. For every start-
ing states we have that

lim
λ→0+

Dλ(s) = lim
N→∞

AN (s) = A(s).

Moreover, both players have positional Blackwell-optimal, posi-
tional ε-limit-average optimal, and positional average-optimal strate-
gies.

2.3 Operator Based Approach
Rosenberg and Sorin [28] studied the functional operatorsΦ :

[0, 1] × [S→R≥0] → [S→R≥0] andΨ : [S→R≥0]→[S→R≥0]
and used them to show the connection between discounted costand
average cost criteria for absorbing games and incomplete informa-
tion repeated games. We review these operators and some of their
properties that we later exploit to prove our results for timed sys-
tems. For a game arenaΓ we define the operatorsΦ andΨ in the
following manner: forλ ∈ (0, 1] andf : S → R≥0 we have

Φ(λ, f)(s)
def
= opt

a∈A(s)

˘

λ·π(s, a)+(1−λ)
X

s′∈S

T (s, a)(s′)·f(s′)
¯

,

Ψ(f)(s)
def
= opt

a∈A(s)

˘

π(s, a) +
X

s′∈S

T (s, a)(s′) · f(s′)
¯

,

whereopt is inf if s ∈ SMin, and issup if s ∈ SMax.
The following proposition follows from the fact thatΦ is mono-

tonic and for every functionf : S → R and d ∈ R we have
Φ(λ, f+d) = Φ(λ, f) + (1−λ) · d.

PROPOSITION6 ([28]). The operatorΦ(λ, ·) is a contrac-
tion with coefficient(1 − λ) on the set[S → R≥0] with respect
to∞-norm.

Let 0 ∈ [S → R≥0] be such that0(s) = 0 for all s ∈ S. The
following equalities involving operators are easy to verify.

PROPOSITION7 ([28]). 1. AN = Φ
`

1
N

,AN−1

´

.

2. AN = 1
N

ΨN(0).

3. Dλ = Φ (λ,Dλ), and

4. Dλ = limN→∞(Φ(λ, ·))N(f), for anyf ∈ [S → R≥0].

Proposition 7 and Theorem 5 imply the following proposition
(that can also be proved directly by extending the operator approach
of [28]).

PROPOSITION 8. For a finite game arenaΓ we have that

lim
λ→0+

lim
N→∞

Φ(λ, ·)N (0)(s) = lim
N→∞

1

N
ΨN (0)(s),

for everys ∈ S.

To emphasize some set’s correspondence to its game arena (or
MDP) Γ, specially when it is not clear from the context, we affix
Γ in the superscript. For example, we writeRunsΓ andΣΓ

Min to
denote the set of runs and the set of strategies for player Min, resp.,
in a stochastic game onΓ.

3. PRICED TIMED AUTOMATA
To present the syntax and the semantics of priced timed automata

we need to introduce clock variables and related concepts.
Let C be a finite set of nonnegative real variables which we refer

to asclocks. A clock valuationonC is a functionν : C→R≥0 and
we writeV for the set of clock valuations. Abusing notation, we
treat a valuationν as a point inR|C|

≥0. A clock constraintoverC is
a conjunction ofsimple constraintsof the formc ⊲⊳ i or c−c′ ⊲⊳ i,
wherec, c′ ∈ C, i ∈ N and⊲⊳ ∈ {<, >, =,≤,≥}. A clock zone
is a set of clock valuations satisfied by some clock constraint. We
writeZ for the set of clock zones overC.



DEFINITION 3 (PRICED TIMED AUTOMATA ). Apriced timed
automatonis a tupleT =(L, C, Inv ,Act ,Enb,Rst , δ, pr) where:

– L is a finite set oflocations;

– C is a finite set ofclocks;

– Inv : L → Z is an invariant condition;

– Act is a finite set ofactions;

– Enb : L×Act → Z is anaction guard function;

– Rst : Act → 2C is aclock reset function;

– δ : L×Act → L is a transition function; and

– pr : L ∪ Act → N is a price functionassigning price-rates
to locations and fixed prices to actions.

We say that a timed automaton isboundedif there exists a constant
K ∈ N such thatInv(ℓ) ⊆ {ν ∈ V : ν(c) ≤ K for all c ∈ C}
for all ℓ ∈ L. For technical convenience we restrict our attention to
bounded priced timed automata.

If ν ∈ V andt ∈ R≥0 then we writeν+t for the clock valuation
defined by(ν+t)(c) = ν(c)+t for all c ∈ C. ForC ⊆ C, we write
ν[C:=0] for the valuation whereν[C:=0](c) equals0 if c ∈ C
andν(c) otherwise. Aconfigurationof a timed automaton is a pair
(ℓ, ν), whereℓ is a location andν a clock valuation satisfying the
invariant of the locationℓ, i.e.,ν ∈ Inv(ℓ). For any delayt ∈ R≥0

we let(ℓ, ν)+t equal the configuration(ℓ, ν+t).
In a configuration(ℓ, ν), a timed action (time-action pair)(t, a)

is available if and only if the invariant conditionInv(ℓ) is continu-
ously satisfied whilet time units elapse, anda is enabled (i.e. the
enabling conditionEnb(ℓ, a) is satisfied) aftert time units have
elapsed. Furthermore, if the timed action(t, a) is performed from
(ℓ, ν) then the next location is equal toδ(ℓ, a), while the next val-
uationν′ is obtained by resetting clocks inRst(a) after waiting
for t time-units fromν, i.e. ν′ = (ν + t)[Rst(a):=0]. The price
associated with this timed action is pr(ℓ) · t + pr(a).

