
RTComposer: A Framework for Real-Time
Components with Scheduling Interfaces

Rajeev Alur and Gera Weiss
University of Pennsylvania

alur@cis.upenn.edu, gera@seas.upenn.edu

ABSTRACT
We present a framework for component-based design and
scheduling of real-time embedded software. Each component
has a clearly specified interface that includes the methods
used for sensing, computation, and actuation, along with a
requirement given as a regular set of macro-schedules. Each
macro-schedule is an infinite sequence that specifies, for ev-
ery time slot, the set of component methods invoked in that
slot. The macro-scheduler composes the specifications of
all the components, along with the platform specification
that constrains which methods can be executed within a
single slot, to generate a feasible macro-schedule. Within a
slot, we use logical execution time semantics, and this micro-
scheduling is implemented on top of a native priority-based
scheduler. With this approach, each component can be spec-
ified and analyzed in a platform-independent way, and at the
same time, the performance can vary with changing load
and changing processing speed. We describe an implemen-
tation using Real-Time Java. Scheduling specifications can
be given as periodic tasks, or using temporal logic, or as
omega-automata. Components can be added dynamically,
and non-real-time components are allowed. We demonstrate
the benefits of the approach using case studies.

Categories and Subject Descriptors: D.2.2 [Software
Engineering] : Design tools and techniques; J.7 [Computers
in other systems] : Real time, Process control.

General Terms: Performance, Reliability.

Keywords: Real Time Specification for Java (RTSJ), Au-
tomata based scheduling.

1. INTRODUCTION
Components with clearly specified APIs, such as Java li-

brary classes, allow designers to build complex systems ef-
fectively in many application domains. The key to such
modular development is that an individual component can
be designed, analyzed, and tested without the knowledge
of other components or the underlying computing platform.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

When the system contains components with real-time re-
quirements, the notion of an interface must include the re-
quirements regarding resources, and existing programming
languages provide little support for this. Consequently, cur-
rent development of real-time embedded software requires
significant low-level manual effort for debugging and compo-
nent assembly (cf. [15,19,26]). This has motivated many re-
searchers to develop compositional approaches and interface
notions for real-time scheduling (cf. [4, 8, 9, 23–25,27,29]).

The most common way of describing the usage require-
ments of a real-time component is to specify a period, some-
times along with a deadline, which gives the frequency at
which the component must execute. The designer of the
component makes sure that the performance objectives will
be met as long as the component is executed consistent
with its period. For implementation, the real-time oper-
ating system performs a worst-case execution time analysis
on all the components, followed by schedulability analysis
to check whether all the timing requirements can be met
(cf. [6,17,20]). Specifying resource requirements using peri-
ods has advantages due to simplicity and analyzability, but
has limited expressiveness. For example, a specification such
as “execute the component every 5ms” does not say whether
the scheduler should or should not execute it more frequently
if enough computing resources are available, and if a compo-
nent has multiple methods, say, for different control tasks,
each needing a different period, the requirement cannot be
naturally captured by a single period.

In this paper, we use finite automata over infinite words
as an expressive, analyzable, and composable specification
framework for resource requirements [2, 32]. specification
framework for resource requirements [2,32]. We assume that
the resource is allocated in discrete slots of some fixed du-
ration in the style of time-triggered architecture [18] and
the LET (Logical Execution Time) programming abstrac-
tion [13]. The interface of a real-time component consists
of (1) a logical slot length, (2) a sensing method to read
inputs, (3) an actuation method to write outputs, (4) a set
M of computation methods the component supports, and
(5) a scheduling requirement described by a finite-state au-
tomaton A. The scheduler invokes, within each logical slot
i, the method to read inputs at the beginning of the slot, a
subset Mi of computation methods M , and the method to
write outputs at the end of the slot. The scheduled com-
putation, from the perspective of the component, is then
a sequence of M1M2 . . . of sets of computation methods
invoked by the scheduler, and the requirement automaton
A describes which of these sequences are acceptable to the

component. Each component has a well-defined semantics,
and can be designed and analyzed in isolation in a platform-
independent manner. However, since our scheduling specifi-
cation allows multiple scenarios, the real-time performance
will vary depending upon the presence of other components
and platform characteristics.

