
Symbolic Analysis for Improving Simulation Coverage of
Simulink/Stateflow Models

Rajeev Alur
University of Pennsylvania
alur@cis.upenn.edu

Aditya Kanade
University of Pennsylvania

kanade@seas.upenn.edu

S. Ramesh
GM India Science Lab
ramesh.s@gm.com

K.C. Shashidhar
GM India Science Lab

shashidhar.kc@gm.com

ABSTRACT
Aimed at verifying safety properties and improving simula-
tion coverage for hybrid systems models of embedded control
software, we propose a technique that combines numerical
simulation and symbolic methods for computing state-sets.
We consider systems with linear dynamics described in the
commercial modeling tool Simulink/Stateflow. Given an ini-
tial state x, and a discrete-time simulation trajectory, our
method computes a set of initial states that are guaranteed
to be equivalent to x, where two initial states are consid-
ered to be equivalent if the resulting simulation trajectories
contain the same discrete components at each step of the
simulation. We illustrate the benefits of our method on two
case studies. One case study is a benchmark proposed in
the literature for hybrid systems verification and another is
a Simulink demo model from Mathworks.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; I.6.4 [Simulation and Modeling]: Model
Validation and Analysis

General Terms
Design, Experimentation, Measurement, Verification

Keywords
Simulink, Stateflow, Hybrid systems, Simulations, Coverage

1. INTRODUCTION
Model-based design offers a promising approach for de-

tecting and correcting errors in early stages of system design
(cf. [30, 25]). In this methodology, a designer first constructs
a model, with mathematically precise semantics, of the sys-
tem under design, and performs extensive analysis with re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

spect to correctness requirements before generating the im-
plementation from the model. The appropriate mathemat-
ical model for embedded control systems is hybrid systems
that combines the traditional state-machine based models
for discrete control with classical differential- and algebraic-
equations based models for continuously evolving physical
activities [4]. Such models can capture both the controller
— the system under design, and the plant — the environ-
ment in which the system operates. The hybrid systems
model can be subjected to two kinds of analyses: simulation
and verification.

In simulation, a possible execution of the model upto a
finite time horizon is obtained using numerical methods.
Simulation-based analysis is a well-accepted industrial prac-
tice, and is typically applicable to complex models. The
drawback of the method is that it cannot handle nondeter-
minism well. Sources of nondeterminism in hybrid systems
include inputs, initial states, and noise in the plant dynam-
ics. Running multiple simulations cannot guarantee absence
of errors, and unlike testing of hardware and software, there
is little work on quantifying the coverage obtained by mul-
tiple simulations of dynamical or hybrid systems.

In verification, the goal is to check all possible executions
of the system using symbolic model checking or deductive
proof methods (see [22, 18, 9, 24, 26, 13] for sample ap-
proaches). A central focus of this line of research is on algo-
rithms for verifying safety properties by computing a sym-
bolic representation of the set of reachable states. There
is a lot of ongoing research on representing state-sets by
alternatives such as polyhedra, ellipsoids, and zonotopes,
and on abstraction methods such as predicate abstraction,
bisimulation-preserving dimensionality reduction, counter-
example guided abstraction refinement, and qualitative dif-
ferential equations [5, 10, 35, 15]. Despite these efforts,
scalability of the model checking tools for hybrid systems
remains limited. This has prompted some researchers to
explore if simulation can be augmented with symbolic tech-
niques to improve its effectiveness [23, 16, 11, 27], and our
approach belongs to this category. It is worth noting that in
software analysis, a recent trend is to combine testing with
symbolic model checking, and has resulted in very powerful
tools for debugging large programs [17, 33].

Our analysis technique is currently aimed at hybrid sys-
tems for which the dynamics in each discrete mode of oper-
ation is described as a linear system, and the only source of
nondeterminism is in the choice of the initial state. In this
setting, once we fix the parameters for the numerical sim-



ulation, namely, the time horizon, the simulation step-size,
and the choice of the integration routine, the execution ρ(x)
is completely determined by the initial state x. We call two
initial states x and y equivalent if the executions ρ(x) and
ρ(y) agree on the discrete component of the state at each
step. For verifying safety properties (under the discrete-
time simulation semantics) and for simulation coverage, it
would be redundant to run simulations from equivalent ini-
tial states. Our core analysis algorithm, given an input state
x and the execution ρ(x), computes a set X of initial states
that is guaranteed to contain only states equivalent to x,
and thus, can be ignored for choosing initial states in sub-
sequent simulations. This computation involves backwards
preimage computation possibly using underapproximations,
and our current implementation, based on Parma Polyhe-
dra Library [6], uses convex polyhedra as a representation
for state-sets.

The proposed equivalence relation can be used in two ways
for improving the effectiveness of simulations: first, it pro-
vides an effective way of coverage of the initial states and
second, it helps in optimizing the number of simulations by
keeping only one representative test case for each equiva-
lence class of initial states.

Another goal of this paper is to develop techniques that
can analyze models described in the commonly used com-
mercial tool Simulink/Stateflow. Most of the academic tools
analyze models described in some specialized notation for
hybrid systems. This poses a challenge to apply these tools
to industrial examples. Towards this goal, we describe a
reasonably detailed mapping, which can potentially be auto-
mated, from Simulink/Stateflow models to hybrid systems.
For our experiments, we use the commercial simulator from
Mathworks to obtain executions, and apply the symbolic
analysis to manually translated models.

We report experimental results on two case studies: the
room heating benchmark from the hybrid systems verifica-
tion benchmarks [12], and the vehicle climate control whose
description has a variety of features of Simulink/Stateflow
language [1]. We give some representative coverage results.
Our results demonstrate that a small number of simulations
can lead to a significant coverage of the initial state-space.
For example, in the room heating benchmark, 5 simulations
lead to estimated 83% coverage, and 20 simulations lead to
estimated 90% coverage; the corresponding numbers for the
second case study are 18% and 31%. We also analyze the
effect of length of simulation on coverage and run-time of
our tool. For example, increasing the length of individual
simulations from 10 to 50 steps for the room heating bench-
mark gave estimated 35% and 43% coverage for 5 and 20
simulations respectively.

Related work.
Analysis techniques for computing coverage of initial state-

space using bisimulation metrics or expansion functions are
used in test generation [23] and verification [16, 11]. These
techniques identify constraints under which continuous tra-
jectories starting from two states stay sufficiently close to-
gether. Since we focus on the discrete-time simulation se-
mantics, our problem is computationally less demanding,
and can be fully automated. We also note that these ear-
lier approaches currently do not allow transition guards to
be convex polyhedra, and as a result, cannot handle the
Simulink/Stateflow case studies considered in this paper.