DEFINITION 4 (PTA: SEMANTICS). The semantics of a priced
timed automatonT = (L, C, Inv ,Act ,Enb,Rst , δ, pr) is given by
a weighted state-transition system[[T ]]=(S, A,T, π) where

– S ⊆ L×V is the set of states such that(ℓ, ν) ∈ S if and only
if ν ∈ Inv(ℓ);

– A = R≥0×Act is the set oftimed actions;

– T : S × A ⇁ S is the transition functionsuch that for a
state(ℓ, ν) ∈ S and a timed action(t, a) ∈ A we have that
(t, a) ∈ A((ℓ, ν)) if and only if

1. ν+t′ ∈ Inv(ℓ) for all t′≤t and

2. ν+t ∈ Enb(ℓ, a).

For all (ℓ, ν) ∈ S, and(t, a) ∈ A((ℓ, ν)) we have that

T ((ℓ, ν), (t, a)) = (δ(ℓ, a), (ν + t)[Rst(a):=0]).

– π : S × A ⇁ R≥0 is theprice functionand it such that for
(ℓ, ν) ∈ S and(t, a) ∈ A((ℓ, ν)) we have that

π((ℓ, ν), (t, a)) = pr(ℓ)·t + pr(a).

We are interested in the relation between the optimalλ-discounted
costDλ, optimalN -average costAN , and optimal average costA
on the weighted state-transition system[[T ]]. The following theo-
rem is our main result.

THEOREM 9. For every bounded priced timed automatonT
and every starting states we have

lim
λ→0+

Dλ(s) = lim
N→∞

AN (s) = A(s).

Moreover, there existε-Blackwell optimal andε-limit-average op-
timal strategies for everyε > 0.

In order to prove this theorem we present an abstraction of priced
timed automata in the next subsection, and using that we prove the
correctness of the reduction of optimalλ-discounted cost and opti-
malN -average cost problems for a priced timed automaton to cor-
responding problems on a finite graph. In Section 3.2 we show the
existence ofε-Blackwell optimal strategies in a timed automaton
T , and in Section 3.3 we show the proof of Theorem 9 by showing
a crucial Lemma 14. Finally, in Section 3.4 we prove a similarthe-
orem for optimal continuous discounting cost problem studied by
Fahrenberg and Larsen.

3.1 Region Abstractions
The decidability of the qualitative reachability problem on timed

automata was shown by Alur and Dill [1] by showing a reductionto
the so-called region graph. The region graph, however, is not suit-
able for qualitative optimization problems as it does not preserve
any timing/price information. Several generalizations ofregion ab-
stractions, e.g. corner-point abstraction [6, 9], digitalclocks [21],
and boundary region abstractions [18], have been proposed to solve
quantitative optimization problems on timed automata. We present
the boundary region graph abstraction, and prove the correctness
of the reduction of discounted cost optimization problem onpriced
timed automata to that on its boundary region abstraction. The
boundary region graph has the property that for a fixed starting state
the reachable subgraph (a state-transition system) from that state is
finite. This subgraph coincides with the corner-point abstraction if
the valuationν of the starting state is agrid point, i.e. ν ∈ N

|C|.
Before we present the boundary region abstraction let us intro-

duce some concepts and notation related to the region abstraction.
For a bounded timed automatonT , let SCC(ν) be the finite set

of simple constraints which hold inν ∈ V . A clock regionis a
maximal setR ⊆ V such that SCC(ν) = SCC(ν′) for all ν, ν′ ∈
R. We writeR for the set of clock regions ofT . Observe that every
clock region is an equivalence class of the indistinguishability-by-
clock-constraints relation, and vice versa. For a clock valuationν
we write[ν] for its clock region and, ifR = [ν], we writeR[C:=0]
for the region[ν[C:=0]].

For regionsR, R′ ∈ R, we say that the clock regionR′ is in
the future of clock regionR, or R is in the past ofR′, if there are
ν ∈ R, ν′ ∈ R′ and delayd ∈ R≥0 such thatν′ = ν+d; we
then writeR −→∗ R′. For regionsR,R′ ∈ R such thatR −→∗ R′

we write [R, R′] for the union of the set of regions that are in the
future ofR and in the past ofR′. We say that a clock regionR is
thin if [ν] 6= [ν+ε] for everyν ∈ R andε>0, andthick otherwise.
We writeRThin andRThick for the sets of thin and thick regions,
respectively. For a setX ⊆ V of valuations we writeclos(X) and
bd(X) for the closure and the boundary, respectively, of the setX

with respect to Euclidean topology onR|C|
≥0.

The main idea of the boundary region abstraction is that in this
abstraction from every configuration we permit only those time de-
lays that let the system reach a configuration either in a thinregion
or close to a boundary of a thick region. There is an additional over-
head of storing regions as part of configuration and timed actions,
because thick regions are open sets of configurations and thecon-
figurations lying on the boundary of a thick region do not belong to
the thick region itself.