Given a set of components, the scheduling decision con-
sists of two stages. The macro-scheduler chooses the se-
quence of methods to be called within each slot. The macro-
scheduler constructs the product of the automata describ-
ing requirements of all the components, and intersects it
with constraints imposed by the platform that capture which
methods can be co-scheduled within each logical slot. If this
product automaton is empty, the components are unschedu-
lable on this platform, and otherwise, the macro-scheduler
chooses a feasible schedule. Micro-scheduling of the chosen
methods, along with the handling of interrupts and back-
ground processing of non-real-time components, within a
slot is done by the native priority-based operating system.

We describe a toolkit, RTComposer, that is implemented
on top of Real Time Java [5]. The components are described
as Java classes with methods corresponding to our notion
of an interface. In particular, the automaton for scheduling
specification can be described directly, but we also support a
variety of alternative high-level specifications. These include
classical periodic specifications, temporal logic formulas, and
also performance objectives, such as stability, for controllers
described in Simulink. The constraints imposed by the pro-
cessing speed of the platform can be described by an au-
tomaton over all possible computation methods of real-time
components. A more convenient way is for each component
to declare the worst-case execution time for each method,
in logical units, and then, specify the platform by a scaling
constant. The macro-scheduler runs as a high-priority Real-
Time Java thread, that wakes up at the beginning of each
slot and invokes all the chosen methods before going to sleep.
The implementation also allows admission of new real-time
components. When a new component is added, the macro-
scheduler computes the new policy by taking the product of
the current policy with the scheduling specification of the
new component, and checking for emptiness.

To illustrate the benefits of the proposed framework, we
present a case study involving two simulated control sys-
tems along with background tasks. Each control system has
two computation methods, with different computational re-
quirements, and leading to different qualities for estimation
of plant state. The scheduling specification says that one of
the two methods must be executed in every logical slot, and
the more precise, and computationally more demanding, es-
timation must be executed at least once every two logical
slots. With this case study, we demonstrate how RTCom-
poser allows dynamic schedules. Specifically, we study three
types of dynamic adaptations. First, we experiment with
dynamic load conditions and show that our approach allows
safe degradation of control performance when resources are
needed for other computations. Second, we demonstrate
how our approach allows platform portability in a way that
allows better performance on faster machines. The third
type of dynamic adaptation that we study is online admis-
sion of components. We show that, when a component is
not installed, other components can use the resources that
it does not use to improve their performance.

2. AN ILLUSTRATIVE EXAMPLE OF MUL-
TIPLE CONTROLLERS

As an illustrative example, consider two independent plants
controlled by controllers that share a single CPU, as depicted
in Figure 1. In addition to the controllers that use the CPU
to compute a feedback to the plants, the CPU is also used
by non real-time background applications and sporadic in-
terrupt handlers. This is a typical situation in many modern
application where real-time computations are combined with
other functionalities.

CPUController ControllerPlant Plant

Interrupt Handlers

Background Computations

Figure 1: Two real-time applications sharing a CPU
with other tasks.

As an example, we show how RTComposer can be used
to implement the controllers in a way that allows platform
independent performance guarantee, dynamic adaptation to
variable resources availability and online admission.

Towards a resource-aware implementation, two modes of
operation are designed for each controller, as follows. In
both modes the controller updates its internal state, which
is an estimation of the state of the plant, and then uses
this estimation to compute a feedback to regulate the plant.
In the first mode the estimation is updated using the out-
put of the plant (by, e.g., the Linear Quadratic Regulator
(LQR) control design). In the second mode, a lightweight
simulation of the plant is used. This design is motivated by
applications where either obtaining the output of the plant
or processing the estimation procedure are computationally
demanding.

class Controller implements Component {

...

// Heavy computation

@WCET (0.8)

public void estimate () {

...

}

// Lightweight version

@WCET (0.1)

public void simulate () {

...

}

}

Listing 1: A controller with two modes.