There exist many commercial and in-house test genera-
tion tools for Simulink designs which include Reactis [28],
STB [34], T-VEC [38], Simulink Design Verifier [32], Beacon
Tester [8], and AutoMOTgen [14]. Given a model and a set
of coverage goals over model elements (like blocks, branches,
and states), these tools use combinations of randomization
and constraint solving techniques to generate tests. The
kind of coverage over the initial state-space that we attempt
is finer than the coverage acheived by these tools. The test
cases generated by our tool, though more in number, cover
the model much more extensively and can potentially re-
veal more bugs. In particular, our method rules out only
those trajectories that are close (in the sense of sequences
of discrete states visited) to the already observed ones and
thus guaranteed to detect any violation of temporal logic
requirements, upto the specified bound on simulation steps.

In these proceedings, [31] presents a testing method for
covering the Stateflow elements. A combination of random,
directed, backtracking, and feedback-based testing and a set
of heuristics are used to achieve better coverage of the State-
flow transitions that involve non-linear constraints. This
method is similar to the above discussed methods (and hence
differs from our approach for the same reason) but reports
better coverage than these methods on many models.

The modeling language of Simulink/Stateflow tool lacks a
formal and rigorous definition of its semantics. Several types
of formal semantics are presented for Stateflow, namely, de-
notational [19], operational [20], and communicating push-
down automata based [36]. Specialized tools are developed
for translating subsets of the language to hybrid automata [3],
Lustre [37], SMV [7], and SAL [14]. We give a systematic
translation from Simulink/Stateflow models to hybrid sys-
tems and also formalize the discrete-time simulation seman-
tics of Simulink for the hybrid system models.

Organization.
In Section 2, we define a class of hybrid systems, called

linear hybrid systems. We present the discrete-time simula-
tion semantics and define the notion of equivalence of states.
In Section 3, we give an algorithm to compute equivalent
states. We explain translation from Simulink models to hy-
brid systems in Section 4. We describe the case studies and
the experimental results in Sections 5 and 6.

2. FORMAL MODELING
In this section, we define a class of hybrid systems called,

linear hybrid systems, which have linear dynamics for each
discrete state. We define the discrete-time simulation se-
mantics of hybrid systems and the notion of equivalence of
states in terms of resulting simulation trajectories.

2.1 Linear hybrid systems
We first introduce some terminology. Consider a set of

real-valued variables X = {x1, . . . , xn}. An n-dimensional
linear expression e : R

n → R over X is of the form
Pn

i=1
aixi+

an+1 where ai ∈ R for each i ∈ {1, . . . , n+1}. Let En denote
the set of all n-dimensional linear expressions over X.

An n-dimensional linear predicate u : R
n → B over X is

of the form e ⊲⊳ 0 for a linear expression e over X and a
relation ⊲⊳ ∈ {≥, >}. Let Pn be the set of finite sets of n-
dimensional linear predicates over X, where an element of
Pn denotes the conjunction of its elements and represents
an n-dimensional convex polyhedron.



Definition 1. A linear hybrid system (LHS) is specified
as a tuple H = (Q,X , Init ,Flow , Jump) as follows:

• A finite set Q of discrete states (modes).

• A finite set X = {x1, . . . , xn} of real-valued variables.

• A function Init which associates an initial continuous
state-space Init(q) ∈ Pn with each discrete state q ∈ Q.

• A function Flow which associates a linear expression
Flow(q, xi) ∈ En with each discrete state q ∈ Q and
each variable xi ∈ X defining the derivative of xi at q.

• A finite set Jump of discrete transitions of the form
(q, q′, g, r) where q ∈ Q is the source state, q′ ∈ Q is
the target state, g ∈ Pn is a guard, and r(xi) ∈ En is
a reset map which associates a linear expression with
each variable xi ∈ X. We assume that the guards on
outgoing transitions from q are pairwise disjoint.

Consider an LHS H = (Q ,X , Init, Flow , Jump). The
state-space of H is S = Q ×R

n. A state s ∈ S of H is a pair
(q, ṽ) where q ∈ Q is a discrete state and ṽ = 〈v1, . . . , vn〉 ∈
R

n is a continuous state denoting a valuation of all the vari-
ables xi ∈ X . The initial state-space S0 ⊆ S of H is the set
of all pairs (q, ṽ) such that the continuous state ṽ ∈ Init(q).

The discrete transition relation of H is a set J ⊆ S ×S
that defines transitions between states of H . If the sys-
tem is in a state (q, ṽ) and ṽ ∈ g (ṽ satisfies the guard g)
for some transition (q, q′, g, r) ∈ Jump then the system in-
stantaneously jumps to the discrete state q′ at which the
continuous state ṽ is reset to ṽ′ such that v′

i = r(xi)[x 7→ ṽ]
where x 7→ ṽ is the substitution of vi for xi for all indices i.

In hybrid systems models, invariant sets are associated
with discrete states to allow non-determinism in the time
at which a discrete transition occurs. In Simulink/Stateflow
models there is no non-determinism in system evolution and
discrete transitions are urgent. The case when the system
stays in the same discrete state is modeled by self-loops in
the transition relation Jump.

2.2 Discrete-time simulation semantics
Simulink updates the continuous state of a model by nu-

merically integrating its derivative at discrete-time steps.
Since our objective is to analyze Simulink/Stateflow models
by formalizing them as (linear) hybrid systems, we define
discrete-time simulation semantics of hybrid systems based
on the simulation semantics of Simulink.

In Simulink, the numerical integration is performed by an
integration routine S. In this paper, we consider (explicit)
fixed-step integration routines (solvers). An example is the
Euler routine: Euler(xi, ei, h) := xi + h ei where xi ∈ X,
the derivative of xi is ei ∈ En , and h ∈ R+ is the step size.

Given an integration routine S and a step size h, the
discrete-time evolution of the continuous state of an LHS
H at a discrete state q is defined as: x′

i := Evol S,h
q (xi) :=

S(xi,Flow(q, xi), h). We now define the discrete-time simu-
lation semantics of a hybrid system as follows.

Definition 2. Consider an LHS H, an integration rou-
tine S, a time step h, and a simulation length k ∈ N. The set
Traj S,h

k of k-step simulation trajectories of H consists of se-
quences of the form 〈s0, s

′
0, . . . , si, s

′
i, . . . , sk−1, s

′
k−1〉 where

the states si = (qi, ṽi) and s′i = (q′i, ṽ
′
i) are defined as fol-

lows:

• The state (q0, ṽ0) ∈ S0 is an initial state.

• For i ∈ {0, . . . , k − 1}, (q′i, ṽ
′
i) is the state after the

continuous state evolution of the system from (qi, ṽi) in
one simulation step i.e. q′i = qi and ṽ′

i = 〈v′
1, . . . , v

′
n〉

where v′
j = EvolS,h

qi
(xj)[x 7→ ṽi].

For i ∈ {0, . . . , k − 2}, ((qi, ṽ
′
i), (qi+1, ṽi+1)) ∈ J .

An ith state si = (qi, ṽi) denotes the state of the hybrid
system at a time instance ti = i h. The evolution of the
continuous state and the discrete state transitions are de-
terministic. Therefore, for any initial state, the simulation
trajectory is uniquely defined.