DEFINITION 5 (BOUNDARY REGION GRAPH). The boundary
region graph ofT = (L, C, Inv ,Act ,Enb,Rst , δ, pr) with seman-
tics [[T ]] = (S, A, T, π) is given by a weighted state-transition sys-
temT̂ =(Ŝ, Â, T̂ , π̂) where

– Ŝ ⊆ L×V ×R is a set ofstatessuch that(ℓ, ν, R) ∈ Ŝ if
and only if(ℓ, ν) ∈ S andν ∈ clos(R);

– Â = R≥0×R×Act is a set ofboundary timed actions;

– T̂ : Ŝ × Â ⇁ Ŝ is a transition functionsuch that for
a state(ℓ, ν,R) ∈ Ŝ and (t, Ra, a) ∈ Â we have that
(t, Ra, a) ∈ Â((ℓ, ν, R)) if and only if [R, Ra] ⊆ Inv(ℓ),
Ra ⊆ Enb(ℓ, a), andν + t ∈ bd(Ra). For all (ℓ, ν,R) ∈ Ŝ

and(t, Ra, a) ∈ Â((ℓ, ν, R)) we have

T̂ ((ℓ, ν, R), (t, Ra, a)) =

(δ(ℓ, a), ν+t[Rst(a):=0], Ra[Rst(a):=0]).

– π̂ : Ŝ × Â → R is a price functionsuch that fors =
(ℓ, ν,R) ∈ Ŝ and(t, R, a) ∈ Â((ℓ, ν, R)) we have that

π̂((ℓ, ν, R), (t, R′, a)) = pr(ℓ) · t + pr(a).

We write T̂s for the weighted state-transition graph obtained by
restricting the set of states to the set of reachable states froms ∈ Ŝ.

By the definition of a boundary region graph it follows that for
every(ℓ, ν,R) ∈ Ŝ if (t,Ra, a) ∈ Â((ℓ, ν, R)) then

– eitherRa is thin, andν + t ∈ clos(Ra), or

– Ra is thick, andt = inf {t′ | ν + t′ ∈ clos(Ra)} or t =
sup {t′ | ν + t′ ∈ clos(Ra)}.

Moreover, sucht is a natural number ifν is a grid point, otherwise
there is a clockc ∈ C and numberb ∈ N such thatt = b − ν(c).
The following property is now immediate.

PROPOSITION10 ([18]). If T is a bounded priced timed au-
tomaton then for everys∈Ŝ the setÂ(s) of enabled boundary ac-
tion is finite. Moreover, for everys∈Ŝ, the weighted state-transition
systemT̂s is finite and its size is exponential in the size ofT .

Now let us review the functional operatorsΦ andΨ for a timed
automatonT and the related operatorŝΦ andΨ̂ for its boundary
region graphT̂ . For every states = (ℓ, ν) ∈ S of T , a function
f : S → R, andλ ∈ (0, 1] we define

Φ(λ, f)(s)
def
= inf

τ∈A(s)

˘

λ · π(s, τ ) + (1 − λ) · f(T (s, τ ))
¯

,

Ψ(f)(s)
def
= inf

τ∈A(s)

˘

π(s, τ ) + f(T (s, τ ))
¯

.

Similarly, for every states = (ℓ, ν,R) ∈ Ŝ of T̂ , a function
f : Ŝ → R, andλ ∈ (0, 1] we define

Φ̂(λ, f)(s)
def
= min

τ∈Â(s)

˘

λ · π̂(s, τ ) + (1 − λ) · f(T̂ (s, τ ))
¯

,

Ψ̂(f)(s)
def
= min

τ∈Â(s)

˘

π̂(s, τ ) + f(T̂ (s, τ ))
¯

.

We say that a functionf : Ŝ → R is regionally concave and
C-continuous, if for every locationℓ ∈ L, and regionR ∈ R the
function f(ℓ, ·, R) : ν ∈ clos(R) 7→ f(ℓ, ν, R) is concave and
Lipschitz continuous with constantC. The following proposition
is useful in showing the connection between operators onT andT̂ .

PROPOSITION 11. The functionΨ̂N(0) and Φ̂(λ, ·)N (0) are
regionally concave and Lipschitz continuous with constants(W · N)
andW , respectively, whereW is the largest location price-rate.

The proof of this proposition follows from the fact that if a function
f : Ŝ → R is regionally concave andC-continuous then̂Φ(λ, f)

and Ψ̂(f) are regionally concave and Lipschitz continuous with
constantsmax {C, W} andC + W respectively. It is shown using
the following properties of concave functions:

– If f : S → R is concave, andg : S × R≥0 → S is affine,
thenf(g(·)) : S × R≥0 → S is concave.

– If f1, f2 : S → R are concave andw1, w2 ∈ R≥0 then
w1 · f1 + w2 · f2 is concave.

– If f1, f2, . . . , fn : S → R are concave functions, then their
point-wise minimum is also concave.

The proof for Lipschitz continuity follows from the following prop-
erties:

– If f : S → R is k1-continuous andg : S × R≥0 → S
is k2-continuous, thenf(g(·)) : S × R≥0 → S is k1 · k2-
continuous.