Listing 1 shows a skeleton of an implementation of the
class Controller (a common base for the classes Controller1

and Controller2). The controller is implemented as a Java
class with two methods called estimate and simulate that
are implementations of the two modes described in the pre-
vious paragraph.

Assume that the controllers are designed for sampling the
plants every 10ms. Then, from the perspective of each con-
troller, execution can be viewed as a sequence of time slots
of length 10ms where each slot begins by reading the out-
put and ends with setting a feedback to the plant. The
state of the controller is updated in each slot, using ei-
ther the estimation or the simulation modes. Such a run
can be described by a sequence f(1), f(2), . . . where f(i) ∈
{simulate, estimate} is the method invoked at the ith slot.
This is an example the Logical Execution Time (LET) ab-
straction [16], discussed in more details in Section 4.2 below.

Next, we present an interface allowing real-time compo-
nents, such as the two controllers, specify how methods
should be assigned to slots. For example, assume that two
copies of estimate cannot complete within one slot. In this
case, we need to schedule Controller1.estimate at some
slots and Controller2.estimate in other slots. To allow
background computations, we may also wish to schedule nei-
ther at some slots.

We call the assignment of task sets to slot macro-schedule.
Figure 2 depicts an example of a macro-schedule. In this
example, at each slot, the state of one of the controllers is
updated by triggering the heavy estimation while the state of
the other controller is updated by a lightweight simulation.


c1.est
c2.sim

ff
10ms


c1.sim
c2.est

ff
20ms


c1.sim
c2.est

ff
30ms


c1.est
c2.sim

ff
40ms0

· · ·

Figure 2: A macro-schedule. c1, c2, est and sim are
shortcuts for Controller1 and Controller2, estimate,
and simulate, respectively.

In control software, we wish to choose macro-schedules
such that controllers maintain stability requirements. With
RTComposer, the designer of the class Controller can pro-
vide an automaton that specifies the sequences of task sets
that allow the controller to maintain stability.

sim ∧ ¬est sim ∧ ¬est

est ∧ ¬sim

est ∧ ¬sim
est ∧ ¬sim

Figure 3: Automaton for class Controller. The
symbols est and sim are shortcuts for estimate and
simulate, respectively.

For example, consider the automaton depicted in Figure 3.
When given as a scheduling specification, the automaton
says that the controller can deliver the required performance
if, at any slot, either estimate or simulate run, and there
are no three consecutive slots in which estimate is not trig-
gered at least once. In this example, best performance is
achieved when estimate is triggered every slot without any

simulate run, but this schedule does not allow other com-
ponents (because estimate takes too long to compute).

Having this automaton, a code for scheduling the two con-
trollers is depicted in Listing 2.

public static void main(String args []) {

...

Controller cont1 = new Controller (...);

Controller cont2 = new Controller (...);

Scheduler sch = new Scheduler ();

sch.addComponent(cont1);

sch.addComponent(cont2);

if(sch.isSchedulable ()) {

sch.start ();

} else {

out.println("Not schedulable");

}

}

Listing 2: Scheduling two controllers.

In this code, the two controllers are instantiated and then
added as components. Then, the scheduler automatically
computes the intersection automaton depicted in Figure 4.
Note that this automaton is an intersection of two (identi-
cal) automata given by the controllers and the constraint
that two copies of simulate cannot run together. The later
constraint is automatically deduced by the scheduler based
on the WCET (worst case execution time) annotations pro-
vided in Listing 1 (WCET of two copies of simulate sum to
more than one).

The method isSchedulable returns false iff the language
of the automaton is empty. In this case, the language is not
empty and the program proceeds to call sch.start(). This
method selects a word in the ω-language specified by the au-
tomaton and executes the components accordingly. For ex-
ample, we can select an arbitrary infinite word by simulating
a random walk over the automaton. As the ω-language of
the automaton is in the intersection of all scheduling speci-
fications (which are all safety languages), we are guaranteed
that the generated schedule allows good performance of all
components. Since we also intersected with the platform
specification, we are also guaranteed that all task sets finish
before the end of their slots.