We assume that the step size h is small enough so that
multiple discrete transitions do not take place in one sim-
ulation step and no discrete transition is missed while sim-
ulating. In Simulink, taking the simulation step to be the
greatest integer divisor of the sampling times of all the dis-
crete blocks, ensures this (ref. Section 4.3).

2.3 Improving coverage of simulations
Simulation is a preferred analysis method in industry for

understanding and validation of system designs. However,
the simulation methodology infamously suffers from the lack
of completeness with respect to the coverage of state-space
or system behaviors. Further, the effectiveness of simula-
tions crucially depends on the choice of initial states. The
selection of initial states is usually semi-automatic (user-
guided) or random, demanding significant user involvement
or resulting in redundant simulations.

We propose the following steps to improve effectiveness of
simulations: (1) To identify initial states that would lead to
redundant simulations and (2) To select simulation inputs so
that complete coverage of simulation trajectories or equiv-
alently the entire initial state-space is achieved, potentially
leading to design verification. Towards this, we first define
the notion of equivalence of states.

Definition 3. Consider an LHS H, an integration rou-
tine S, a time step h, and a simulation length k. Con-
sider the simulation trajectories 〈s0, s

′
0, . . . , sk−1, s

′
k−1〉 and

〈z0, z
′
0, . . . , zk−1, z

′
k−1〉 of the system starting from the states

s0 and z0 respectively. Let si = (qi, ṽi) and zi = (pi, w̃i).

The states s0 and z0 are equivalent, i.e. EquivS,h
k (s0, z0) =

true, iff the discrete states of the respective system trajecto-
ries are equal i.e. qi = pi for each i ∈ {0, . . . , k − 1}.

Simulation coverage can be improved by using the follow-
ing scheme. Initially, simulate a given system for k steps
starting from some initial state and record the simulation
trajectory. Using the simulation trajectory, determine initial
states that are equivalent (upto k-steps) to the chosen ini-
tial state. The input for the next simulation is then selected
from outside the already covered initial states, potentially
leading to a distinct simulation trajectory. The process can
be repeated until the entire initial state-space is covered or
violation of some safety property is observed.

The proposed technique requires an algorithm for com-
putation of equivalent states with respect to a simulation
trajectory. More formally, given an LHS H and a k-step
simulation trajectory 〈s0, s

′
0, . . . , sk−1, s

′
k−1〉, we need to de-

termine the set of initial states A0 ⊆ S0 such that for any
z0 ∈ A0, Equiv S,h

k (s0, z0) = true.



Algorithm 1: Computation of equivalent states

Input : An LHS H , a routine S, a time step h, and
a trajectory 〈(q0, ṽ0), . . . , (q

′
k−1, ṽ

′
k−1)〉

Output: A set A0 ⊆ S0 of states equiv. to (q0, ṽ0)

B := R
n

1

B := PreE(qk−1,B)2

for i := k − 1; i > 0; i := i − 1 do3

let t = (qi−1, qi, g, r) ∈ Jump s.t. ṽ′
i−1 ∈ g4

B := PreR(t,B) ∩ g5

B := PreE(qi−1,B)6

A0 := ({q0} × B) ∩ S07

return A08

3. ALGORITHM FOR COMPUTATION OF
EQUIVALENT STATES

Consider an LHS H = (Q,X , Init ,Flow , Jump), an in-
tegration routine S, a time step h, and a k-step trajectory
given by 〈(q0, ṽ0), (q

′
0, ṽ

′
0), . . . , (qk−1, ṽk−1), (q

′
k−1, ṽ

′
k−1)〉. To

compute a set A0 of initial states of H that are equivalent to
(q0, ṽ0), we compute a set Ai of states that are equivalent to
(qi, ṽi) with respect to the suffix 〈(qi, ṽi), . . . , (q

′
k−1, ṽ

′
k−1)〉

of the given trajectory, for i = k − 1 to 0.
We first define two functions, PreE and PreR as follows.

Given a set of continuous states B ⊆ R
n and a discrete

state q, PreE (q, B) computes an underapproximation of the
preimage of B under the continuous state evolution of the
discrete state q. Formally, if ṽ ∈ PreE (q, B) then ṽ′ =
〈v′

1, . . . , v
′
k−1〉 ∈ B where v′

j = Evol S,h
q (xj)[x 7→ ṽ]. Given

a discrete transition t = (q, q′, g, r) ∈ Jump, PreR(t, B)
computes an underapproximation of the preimage of B un-
der the reset map r. Formally, if ṽ ∈ PreR(t,B) then
ṽ′ = 〈v′

1, . . . , v
′
k−1〉 ∈ B where v′

j = r(xj)[x 7→ ṽ].
From Definition 3, we know that for all states (p, w̃) ∈ Ai,

the discrete state p = qi. Consider the set of continuous
states Bi ⊆ R

n such that Ai = {(qi, w̃) : w̃ ∈ Bi}. Let t =
(qi−1, qi, g, r) ∈ Jump such that ṽ′

i−1 ∈ g. The transition t
exists and is unique as the guards of the outgoing transitions
from qi−1 are pairwise disjoint.

During simulation, the continuous state ṽi−1 has been up-
dated to ṽ′

i−1 according to the continuous state evolution of
qi−1, ṽ′

i−1 was found to satisfy the guard of a transition, and
was reset to ṽi according to the reset map of the transition.
Thus, using the functions PreR and PreE described above,
we can compute a set Bi−1 of continuous states such that
Ai−1 = {(qi−1, w̃i−1) : w̃i−1 ∈ Bi−1}. Algorithm 1 performs
the backward propagation of sets of equivalent states.

Let i be the counter for the loop (lines 3–6). In any it-
eration i, depending on the continuous state ṽ′

i−1, Algo-
rithm 1 identifies the transition between the discrete states
qi−1 and qi that was taken by the hybrid system during
the ith step of the simulation. Suppose the transition is
t = (qi−1, qi, g, r) and the set of equivalent states for the
suffix 〈(qi, vi), . . . , (q

′
k−1, v

′
k−1)〉 of the input trajectory com-

puted by the algorithm is B i. In Step 5, a preimage of B i

with respect to the reset map r (using PreR) followed by
an intersection with the guard g is computed. In Step 6,
the preimage of the set with respect to the continuous state
evolution Evol S,h

qi−1
is computed (using PreE ). Let B i−1 be

the resulting set. It is easy to verify that for any state in
{(qi−1, w̃i−1) : w̃i−1 ∈ B i−1}, the system simulated accord-

ing to Definition 2, leads to a state in {(qi, w̃i) : w̃i ∈ B i}
in one time step. This gives us soundness of the algorithm.

Theorem 4. For an LHS H, an integration routine S, a
time step h, and a trajectory 〈s0, . . . , s

′
k−1〉, for the set A0

computed by Algorithm 1, ∀z0 ∈ A0, EquivS,h
k (s0, z0) = true.