– If f1, f2 : S → R arek1-continuous andk2-continuous,
respectively, andw1, w2 ∈ R≥0 thenw1 · f1 + w2 · f2 is
w1k1 + w2k2 continuous.

– If f1, f2, . . . , fn : S → R are continuous with constants
k1, k2, . . . , kn, resp., then their point-wise minimum is also
Lipschitz continuous with constantmax {k1, k2, . . . , kn}.

For a states = (ℓ, ν) of T we write [s] = (ℓ, ν, [ν]) for the cor-
responding state in̂T . The following relation shows the correct-
ness of the reduction of the optimal discounted cost problemfrom
a priced timed automaton to its boundary region graph.

PROPOSITION 12. For every bounded priced timed automaton
T we have

ΨN(0)(s) = Ψ̂N(0)([s]), and

lim
N→∞

Φ(λ, ·))N(0)(s) = lim
N→∞

Φ̂(λ, ·))N (0)([s]),

for everys ∈ S and everyN ∈ N.

PROOF. We first show by induction onN that ΨN(0)(s) =

Ψ̂N (0)([s]). Let us first see the base case forN = 1. Let s =
(ℓ, ν) ∈ S.

Ψ(0)(s) = inf
(t,a)∈A(s)

˘

π(s, (t, a))+0(T (s, (t, a)))
¯

= inf
(t,a)∈A(ℓ,ν)

˘

π(s, (t, a))
¯

= min
a∈Act

min
R∈R

inf
{t : ν+t∈R}

˘

π(s, (t, a))
¯

= min
a∈Act

min
R∈R

inf
{t : ν+t∈R}

˘

pr(ℓ)·t+pr(a)
¯

= min
a∈Act

min
R∈R

min
{t : ν+t∈bd(R)}

˘

pr(ℓ)·t+pr(a)
¯

(1)

= min
(t,R,a)∈Â

˘

π([s], (t, R, a))+0(T̂ ([s], (t, R, a)))
¯

= Ψ̂(0)(s).

The only non-trivial equality is (1) which follows as for a fixed
(ℓ, ν) the function pr(ℓ) · t + pr(a) is concave (linear) int, and for
every concave functionf : (a, b) → R we have that

inf
{t : a<t<b}

f(t) =
˘

f̄(a), f̄(b)
¯

,



wheref̄ is the unique continuous extension off on [a, b].
For the inductive step assume thatΨN(0)(s) = Ψ̂N(0)([s]).

We show that the equality holds forN + 1. Following a reasoning
similar to the base case, in order to proveΨN+1(0) = Ψ̂N+1(0)
we need to show that for every state(ℓ, ν) ∈ S, actiona ∈ Act

and regionR in future ofν, the function

pr(ℓ) · t + pr(a) + Ψ̂N(0)([T (s, (t, a))]) (2)

is concave int on the domain{t : ν + t ∈ R}. It follows easily
considering the following facts:

– Ψ̂N (0) is regionally concave (Proposition 11).

– If f : S → R is concave, andg : R≥0 → S is affine, then
f(g(·)) : R≥0 → S is concave as well.

– If f1, f2 : R≥0 → R are concave andw1, w2 ∈ R≥0 then
w1 · f1 + w2 · f2 is concave as well.

The proof for the equivalence ofΦ and Φ̂ operators is along the
similar lines and hence is omitted.

3.2 Blackwell Optimal Strategies
To see the difference between different optimality criteria, con-

sider the timed automaton shown in Figure 1 with four location
ℓ0–ℓ3 and one clockx. The triplet on a transitions shows clock con-
straint of the action guard, action label, and the reset clock set. Let
the price of a timed action be equal to the time delay, i.e. pr(ℓ) = 1
and pr(a) = 0 for all ℓ ∈ L anda ∈ A. In this simple example
there are only three strategies.

– (Strategya): Choose actiona in location ℓ0 after 0 time
units, and then take the only available actiond in locationℓ1
every2 time unit. TheDλ cost for this strategy is2(1 − λ),
AN -cost is2 − 2/N , and the average cost is2.

– (Strategyb): Choose actionb in location ℓ0 after 10 time
units, and then take the only available actiond in locationℓ2
every1 time unit. TheDλ cost for this strategy is1 + 9λ,
AN -cost is1 + 9/N , and the average cost is1.

– (Strategyc): Choose actionc in locationℓ0 after1 time unit,
and then take the only available actiond in locationℓ3 every
1 time unit. TheDλ-cost, theAN -cost and the average-cost
for this strategy is1.

It is easy to see that the strategya is Dλ-optimal for allλ ≥ 0.5,
while for all otherλ ∈ (0, 0.5] the strategyc is optimal, hence the
strategyc is Blackwell-optimal. Also, strategyc is limit-average-
optimal for all N ≥ 2. Notice that under average cost criteria
both strategiesb andc are optimal, while it is obvious that strategy
c is always preferable to strategyb. To make this example more
interesting, consider the case when the guard on the location ℓ3 is

ℓ0

ℓ1

ℓ2

ℓ3

x = 0, a, {x}

x = 10, b, {x}

x = 1, c, {x}

x = 2, d, {x}

x = 1, d, {x}

x = 1, d, {x}

Figure 1: Discount optimal, average optimal and Blackwell-
optimal strategies

strict, i.e.x > 1. Clearly there are no Blackwell-optimal or limit-
average-optimal strategies in this case. However, for every ε > 0
the strategy that chooses1 + ε delay isε-limit-average optimal
for all N ≥ (2 − ε)/(1 − ε), andε-Blackwell optimal for allλ ∈
(0, λ0] for λ0 = 1/N0. The following theorem shows the existence
of ε-Blackwell optimal andε-limit-average optimal strategies for
all bounded priced timed automaton.