3. INTERFACE SPECIFICATION
The interface for software components is given in Listing 3.

Specifically, a component is a Java class implementing the
methods:

• getSlotLength: specifies the length of the logical ex-
ecution slot for the component.

• getAutomaton: gives an automaton specifying a safety
language over subsets of the set of methods.

• readInputs: reads data from external interface to local
variables (assumed to be fast).

• writeOutputs: writes data from local variables to ex-
ternal interface (assumed to be fast).

¬e1 ∧ ¬e2

¬e
1
∧ e

2

¬e1 ∧ e2

¬e2

¬e1

e1 ∧ ¬e2

e1
¬e

2

¬e1e2

e1 ∧ ¬e2

¬e1 ∧ e2

¬e1 ∧ e2

e1 ∧ ¬e2

¬e
1 ∧

e
2

e
1 ∧ ¬e

2

e1 ∧ ¬e2

¬e1 ∧ ¬e2

Figure 4: The product automaton. For short,
we use e1 and e2 instead of cont1.estimate

and cont2.estimate, respectively, and assume that
estimate ⇐⇒ ¬simulate is known.

public interface Component {

float getSlotLength ();

File getAutomaton ();

void readInputs ();

void writeOutputs ();

// Implementation (scheduled methods)

...

}

Listing 3: The Component interface.

In addition to these four methods, the component should
have a set of methods that implement its functionality (whose
invocation sequence is specified by the automaton). The
signature of these methods must be: public void<name>().
Namely, they must be public, expect no parameters, and re-
turn no value. Data can be passed from one method to an-
other and between successive invocation of the same method
via class variables.

As shown in Listing 1, an annotation called @WCET is im-
plemented to allow the specification of Worst Case Execu-
tion Time for each method (if WCET is not specified, it is
assumed that the execution of the method takes negligible
time). This annotation specifies execution time on a refer-
ence platform. See Section 4.1, below, for a discussion of
how platform portability is supported.

For specifying automata, we use the file format generated
by the GOAL (Graphical Tool for Omega-Automata and
Logics) package [31]. Specifically, the methods getAutomaton,
described above, should return an XML file in the format
exported by GOAL. This allows the use of GOAL for gen-
erating scheduling specifications. In particular, as GOAL
provides an intuitive graphical interface and interoperabil-
ity with other tools, a variety of input methods are enabled.

The semantics of the above specification are as follows.
Say that getSlotLength returns some ∆ > 0. This means
that, for each i = 0, 1, . . . , the component expects the sched-
uler to invoke readInputs at time i∆ and writeOutputs at
time (i+1)∆ (assuming that the execution of these methods
takes negligible time). Let S(i) be a subset of the methods
of the component that are invoked (by the scheduler) be-
tween time i∆ and time (i+ 1)∆. The automaton given by
getAutomaton specifies the set of sequences S(1), S(2), . . .
that the component allows (sequences that allow the com-
ponent to deliver its performance requirements).

Note that the current implementation of RTComposer
assumes that slot lengths are uniform for all components.
Specifically, any component whose slot length is different
from the one of the first component is rejected. However, be-
cause this constraint is not inherent to the methodology, the
specification interface allows different slot length for compo-
nents (anticipating future versions).

4. COMPOSITION OF COMPONENTS
Assuming that a set of components is provided, each ad-

hering to the interface described in the previous section, we
discuss how to compose and run them in a way that respects
the semantics of the interface.

4.1 Development process
We propose the development process depicted in Figure 5.

First, the functionality and a specification of resource re-
quirements are developed for each component. As described
in the previous section, the functionality is given as a Java
class and resource requirements are specified by an automa-
ton whose alphabet is sets of methods of the class.

Component
Functionality

Scheduling
Specification

Component
Functionality

Scheduling
Specification

· · ·

· · ·

Product
Automaton

Platform
Constraints

Execution

Figure 5: Development process.