Our current implementation of Algorithm 1 uses convex
polyhedra for representing state-sets and performs the re-
quired operations using Parma Polyhedra Library. We dis-
cuss the implementation details in Section 5.3.

4. TRANSLATION OF SIMULINK MODELS
TO LINEAR HYBRID SYSTEMS

The modeling language of Simulink/Stateflow tool lacks a
formal and rigorous definition of its semantics. In this sec-
tion, we present our estimate of the semantics and accord-
ingly present a translation scheme from Simulink/Stateflow
models to linear hybrid systems. We use a simplified version
of the vehicle climate control (VCC) model (one of the case
studies) as an example. The model is shown in Figure 1.

4.1 Simulink/Stateflow models
A Simulink/Stateflow design is represented graphically as

a diagram consisting of inter-connected Simulink blocks. It
represents the time-dependent mathematical relationships
between the inputs, states, and outputs of the design.

Definition 5. A Simulink model SL = (D ,B ,C ,L) con-
sists of the following components:

• A finite set D of typed variables partitioned into in-
put variables DI , state variables DS , auxiliary vari-
ables DA, and output variables DO .

• A finite set B of Simulink blocks. Each block has in-
put, output, and local variables. The input and output
variables are associated with input and output ports. A
non-input variable can be defined by a block as a func-
tion of the non-output variables. A Simulink block can
itself be a Simulink diagram.

• An ordered relation C ⊆ B ×B that represents con-
nections between the blocks. A connection c = (b, b′) ∈
C connects an output port of b to an input port of b′

and represents the flow of data between the correspond-
ing variables of b and b′.

• A function L : C → DA associates a unique auxiliary
variable to each connection.

Simulink provides a diverse family of continuous, discrete,
and logical building blocks. Stateflow complements these
features by providing another class of Simulink blocks, called
Stateflow charts, for modeling mode control logic. Stateflow
charts are hierarchical state machines which are specified in
a variant of Statecharts [21].

Definition 6. A Stateflow chart SF = (V ,E ,S ,TR,T )
consists of the following components:

• A finite set V of typed variables partitioned into in-
put variables VI , output variables VO , and local vari-
ables VL.



HeaterAC 2

Blower 1

ACAct
entry:A=1;

HeaterACOff
entry:H=0;A=0;

BlowerOn

BlowerOff
entry:B=0.0;

HeaterAct
entry:H=1;

Blower2
entry:B=0.4;

Blower1
entry:B=0.2;

E[abs(x0−x1)>203 ||
abs(x0−x1)<=0.5]

E[0.5<abs(x0−x1)<203]

E[!in(Blower1) && 1.5<abs(x0−x1)<5]

E[!in(Blower2) && 7<abs(x0−x1)<10]

E[x0−x1>=−0.5]E[x0−x1<=0.5]

E[x0−x1>0.5] E[x0−x1<−0.5]

225

User setpoint

x0

x1

H

x0_x1

B

A

Temperature control

System trigger

x0_x1

B

T_H

Heater control

x1

T_H

T_AC

x1 

Dynamics
Display

B

x1

T_AC

AC control

(a) Stateflow chart: Temperature control (b) Simulink model

Figure 1: Simplified and partial model of vehicle climate control (VCC) system

• A finite set E of events partitioned into input events
EI , output events EO , and local events EL.

• A finite set S of states partitioned into atomic, AND,
and (exclusive) OR states. If an AND state is active
then all its component states become active. If an OR
state is active then exactly one of its component states
becomes active.

Each state s ∈ S is labeled with a finite (possibly empty)
set of actions As. An action is an assignment to a non-
input variable or an event broadcast. The set of actions
As is partitioned into ordered sets of actions upon en-
try to s: entry(s), actions prior to exit from s: exit(s),
and actions while the state s is active: during(s).

• A relation TR ⊆ S ×S represents the hierarchical com-
position of the states. The graph (S ,TR) is a tree. A
tree edge (s, s′) ∈ TR denotes that s′ is a component
state of s. The atomic states in S are the only leaf
nodes of the tree.

An active configuration of the states of the chart can
be represented as a tree (SAct,TRAct) where SAct ⊆ S
and TRAct ⊆ TR. The tree edges in TRAct respect the
relation of the composite (non-leaf) states and their
substates depending on the type (AND or OR) of the
composite states.

• A finite set T of transitions. A transition t ∈ T is
a tuple t = (s, s′, e, ϕ, actcondition, acttransition) where
s ∈ S is the source state, s′ ∈ S is the target state,
e ∈ E is an enabling event, ϕ is a guard which is a
well-formed quantifier-free formula in predicate logic
over the variables V , actcondition are actions executed
as soon as ϕ is evaluated as true, and acttransition are
actions executed before the state s′ is entered.

Consider the Simulink model shown in Figure 1(b). The
user setpoint x0 is the input variable of the model and the
internal temperature x1 is the state variable i.e. DI = {x0}
and DS = {x1}. The model consists of Temperature control,
Heater control, AC control, and Dynamics blocks which are

inter-connected as shown. Heater control and AC control
blocks are enabled subsystem blocks and are respectively
enabled by the signals H and A from the Stateflow chart.

Temperature control chart shown in Figure 1(a) is a State-
flow chart and implements a supervisory control. The input
variables to it are VI = {x0, x1} and the output variables
are VO = {H, A,B, x0 x1}. The variable B determines the
blower output and the variable x0 x1 = x0 − x1.

Temperature control chart is an AND state consisting of
Blower and HeaterAC states. Blower is an OR state con-
sisting of BlowerOff and BlowerOn states. BlowerOff is an
atomic state whereas BlowerOn is an OR state consisting
of Blower1 and Blower2 atomic states. HeaterAC is an OR
state and consists of atomic states: HeaterACOff, Heater-
Act, and ACAct. The entry actions in the states are assign-
ments to output variables of the chart.

The chart is activated by a time-triggered signal shown
as System trigger in Figure 1(b) and marked as an event
E in the chart in Figure 1(a). The transitions in the chart
are enabled by the event E. If the corresponding guard
conditions are satisfied then a transition takes place. The
function abs returns an absolute value of its argument and
the predicate in returns true if its argument state is active.

The input variables of the Heater control block are x0 x1

and B and the output variable is TH = f(B) × g(x0 x1).
Given a value of B ∈ {0.2, 0.4}, f(B) evaluates to a con-
stant. The function g is defined as a piecewise linear function
using a 1-dimensional lookup table. If (x, y) and (x′, y′) are
two entries of the table and x0 x1 ∈ [x, x′] then g(x0 x1) is
defined as the linear interpolation between the entries. The
AC control block is similar. We now explain the translation
from Simulink models to LHSs with Heater control subsys-
tem as an example. The states and blocks that we consider
as corresponding to the subsystem are shaded in Figure 1.