THEOREM 13. For every bounded priced timed automatonT
and every starting states ∈ S there existε-limit-average optimal
andε-Blackwell optimal strategies for everyε > 0.

PROOF. We only sketch the existence ofε-limit-average opti-
mal strategies. The proof for the existence ofε-Blackwell optimal
strategies is along the similar lines and hence omitted.

Let us fix a states ∈ S of T . Notice that[s] ∈ Ŝ is its corre-
sponding state in the boundary region graphT̂ of T . From Propo-
sition 10 we know that for every[s] ∈ Ŝ the reachable weighted
state-transition system of̂T from [s] is finite. The existence of an
ε-limit-average optimal strategy in̂T now follows from Theorem 3.
In other words, for everyε > 0 there exists a strategyµε ∈ ΣT̂

andN0 ∈ N such that for allN ≥ N0 we have

AT̂
N ([s], µε) ≤ AT̂

N ([s]) + ε. (3)

It was shown in [6, 18] that for everys ∈ S, ε > 0 andµ ∈ ΣT̂

there existsµ′ ∈ ΣT such that for allN ∈ N we have

AT
N (s, µ′) ≤ AT̂

N ([s], µ) + ε. (4)

Notice that from Proposition 12 and 7 we have thatAT̂
N ([s]) =

AT
N (s) for all s ∈ S andN ∈ N. Combining (3) and (4) it is now

easy to see that for everys ∈ S andε > 0 there exists a strategy
µ∗ ∈ ΣT andN0 ∈ N such that for allN ≥ N0 we have

AT
N (s, µ∗) ≤ AT

N (s) + ε.

The proof is now complete.

3.3 Proof of Theorem 9

LEMMA 14. For every bounded priced timed automatonT and
every starting states we have

lim
λ→0+

Dλ(s) = lim
N→∞

AN (s) = A(s).

PROOF. From Proposition 12 we know that for everys ∈ S we
have that

lim
N→∞

Φ(λ, ·))N (0)(s) = lim
N→∞

Φ̂(λ, ·))N (0)([s]).

Moreover since the reachable subgraph ofT̂ from [s] is a finite
weighted state-transition system, from Theorem 3 it implies that the
limit limλ→0+ Dλ(s) exists. Now for everys ∈ S we show that it
implies thatlimN→∞ AN (s) exists and is equal tolimλ→0+ Dλ(s)
via the following equalities.

lim
λ→0+

Dλ(s) = lim
λ→0+

lim
N→∞

Φ(λ, ·))N (0)(s)

= lim
λ→0+

lim
N→∞

Φ̂(λ, ·))N (0)([s])

= lim
N→∞

1

N
Ψ̂N(0)([s])

= lim
N→∞

1

N
ΨN(0)(s)

= lim
N→∞

AN (s).



The first and fifth equalities are from Proposition 7. The second and
fourth equalities are from Proposition 12. Finally the third equality
follows from Proposition 8 and the finiteness (Proposition 10) of
the reachable state-transition system ofT̂ from [s].

Now we show thatlimN→∞ AN (s) = A(s), which follows
from (5) and (6). First notice that for every strategyµ′ ∈ Σ we have
that infµ∈Σ AN (s, µ) ≤ AN (s, µ′), for all N ∈ N. It implies that
limN→∞ infµ∈Σ AN (s, µ) ≤ lim supN→∞ AN(s, µ′). Sinceµ′

was taken arbitrarily, it implies that

lim
N→∞

inf
µ∈Σ

AN (s, µ) ≤ inf
µ∈Σ

lim sup
N→∞

AN(s, µ). (5)

The existence ofε-limit-average optimal strategy (Theorem 13)
implies that for arbitrarily smallε > 0 there exists a strategyµ∗ ∈
Σ andN0 ∈ N such that for allN ≥ N0 we have that

inf
µ∈Σ

AN (s, µ) ≥ AN(s, µ∗) − ε.

That implies that

lim
N→∞

inf
µ∈Σ

AN (s, µ) ≥ lim sup
N→∞

AN(s, µ∗) − ε.

Now it trivially follows that for allε > 0 we have

lim
N→∞

inf
µ∈Σ

AN (s, µ) ≥ inf
µ∈Σ

lim sup
N→∞

AN (s, µ) − ε. (6)

The proof is now complete.

3.4 Continuous Discounting
We say that a priced timed automaton is time-divergent if for

every strategyσ the runRun(s, σ) = 〈s0, (t1, a1), s1, . . .〉 is such
that

P∞
i=1 ti = ∞. Fahrenberg and Larsen [9] studied bounded

and time-divergent priced timed automata and defined continuous
discounted cost criterionDλ(r) of the runr as:

Dλ(r)
def
= λ ·

 

∞
X

i=0

e−λ∆i+1pr(ai+1) +

Z ∞

0

e−λtpr(r)(t)dt

!