4.2 Translation scheme
Consider a Simulink model SL = (D ,B ,C ,L). For sim-

plicity, we assume that it contains only a single Stateflow
chart SF = (V ,E ,S ,TR,T ). SL can be systematically
translated to an LHS H = (Q ,X , Init ,Flow , Jump) subject



to certain conditions as explained below. We have used the
translation scheme sketched here to derive hybrid systems
for the case studies considered by us (Section 5).

Discrete states. The set Q of discrete states can be iden-
tified with all possible valuations to the output variables
VO of SF which determine modes of the Simulink model.
A Stateflow chart may have integer or real valued output
variables and can be considered as auxiliary variables. For
instance, the output variable x0 x1 of the chart in the VCC
model is real valued. Valuations of auxiliary variables of
SL that take discrete-values and affect the dynamics of the
model however are considered in determining the set Q .

For example, in the VCC model, values of the variables
H , A, and B (which are output variables of SF ), and values
of the row-index of the lookup table (which is an auxiliary
variable) determine modes of the model. Thus, a discrete
state q ∈ Q is a 4-tuple (h, a, b, r) where h, a ∈ {0, 1} denote
values of variables H and A, b ∈ {0.0, 0.2, 0.4} is a value
of the variable B, and r denotes that rows r and r + 1 are
looked-up. For brevity, let us consider only the first 5 rows
of the lookup table of the Heater control block. Thus, the
set of discrete states of the Heater control subsystem is Q =
{q0 = (0, 0, 0.0, 0), q1 = (1, 0, 0.2, 1), q2 = (1, 0, 0.2, 2), q3 =
(1, 0, 0.2, 3), q4 = (1, 0, 0.2, 4)}.

The correspondence between the states of SF and of the
hybrid system is determined by the actions of the states
in an active configuration of SF . For instance, the active
configuration (shaded states) in Figure 1(a) corresponds to
the states q1 to q4 given above.

Real-valued variables. We identify the set X of real-valued
variables from the output variables of integrator, unit delay,
or state-space blocks of SL and the input variables DI . In the
VCC model, the Dynamics block has an integrator, defining
x1 as the state variable. The real-valued variables for the
model are X = {x0, x1} where x0 is the input variable.

Initial states. Let the set of states of SF with default in-
coming transitions be denoted by a discrete state q0 ∈ Q .
The guards on the default incoming transition(s) and the
saturation blocks (if any) associated with input variables de-
termine the set of initial continuous states Init(q0) which we
assume is a convex polyhedron. If a discrete state q ∈ Q is
not an initial state then the convex polyhedron Init(q) = ∅.

For example, the default incoming transitions in the State-
flow chart in Figure 1(a) are to the states BlowerOff and
HeaterACOff. Thus, the initial state is q0 = (0, 0, 0.0, 0).
Note that while Blower1 also has a default incoming transi-
tion, Blower itself is an (exclusive) OR state implying that
BlowerOn (and hence Blower1) are inactive when BlowerOff
is active. The saturation block which follows the user set-
point block in Figure 1(b) determines the range on x0. For
x1 (the internal temperature) we assume the same range.
Therefore, the initial states of the model are:

Init(q0) = 173 ≤ x0 ≤ 373 ∧ 173 ≤ x1 ≤ 373

Init(qi) = ∅ (for i ∈ [1, 4])

Flow functions. For a discrete state q ∈ Q , we identify
the flow expression for a variable xi ∈ X by (symbolically)
evaluating the data flow path to the input of the integrator

or the state-space block, say Bi, of which xi is an output
variable. The input to Bi is the derivative ẋi of xi. For a
unit delay block, it is the next value of xi. Note that since
a discrete state q determines the control mode completely,
all Stateflow dependent choices (outputs of switches, rows
of lookup tables, etc.) are resolved. Thus, a data flow path
defining the flow function Flow(q, xi) for a variable xi at
a discrete state q is uniquely identified. We assume that
the flows are linear expressions over X . Simulink provides a
feature to display the sorted order in which the blocks are
executed and is useful for determining the flow functions.

In the hybrid system model of the Heater control sub-
system, a discrete state q = (h = 1, a = 0, b, r) deter-
mines the indices r and r + 1 of the lookup table rows.
The output TH of the Heater control block is defined as
f(b) × gLI(r, x0 x1) where f(b) evaluates to a constant and
the function gLI(r, x0 x1) is the linear interpolation of the
table entries indexed by r and r + 1.

From HeaterAC state, we know that H and A cannot
be 1 simultaneously. Thus, the AC control block is dis-
abled and its output TAC is set to 0. Considering that
fdy(In1, In2, In3) denotes the expression of the Dynamics
block upto the input of the integrator, we get the following
flow functions:

Flow(q, x1) = fdy(x1, f(b) × gLI(r, x0 − x1), 0)

For the input variable x0, Flow(q, x0) = 0.

Discrete transitions. A transition is taken as a result of an
enabling event. An event e can be either a time-triggered
event or an asynchronous broadcast event. A time-triggered
event affects the sampling time of the model (ref. Sec-
tion 4.3). For a broadcast event, we can identify the con-
straints (over the state and input variables of SL or equiva-
lently the real-valued variables X of H) that enable a broad-
cast of the event. Let these (linear) constraints be given by
a formula ϕe. In our examples, we can assume that until an
event is completely processed, no other event occurs.

The Stateflow chart SF is evoked upon an occurrence of an
input event e. The event is processed downwards from the
root of the state hierarchy (S ,TR). Suppose a transition t =
(s, s′, e, ϕ, actcondition, acttransition) ∈ T is enabled by e. If
the state s ∈ SAct and the guard ϕ is true then the transition
from s to s′ takes place. Let tr be the smallest subtree
of TR containing states s and s′. The transition involves
marking the states from s to the root of tr as inactive and
the states from the root of tr to s′ as active such that the
resulting active configuration respects the AND/OR nature
of composite states (Definition 6). If no such transition is
possible then the event is ignored.

Recall that the guards are specified as quantifier-free for-
mulae in predicate logic over the local variables. To ensure
that the Simulink model can be formalized as a linear hy-
brid system, we require that the local variables VL be de-
fined as linear transformations of the state variables X . Let
ϕ′ = ϕe ∧ϕ and

W

i
ϕ′

i be the disjunctive normal form of ϕ′.
Clearly each disjunct ϕ′

i is a convex polyhedron.
Each such convex polyhedron ϕ′

i determines the guard gi

on a transition, say ti, from q to q′ where q and q′ correspond
respectively to the active configurations before and after the
transition t of SF . Let ri be the reset map for the transition.
The reset map ri is obtained as a sequential composition of
(1) actcondition, (2) the during actions of the active states



q0 q1

q2

q3

q4

G0

G0

G0

G0

g1

g1

g1

g1

g1

g2 g2

g2

g2

g2

g3b

g3b

g3b

g3b

g4a
g4b

g4b
g4b

g4b

G0

g3a

g0a = 2x0 − 2x1 ≤ 1, g0b = x0 − x1 ≥ 203, G0 = g0a ∨ g0b

g1 = 2x0 − 2x1 > 1 ∧ x0 − x1 ≤ 3
g2 = x0 − x1 > 3 ∧ x0 − x1 ≤ 5
g3a = x0 − x1 > 5 ∧ x0 − x1 ≤ 10
g3b = x0 − x1 > 5 ∧ x0 − x1 ≤ 7
g4a = x0 − x1 > 10 ∧ x0 − x1 ≤ 50
g4b = x0 − x1 > 10 ∧ x0 − x1 ≤ 12

Figure 2: Transitions of Heater control subsystem

from (but excluding) the root of tr upto s, (3) the exit ac-
tions of the states from s upto the root of tr, (4) acttransition,
and (5) the entry actions of the states from (but excluding)
the root of tr to s′. Thus, the transition t ∈ T is mapped
to a set of transitions (q, q′, ϕ′

i, ri) in Jump. We model the
inner transitions and the steps involving evolution of only
continuous states as self-transitions.

Temperature control chart is activated by a time-triggered
signal shown as System trigger in Figure 1(b) and marked
as an event E in the chart in Figure 1(a). The transitions
in the chart are enabled by the event E. In Figure 2, we
show the discrete transitions for the Heater control sub-
system. The guards are obtained by taking conjunction of
the guards on the substates in the Stateflow chart and the
lookup table intervals. For instance, the lookup table inter-
val corresponding to q3 is (5, 10] and this gives the guard
g3a for the transition from q0 to q3. If the system is in any
of the states q1 to q4, it can make a transition to q3 if the
guard g3b holds. This is because if Blower1 is active and
the temperate difference is in [5, 7] then the model remains
in Blower1 (ref. Figure 1(a)) and in conjunction with the
lookup table interval (5, 10] we get g3b. There is no reset
action with the transitions.

4.3 Simulation time step
Some Simulink blocks have an explicit sampling time while

most inherit the sampling time from the blocks connected to
their inputs or outputs. The fundamental sampling time is
the greatest integer divisor of the sampling times of all the
discrete blocks in the model and determines the simulation
time step h of the model. During simulation, the outputs
of the continuous blocks of the model are computed by a
chosen integration routine S with respect to time step h.

For example, in the VCC model, the System trigger block
decides the sampling time of the Stateflow chart and it is
propagated to the rest of the model.

4.4 Scope of the translation
While the translation scheme described here covers a com-

monly used subset of the Simulink language like Stateflow,
lookup tables, enabled subsystems, and linear transfer func-
tions; it is not complete. For instance, it does not cover user
defined S-Function blocks, variable step integration routines,
and zero crossing detection. It also does not cover multirate
systems and minor time steps used in some integration rou-
tines. Automating the translation scheme is a future work.

5. CASE STUDIES
We have analyzed two case studies: room heating bench-

mark (RHB) and vehicle climate control (VCC). RHB is
a benchmark for hybrid systems verification [12]. VCC is
provided as a Simulink demo by Mathworks [1]. VCC uses
many Simulink features like lookup tables, enabled subsys-
tems, and concurrency and hierarchy in Stateflow charts. A
simplified and partial model of VCC is discussed in Section 4.

Table 1 summarizes the characteristics of the case studies.
#Qs and #X s are respectively the number of discrete states
and real-valued variables. #Trans. and h are respectively
the number of discrete transitions and the value of the sim-
ulation time step. In the hybrid system model, the guard on
a discrete transition should to be a convex polyhedron. If in
the Simulink model a guard is disjunctive then we create a
separate transition for each disjunct which results in a high
number of transitions. RHB and VCC have approximately
over 150 and 104 discrete transitions respectively. In the
case studies, we use the Euler integration routine.

Case study #Qs #X s #Trans. h
RHB 12 3 > 150 1/100
VCC 106 2 > 104 1/120

Table 1: Characteristics of the case studies

5.1 Room heating benchmark
The RHB model considered by us (whose Simulink de-

sign is taken from [2]) consists of a house with 3 rooms
and 2 heaters. The temperature in a room i is modeled
as a real-valued variable xi. A room can have at most
one heater. The set of possible distributions of heaters is
HD = {110, 011, 101}. For a heater distribution h ∈ HD,
the value at the ith index hi indicates whether a heater is
available in room i (hi = 1 means available). Each distribu-
tion is further augmented with four possible heater on/off
configurations Z = {00, 01, 10, 11}. The set of discrete states
is Q = HD × Z. Thus there are total 12 discrete states.

The change in temperature of a room depends on its own
temperature, the temperatures of the adjacent rooms, the
external temperature u (a constant), and whether a heater
is available and on/off. For a discrete state q = (h, z) ∈ Q,
the derivative of xi is defined by the following flow function:

ẋi = Flow(q, xi) := cimi + bi(u − xi) +
X

i6=j

ai,j(xj − xi)

where mi = 1 if there is a heater in room i (hi = 1) and is
on (zj = 1 if it is the jth heater).



In the specific instance of RHB that we analyzed, b =
〈0.4, 0.3, 0.4〉, u = 4, c = 〈6, 7, 8〉, and the values ai,j are
given by the following matrix:

0

@

0.0 0.5 0.0
0.5 0.0 0.5
0.0 0.5 0.0

1

A

The above matrix is symmetric, indicating that two adja-
cent rooms affect each others’ temperature in a symmetric
manner. The non-zero values indicate that rooms 1–2 and
rooms 2–3 are adjacent. Rooms 1 and 3 are not adjacent.

A heater is moved from a room i to an adjacent room j if
(1) room i has a heater (hi = 1), (2) room j does not have a
heater (hj = 0), (3) the temperature xj ≤ getj , and (4) xi−
xj ≥ dif j . When two heaters can be moved, the heater from
the smaller numbered room is moved. The heater in room i
is turned off if xi ≥ off i and is turned on if xi ≤ on i. For the
case study, we considered get = 〈18, 18, 18〉, dif = 〈1, 1, 1〉,
on = 〈20, 20, 20〉, and off = 〈21, 21, 21〉.

Given two states q = (h, z) and q′ = (h′, z′), the discrete
transitions between q and q′ and their guards can be identi-
fied from the above. Note that the guards should be convex.
For instance, when no heater is moved (h = h′), we get
the following disjunction xj > get i ∨ xi − xj < dif j leading
to a pair of self transitions. We consider the initial state
q0 = (101, 11) where heaters are present in rooms 1 and 3
and are on. The set of initial states Init(q0) = 15 ≤ x1 <
21 ∧ 15 ≤ x2 ≤ 25 ∧ 15 ≤ x3 < 21.