,

wherer = 〈(ℓ0, ν0), (t1, a1), (ℓ1, ν1), . . .〉, ∆i =
Pi

k=0 tk, t0=0,
and pr(r) : R≥0 → R≥0 is defined as:

pr(r)(t) = pr(ℓi) if ∆i ≤ t < ∆i+1.

They conjectured the relation between this continuous discounting
criterion with the following average cost criterion introduced in [6]:

AN(r)
def
=

1

∆N+1
·

 

N
X

i=0

pr(ai+1) +

Z ∆N+1

0

pr(r)(t)dt

!

.

We defineDλ(s, σ)
def
= D(Run(s, σ)), AN(s, σ)

def
= AN(Run(s, σ)),

A(s, σ)
def
= lim infN→∞ AN (s, σ), andA(s)

def
= infσ∈Σ A(s, σ).

Larsen and Fahrenberg [9] conjectured the following.

THEOREM 15. For a bounded and time-divergent priced timed
automatonT we have thatlimλ→0+ Dλ(s) = A(s).

PROOF. The proof of this theorem can be shown using continu-
ous versions of operatorsΦ andΨ. However, for convenience we
prove this theorem by exploiting known results [9, 6] of the correct-
ness of the reductions of optimal continuousλ-discounted cost and
optimal continuous average cost on a bounded and time-divergent
priced timed automaton to its boundary region graph (corner-point
abstraction).

We begin by observing that the limitlimλ→0+ Dλ(s) exists since
for everyλ we have thatDλ(s) onT is equal toDλ([s]) on T̂ , and
finiteness (Proposition 10) of the reachable state-transition system

of T̂ from [s]. Now from the existence of positional Blackwell
optimal strategies on finite MDPs we have:

lim
λ→0+

Dλ(s) = lim
λ→0+

Dλ([s])

def
= lim

λ→0+
inf

σ∈ΣT̂

Dλ(([s]), σ)

= lim
λ→0+

min
σ∈ΠT̂

Dλ(([s]), σ)

= min
σ∈ΠT̂

lim
λ→0+

Dλ(([s]), σ).

The third equality follows from the existence of positionaldiscount
optimal strategies in a finite MDPs [26], while the proof of the last
equality follows from the existence of Blackwell-optimal strategies
(Theorem 3) in a finite MDP, and the proof is similar to that of the
proof of (5) and (6) in the proof of Lemma 14.

For every positional strategyσ ∈ ΠT̂ in T̂ we know that the
limit limλ→0+ Dλ(([s]), σ) exists. Feller [10] showed that for a
given Lebesgue-measurable and bounded real functiong we have

lim inf
N→∞

VN ≤ lim inf
λ→0+

Vλ ≤ lim inf
λ→0+

Vλ ≤ lim inf
N→∞

VN ,

whereVN = 1
N

R N

0
g(t)dt andVλ = λ

R∞

0
e−λtg(t)dt. More-

over, if the middle inequality is an equality then all inequalities
are equalities. Combining this fact with Theorem 1 we have that
limλ→0+ Dλ(([s]), σ) is equal tolim infN→∞ AN(([s]), σ). Hence,
it follows that

lim
λ→0+

Dλ(s) = min
σ∈ΠT̂

lim inf
N→∞

AN ([s], σ).

For time-divergent priced timed automata it was shown in [6]that
there exist positionalA-optimal strategies, and hence

min
σ∈ΠT̂

lim inf
N→∞

AN([s], σ) = inf
σ∈ΣT̂

lim inf
N→∞

AN ([s], σ).

Now from the correctness [6] of the reduction of average price-per-
reward problem for a bounded and reward diverging priced timed
automaton to its boundary region graph, it follows that

lim
λ→0+

Dλ(s) = inf
σ∈ΣT̂

lim inf
N→∞

AN([s], σ)

= inf
σ∈ΣT

lim inf
N→∞

AN(s, σ) = A(s).

The proof is now complete.

4. PROBABILISTIC TIMED AUTOMATA
Probabilistic timed automata naturally extend both timed automata

and Markov decision processes, and can model uncertainty inreal-
time systems. Building upon our results on timed automata, we
relate expected discounted cost optimization problem to expected
average cost problem on probabilistic timed automata.

DEFINITION 6. A pricedprobabilistic timed automatonis a tu-
pleT = (L, C, Inv ,Act ,Enb, δ, pr) where

– L is a finite set oflocations;

– C is a finite set ofclocks;

– Inv : L → Z is an invariant condition;

– Act is a finite set ofactions;

– Enb : L×Act → Z is anaction guard function;

– δ : L×Act → P(2C × L) is a probabilistic transition func-
tion; and pr : L ∪ Act → N is aprice function.



The semantics of a priced probabilistic timed automatonT is a
Markov decision process[[T ]] = (S, A,T, π) where the setS, set
A, setA(s) for s ∈ S, and price functionπ are defined in the same
way as in Definition 4. The only difference is the probabilistic
transition functionT : S × A ⇁ P(S) and is defined as:

T ((ℓ, ν), (t, a))(ℓ′, ν′) =
X

˘

δ(ℓ, a)(C, ℓ′) : C ⊆ C andν + t[C:=0] = ν′
¯

,

For (ℓ, ν), (ℓ′, ν′) ∈ S and(t, a) ∈ A((ℓ, ν)).
We have the following result analogous to Theorem 9 for proba-

bilistic timed automata.