5.2 Vehicle climate control
We have discussed a simplified version of VCC in Sec-

tion 4. We have shown only two substates of BlowerOn in
Figure 1(a) whereas the blower output (the variable B) takes
a value from {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and thus there are 5
substates of BlowerOn in the model. The AC and Heater
controls contain 1-dimensional lookup tables with linear in-
terpolation/extrapolation with 7 and 14 rows respectively.
The row indices are considered in discrete states as they af-
fect dynamics of the system. B = 0.0 iff both AC and Heater
are disabled. Further, AC and Heater cannot be active si-
multaneously. Thus there are 106 discrete states resulting
from the distinct values taken by the tuple (H,A, B, R) and
over 104 discrete transitions. The guards on the transitions
are convex and the dynamics in each state is linear.

5.3 Implementation details
Flattening the hierarchical structure of a Stateflow chart

leads to a blowup in the number of discrete transitions. We
can also observe that guards on several incoming transitions
to a state are same (Figure 2). Therefore in our specification
format, we model incoming transitions instead of outgoing
transitions of a discrete state. This allows us to store a set
of transitions with same target state, guard set, and reset
map as a single transition. With this representation, we
could represent all possible discrete transitions of the VCC
model (> 104) by 657 transitions only. For the RHB model,
we could represent all discrete transitions by 128 transitions
only. To get simulation trajectories, we add blocks in the
models to print the values to the workspace.

We use the Parma Polyhedra Library (PPL) for imple-
menting Algorithm 1. We use the not necessarily closed
polyhedra (NNC Polyhedron) representation for state-sets
as some of the guards are strict inequalities. The operations

#Simulations 5 10 15 20
Coverage 83.1% 90.6% 87.4% 89.9%

(a) Room heating benchmark

#Simulations 5 10 15 20
Coverage 17.77% 29.78% 29.49% 30.92%

(b) Vehicle climate control

Table 2: Estimated coverage

PreE and PreR are implemented using the affine preimage
computations in PPL. To compute preimages when multiple
variables are updated simultaneously, we have implemented
a preimage computation routine. An appropriate incoming
transition (line 3 of Algorithm 1) is identified by iterating
over the incoming transitions. We have also implemented an
input selection scheme that selects the next input randomly
from the as yet uncovered initial state-space.

6. EXPERIMENTAL RESULTS

Coverage of the initial state-space.
The exact computation of coverage of the initial contin-

uous state-space is difficult because the coefficients of the
polyhedral constraints that denote the covered region are
usually large and the polyhedra can be of arbitrary shapes.
Therefore to estimate the coverage of the initial state-space,
we select a number of random sample points from the initial
state-space and then measure the percentage of the sample
points that belong to the covered region.

The continuous state-spaces of RHB and VCC are of 3 and
2 dimensions respectively. Each dimension of the continuous
state-space for RHB is in the range [15, 25] and for VCC it
is in the range [173, 373]. We select a random sampling
of 103 initial states for RHB and 1002 states for VCC. The
percentage of the sampled states covered by different number
of simulations is shown in Table 2.

The length of individual simulations for RHB and VCC
was 10 and 100 steps. We chose different initial states at
the beginning of each coverage analysis. The number of
simulations for a coverage analysis are the column headings
in the tables. Our tool randomly selects the initial state for
the subsequent simulation from outside the covered region.

The coverage results demonstrate that a significant cov-
erage of the initial state-space could be obtained in the case
studies. For RHB, a set of 5 simulations lead to estimated
coverage of 83% and a set of 20 simulations lead to estimated
coverage of 90%. For VCC, a set of 5 simulations lead to
estimated coverage of 18% and a set of 20 simulations lead
to estimated coverage of 31%.

Effect of simulation length on coverage and run-time.
To show the effect of simulation length on coverage, we

plot the covered initial state-space for VCC in Figure 3. X-
axis shows the user setpoint and Y-axis shows the internal

#Simulations 5 10 15 20
Coverage 35.1% 40.4% 41.3% 43.3%

Table 3: Estimated coverage for RHB for simula-
tions of length 50



150 200 250 300 350 400
150

200

250

300

350

400

User setpoint (Kelvin)

In
te

rn
al

 te
m

pe
ra

tu
re

 (
K

el
vi

n)

Coverage for the VCC model on 5 initial states

Figure 3: Coverage and effect of length of simulation

temperature. The initial state-space is a rectangle whose di-
agonally opposite vertices are (173, 173) and (373, 373). The
sample initial states are shown as small circles (centered at
them). A simulation is performed starting with each initial
state. The corresponding shaded region shows the covered
initial state-space.

As the simulation length increases, more constraints need
to be satisfied to ensure that the same sequence of discrete
states are visited and the equivalence over initial states be-
comes finer. Thus the coverage decreases with increase in
the simulation length. For the top most and bottom most
initial states, the coverages shown in lightgray are for simu-
lation length of 100 steps and the coverages shown in dark-
gray are for simulation length of 1000 steps. For the other
states, only covered regions for simulations of 100 steps are
shown. The covered regions for simulations of 1000 steps are
contained within these regions.

Table 3 gives estimate of coverage for RHB as explained
earlier but for simulations of 50 steps and can be compared
with the results in Table 2(a).

As the simulation length increases, the run-time of the
algorithm also increases. In Figure 4, we plot the average
run-time of the symbolic analysis for 5 simulations. We can
observe the effects of length of simulation and of the dimen-
sion of the continuous state-space on the run-time.

The increase in run-time is a direct consequence of the
number of polyhedral computations that need to be per-
formed. With each step of the algorithm, the size of the
coefficients of the polyhedral constraints and possibly the
number of constraints increase. Our present implementa-
tion performs exact polyhedral operations and thus gives
reasonable coverage even when simulation lengths are large,
allowing deeper explorations of the design as shown in Fig-
ure 3 and Table 3. Thus there is a trade-off between the
amount of coverage and the run-time.

The dimension of the continuous state-space is known to
affect the run-time. It can be seen from the relative run-
times for RHB and VCC models (which have respectively
3 and 2 continuous variables). The average time taken for
analysis of 1000 step simulations is approximately 6s and

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Length of simulation trajectory (k)

A
ve

ra
ge

 r
un

−
tim

e 
(s

ec
on

ds
)

RHB
VCC

Figure 4: Avg. run-time for diff. simulation lengths

22s for them whereas for 100 step simulations it is small.
The run-time is measured on a computer with Intel Core2
T5300 processor (1.73GHz) and Fedora Core 6.

7. CONCLUSIONS
We have presented an analysis technique for linear hybrid

systems that integrates numerical simulation with symbolic
analysis. We have demonstrated the benefits of the method
via two case studies on Simulink/Stateflow models. Our
experiments indicate that the symbolic analysis of the nu-
merical simulation from an initial state, typically, allows us
to declare a non-trivial region around this initial state to be
redundant for future simulations.

The lack of robust tools to map Simulink/Stateflow mod-
els to hybrid automata is a hurdle in applying hybrid systems
analysis tools to industrially relevant examples. We have re-
ported some progress in this direction, and the VCC exam-
ple has a number of commonly occurring features. However,
an automatic translator from Simulink/Stateflow to hybrid
automata is beyond the scope of this paper.