THEOREM 16. For every bounded priced probabilistic timed
automatonT and every starting states we have

lim
λ→0+

Dλ(s) = lim
N→∞

AN (s) = A(s).

Moreover, there existε-Blackwell optimal andε-limit-average op-
timal strategies for everyε > 0.

The proof of the existence ofε-Blackwell andε-limit-average
optimal strategies is very similar to the proof of Theorem 13. It
uses following results from [16]: for everys ∈ S, strategyµ
of a boundary region grapĥT (now a Markov decision process),
andε > 0 there exists a strategyµ′ in T whoseN -average cost
is at mostε worse than that ofµ for all N ∈ N, and an analo-
gous result forλ-discounted cost. The proof for the equivalence
of limλ→0+ Dλ(s), limN→∞ AN (s) andA(s) follows the proof
of Lemma 14, as also in the case of priced probabilistic timedau-
tomata, the operatorŝΦ(λ, f) andΨ̂(f) stay regionally concave for
every regionally concave functionf : Ŝ → R≥0.

5. TIMED GAMES
Two player zero-sum games on timed automata and probabilistic

timed automata can model controller synthesis problems forreal-
time systems. For simplicity we consider turn-based games on
probabilistic timed automata. The results presented here can par-
tially be extended to concurrent timed games model of [12] with
some effort. A turn based timed game is played between two play-
ers Min (the controller) and Max (the environment) who construct
an infinite run of the (probabilistic) timed automaton by choosing
a timed action when the play (finite execution so far) reachesa
location controlled by them. Players choose their moves in order
to optimize their respective payoffs. The discussion belowis for
games on probabilistic timed automata, but results imply similar
results for games on timed automata.

DEFINITION 7. A probabilistic timed game arena is a tupleΓ =
(T = (L, C, Inv ,Act ,Enb, δ, pr), LMin, LMax), where

– T is a priced probabilistic timed automaton with a restricted
price function pr : L ∪ Act → N such that pr(ℓ)=1 and
pr(a)=0 for all ℓ ∈ L anda ∈ Act .

– LMin andLMax are the set of locations controlled by player
Min and player Max, respectively, such thatLMin andLMax

form a partition of the setL. i.e. LMin ∪ LMax = L and
LMin ∩ LMax = ∅.

The semantics of a probabilistic timed game arenaΓ is defined as
a stochastic game arena[[Γ]] = ([[T ]] = (S, A,T, π), SMin, SMax)
where[[T ]] is the semantics ofT , the setSMin = {(ℓ, ν) : ℓ ∈ LMin}
and the setSMax = S \ SMin.

The following theorem is the main result of this section.

THEOREM 17. For every bounded probabilistic timed game arena
Γ and every starting statess ∈ S we have

lim
λ→0+

Dλ(s) = lim
N→∞

AN (s) = A(s),

Moreover, there existε-Blackwell optimal andε-limit-average op-
timal strategies of both players for everyε > 0.

For such game arena it was shown in [12] thatDλ games are po-
sitionally determined for allλ ∈ (0, 1]. Using similar techniques,
we show thatAN games are determined for allN ∈ N. The proof
for the equivalence oflimλ→0+ Dλ(s) and limN→∞ AN (s) fol-
lows the structure of the proof of Lemma 14. However, the proof
of Proposition 12 can not be lifted directly as the functionsΦ̂(λ, f)

andΨ̂(f) are no longer regionally concave for a regionally concave
functionf , due to both minimum and maximum appearing on the
right hand sides of the operatorŝΦ and Ψ̂. We use quasi-simple
functions, introduced by [12], in the place of concave functions to
show analog of Proposition 12 for probabilistic timed games.

Due to space constraints, we only sketch the existence ofε-limit-
average optimal strategies. It follows closely the structure of the
proof of Theorem 13, and uses Theorem 5 and the following fact.

PROPOSITION 18. For every bounded probabilistic timed game

arenaΓ, states ∈ S, strategyµ ∈ ΣT̂ of player Min in T̂ , and
ε > 0 there exists a strategyµ′ ∈ ΣT andN0 ∈ N such that for
all N ≥ N0 we have that

AT
N (s, µ′) ≤ AT̂

N ([s], µ) + ε.

An analogous result holds for strategies of player Max.

The proof of this proposition uses the fact that thelimN→∞ AN

is regionally constant and is along the same lines as the proof of
Proposition 7 in [19].

Now we show the equality oflimN→∞ AN (s) andA(s). Since
for all N ∈ N we know thatAN -games are determined, we have

inf
µ∈ΣMin

sup
χ∈ΣMax

AN (s, µ, χ) = sup
χ∈ΣMax

inf
µ∈ΣMin

AN (s, µ, χ).