While we have demonstrated that the symbolic analysis
yields useful information, it is natural to question whether
this analysis would scale. Note that the complexity of the
symbolic analysis does not really depend upon the number
of discrete states, but depends on the number of simula-
tion steps and the number of continuous variables. Our
experiments address increasing the number of simulation
steps, but both the examples have small number of con-
tinuous variables, and we have not yet applied the tool on
other examples. It is well known that the performance of
algorithms manipulating polyhedra degrades quickly with
increasing dimensions. We believe that simpler representa-
tions such as grid and template polyhedra [29], which typi-
cally lead to coarse overapproximations in forward symbolic
search, can yield effective underapproximations around the
concrete simulated execution for our purpose.

Acknowledgments. The work by authors at University of
Pennsylvania was partially supported by grants from NSF
Cybertrust program and General Motors.



8. REFERENCES
[1] Simulink demos: http://www.mathworks.com/

products/simulink/demos.html.

[2] Simulink models of hybrid systems benchmarks
http://www.cse.unsw.edu.au/~ansgar/benchmark/.

[3] A. Agrawal, G. Simon, and G. Karsai. Semantic
translation of Simulink/Stateflow models to hybrid
automata using graph transformations. ENTCS,
109:43–56, 2004.

[4] R. Alur, C. Courcoubetis, N. Halbwachs,
T.A. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138:3–34, 1995.

[5] R. Alur, T. Dang, and F. Ivancic. Predicate
abstraction for reachability analysis of hybrid systems.
ACM Trans. on Embedded Computing Systems,
5(1):152–199, 2006.

[6] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma
Polyhedra Library: Toward a complete set of
numerical abstractions for the analysis and verification
of hardware and software systems. Science of
Computer Programming, 2008.

[7] C. Banphawatthanarak, B.H. Krogh, and K. Butts.
Symbolic verification of executable control
specifications. In Intl. Symp. on Computer Aided
Control System Design, pages 581–586. IEEE, 1999.

[8] BEACON Tester, Applied Dynamics International,
http://www.adi.com/products_be_bss_te.htm.

[9] A. Chutinan and B.K. Krogh. Verification of
polyhedral-invariant hybrid automata using polygonal
flow pipe approximations. In HSCC, LNCS 1569,
pages 76–90. Springer, 1999.

[10] E.M. Clarke, A. Fehnker, Z. Han, B.H. Krogh,
J. Ouaknine, O. Stursberg, and M. Theobald.
Abstraction and counterexample-guided abstraction
refinement in model checking of hybrid systems. Intl.
Journ. on Foundations of Computer Science,
14(4):583–604, 2003.

[11] A. Donzé and O. Maler. Systematic simulation using
sensitivity analysis. In HSCC, LNCS 4416, pages
174–189. Springer, 2007.

[12] A. Fehnker and F. Ivancic. Benchmarks for hybrid
systems verification. In HSCC, LNCS 2993, pages
326–341. Springer, 2004.

[13] G. Frehse. Phaver: Algorithmic verification of hybrid
systems past HyTech. In HSCC, LNCS 3414, pages
258–273. Springer, 2005.

[14] A.A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh,
S. Mohalik, and K.C. Shashidhar. AutoMOTGen:
Automatic model oriented test generator for
embedded control systems. In CAV, LNCS 5123, pages
204–208. Springer, 2008.

[15] A. Girard and G.J. Pappas. Approximation metrics
for discrete and continuous systems. IEEE Trans. on
Automatic Control, 52(5):782–798, 2007.

[16] A. Girard and G.J. Pappas. Verification using
simulation. In HSCC, LNCS 3927, pages 272–286.
Springer, 2006.

[17] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed automated random testing. In PLDI, pages
213–223. ACM, 2005.

[18] N. Halbwachs, Y. Proy, and P. Raymond. Verification
of linear hybrid systems by means of convex
approximations. In SAS, LNCS 864, pages 223–237.
Springer, 1994.

[19] G. Hamon. A denotational semantics for Stateflow. In
EMSOFT, pages 164–172. ACM, 2005.

[20] G. Hamon and J.M. Rushby. An operational semantics
for stateflow. STTT, 9(5-6):447–456, 2007.

[21] D. Harel. Statecharts: A visual formulation for
complex systems. Science of Computer Programming,
8(3):231–274, 1987.

[22] T.A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: a
model checker for hybrid systems. STTT, 1, 1997.

[23] A.A. Julius, G.E. Fainekos, M. Anand, I. Lee, and
G.J. Pappas. Robust test generation and coverage for
hybrid systems. In HSCC, LNCS 4416, pages 329–342.
Springer, 2007.

[24] A. Kurzhanski and P. Varaiya. Ellipsoidal techniques
for reachability analysis. In HSCC, LNCS 1790, pages
202–214. Springer, 2000.

[25] E.A. Lee. What’s ahead for embedded software. IEEE
Computer, pages 18–26, September 2000.

[26] I. Mitchell and C. Tomlin. Level set methods for
computation in hybrid systems. In HSCC, LNCS 1790,
pages 310–323. Springer, 2000.

[27] T. Nahhal and T. Dang. Coverage for continuous and
hybrid systems. In CAV, LNCS 4590, pages 449–462.
Springer, 2007.

[28] Reactis, Reactive Systems, Inc.,
http://www.reactive-systems.com.

[29] S. Sankaranarayanan, T. Dang, and F. Ivancic.
Symbolic model checking of hybrid systems using
template polyhedra. In TACAS, LNCS 4963, pages
188–202. Springer, 2008.

[30] S. Sastry, J. Sztipanovits, R. Bajcsy, and H. Gill.
Modeling and design of embedded software. Proc. of
the IEEE, 91(1), 2003.

[31] M. Satpathy, A. Yeolekar, and S. Ramesh.
REDIRECT: Randomized directed testing for
Simulink/Stateflow models. In EMSOFT (this
proceedings). ACM, 2008.

[32] Simulink Design Verifier, The Mathworks, Inc., http:
//www.mathworks.com/products/sldesignverifier.

[33] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In FSE, pages 263–272.
ACM, 2005.

[34] Safety Test Builder, TNI-Software., http://www.
tni-software.com/en/produits/safetytestbuilder.

[35] A. Tiwari. Abstractions for hybrid systems. Formal
Methods in System Design, 32(1):57–83, 2008.

[36] A. Tiwari. Formal semantics and analysis methods for
Simulink Stateflow models. Technical report, SRI
International, 2002.

[37] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic.
Translating discrete-time Simulink to Lustre. ACM
Trans. on Embedded Computing Systems,
4(4):779–818, 2005.

[38] T-VEC Tester, T-VEC Technologies, Inc.,
http://www.t-vec.com/solutions/simulink.php.