Let χε ∈ ΣMax beε-limit-average optimal strategy of player Max
and hence there existsN0 ∈ N s.t. χε is ε-optimal for player Max
in all AN games forN ≥ N0. It follows that

inf
µ∈ΣMin

sup
χ∈ΣMax

AN (s, µ, χ) ≤ inf
µ∈ΣMin

AN (s, µ, χε) + ε

≤ AN (s, µ′, χε) + ε,

for any arbitrary strategyµ′ ∈ ΣMin. It is now immediate that

lim
N→∞

inf
µ∈ΣMin

sup
χ∈ΣMax

AN (s, µ, χ)

≤ sup
χ∈ΣMax

lim sup
N→∞

AN (s, µ′, χ) + ε

≤ inf
µ∈ΣMin

sup
χ∈ΣMax

lim sup
N→∞

AN (s, µ, χ) + ε,

sinceµ′ was an arbitrary strategy. Similarly, we show that

lim
N→∞

inf
µ∈ΣMin

sup
χ∈ΣMax

AN (s, µ, χ)

≥ inf
µ∈ΣMin

sup
χ∈ΣMax

lim inf
N→∞

AN (s, µ, χ) − ε,

In a similar manner we show the equality of the lower values. Now
the determinacy of theA-games on bounded probabilistic timed
game arenas follows from the determinacy ofAN -games on these
arenas. TheA-games on probabilistic timed game arenas are also



known as expected average-time games [12, 17]. Theorem 17,
along with the correctness of the reduction [12] ofDλ-games on
a probabilistic timed game arenas toDλ-games on corresponding
boundary region graphs, shows a reduction from expected average-
time games toA-games on the finite subgraph of reachable states
of the corresponding boundary region graph. The following result
is now immediate.

THEOREM 19. Expected average-time games [12] on bounded
probabilistic timed game arenas are decidable.

6. CONCLUSION
Competitive optimization problems on timed automata are cen-

tral to model based performance evaluation and optimal controller
design for embedded systems. Discounted cost and average cost
criteria are two standard performance metrics for reactivesystems.
We studied the limits ofλ-discounted cost andN -average cost per-
formance criteria for timed automata and its generalizations. We
showed the equivalence of these limits to the optimal average cost
criterion for priced timed automata, priced probabilistictimed au-
tomata, and probabilistic timed games. Our results show a new
proof of determinacy and decidability of expected average-time
games on probabilistic timed automata, while simplifying an al-
ready known result for average-time games on timed automata.

Acknowledgment
This research was partially supported by NSF awards CNS0931239,
CNS1035715, and CCF0915777.

7. REFERENCES
[1] R. Alur and D.L. Dill. A theory of timed automata.

Theoretical Computer Science, 126:183–235, 1994.
[2] R. Alur, S. La Torre, and G. Pappas. Optimal paths in

weighted timed automata. InInternational Workshop on
Hybrid Systems: Computation and Control (HSCC), volume
2034 ofLNCS, pages 49–62. Springer, 2001.

[3] E. Asarin and O. Maler. As soon as possible: Time optimal
control for timed automata. InInternational Workshop on
Hybrid Systems: Computation and Control (HSCC), volume
1569 ofLNCS, pages 19–30. Springer, 1999.

[4] G. Behrmann, K. G. Larsen, and J. I. Rasmussen. Priced
timed automata: Algorithms and applications. In
International Symposium Formal Methods for Components
and Objects (FMCO), pages 162–182, 2004.

[5] D. Blackwell. Discrete dynamic programming.Annals of
Mathematical Statistics, 33:719–726, 1962.

[6] P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as
cheaply as possible. InInternational Workshop on Hybrid
Systems: Computation and Control (HSCC), volume 2993 of
LNCS, pages 203–218. Springer, 2004.

[7] T. Brihaye, T. A. Henzinger, V. S. Prabhu, and J. Raskin.
Minimum-time reachability in timed games. InInternational
Colloquium on Automata, Languages and Programming
(ICALP), volume 4596 ofLNCS, pages 825–837, 2007.

[8] F. Cassez, J. Jessen, K. Larsen, J. Raskin, and P. Reynier.
Automatic synthesis of robust and optimal controllers: an
industrial case study. InInternational Workshop on Hybrid
Systems: Computation and Control (HSCC), volume 5469 of
LNCS, pages 90–104. Springer, 2009.

[9] U. Fahrenberg and K. G. Larsen. Discount-optimal infinite
runs in priced timed automata.ENTCS, 239:179 – 191, 2009.
Joint Proceedings of INFINITY 2006, 2007, 2008.

[10] W. Feller.An Introduction to Probability Theory and its
Applications, volume II. John Wiley & Sons, New York,
second edition, 1971.

[11] J. Filar and K. Vrieze.Competitive Markov Decision
Processes. 1997.

[12] V. Forejt, M. Kwiatkowska, G. Norman, and A. Trivedi.
Expected reachability-time games. InInternational
Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS), volume 6246 ofLNCS, pages
122–136. Springer, September 2010.

[13] G. H. Hardy and J. E. Littlewood. Tauberian theorems
concerning power series and Dirichlet’s series whose
coefficients are positive.Proc. of London Math. Soc.,
13:174–191, 1914.

[14] M. Hendriks and M. Verhoef. Timed automata based analysis
of embedded system architectures. InInternational Parallel
and Distributed Processing Symposium (IPDPS), pages
179–187. IEEE Computer Society, 2006.

[15] P. Herber, J. Fellmuth, and S. Glesner. Model checking
system C designs using timed automata. InProceedings of
the Hardware/Software Codesign and System Synthesis,
pages 131–136. ACM, 2008.
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