To this automata, we add the platform constraints. This is
also an automaton whose alphabet is the power-set of the set
of methods of all components. The platform constraints au-
tomaton specifies which sets of methods can be executed in
each slot. For example, if a set M = {m1, . . . ,ml} of meth-
ods (not necessarily of the same component) cannot run to-
gether in any single logical execution slot, the platform con-
straint may include the LTL predicate []~(m1 /\ · · · /\ml)

(always not m1 and m2 and . . . ml).
In addition to the general interface, where platform con-

straints are directly specified as an automaton, we propose
a simpler interface, as follows. In its simplest form, when

the system runs on the reference platform, the interface is
just the @WCET annotations. If the platform is not explicitly
assigned, the scheduler assumes that the reference platform
is used (the one for which the worst case execution times
are computed). In this case, the scheduler would compute
an automaton of the form [] ~overload where overload is
a propositional formula characterizing the sets of functions
whose total execution time is more than the slot length.

For platform portability, an interface for specifying how
the current platform is different from the reference is also
proposed. This specification comes in the form of a mapping
of methods to affine functions. Given a method, the affine
function mapped to it tells the scheduler how worst case
execution time on the reference platform is mapped to the
actual worst case execution time. For example, one can
specify that all methods run twice as fast as they would
run on the reference implementation. Affine functions give
opportunity to add a context switch cost and a speed rate.

Having the platform specification, an automaton is com-
puted for the intersection of all the constraints specified
by the scheduling specifications of all components together
with platform constraints. This automaton can be com-
puted using known algorithms for intersecting ω-regular lan-
guages [30]. For example, the automaton in Figure 4 was
automatically generated from two copies of the automaton
in Figure 3 and the platform constraints described in the
preceding paragraph.

Once the scheduling constraints automaton is formed, any
word in the ω-regular language specified by it allows all com-
ponents to maintain required performance. For example, the
automaton can be used as a starting point for optimization
(see [1]) or for scheduling (see Section 6, below).

Note that our approach allows the scheduler to take ad-
vantage of faster execution platform while assuring perfor-
mance for slower one. To see this feature, compare our ap-
proach with tools such as Giotto [16] or Exotasks [4] where
the set of tasks executed in a logical execution slot is inde-
pendent of the platform. With such tools, to allow porta-
bility, one can choose long slot lengths such that completion
of all tasks is guaranteed even on the slowest relevant ma-
chine. The problem with this approach is that the power of
the faster machine is wasted. Using automata based spec-
ifications, RTComposer has an explicit knowledge of what
the components need and what the platform is capable of,
allowing different schedules for different machines.

4.2 Execution semantics
For scheduling tasks within a slot, we adopt the Logical

Execution Time (LET) abstraction [16] that allows deter-
ministic external interface even when the underlying physi-
cal execution layer introduces bounded non-determinism.

The relation between logical and physical task execution
is depicted Figure 6 (adopted from [12]). The diagram de-
picts an execution of one task in one logical execution slot.
Logically, the task is released at the beginning of the slot
and terminates at the end of it, i.e., the task processes the
inputs captured at the release time and its output are only
made available to the outside world at the logical termina-
tion time. The actual execution, as shown in the figure,
may start and finish anywhere in the logical execution slot
and the execution may be interrupted by higher priority
tasks. However, the external interface remains determinis-
tic provided only that all tasks always finish within logical

execution slots.

Task Invocation

running waiting running

readInputs writeOutputs

Logical Execution Slot

TimeLogical

Actual

Figure 6: Execution of a task in an execution slot.

Diverging from the way LET is applied in other archi-
tectures (c.f. [4, 16]), RTComposer executes a dynamic as-
signment of tasks to logical execution slots. Specifically, the
set of tasks that run in each logical execution slot is cho-
sen from the intersection of all resource specifications of the
components and the platform constraints specification (as
described above). Particularly, improving the speed of the
machine allows better performance (because less constraints
means more applicable schedules and possibly existence of
a better one). Similarly, we can react to variability in the
background load by choosing a schedule that contains less
real-time computations when the load is high. See Section 6,
below, for examples.

4.3 Scheduling mechanism
To implement the above semantics, we propose a schedul-

ing mechanism consisting of a macro (intra-slot) scheduler
and a micro (inter-slot) scheduler, as follows. As depicted in
Figure 7, the micro scheduler is the built-in scheduler pro-
vided by the RT-Java virtual machine. We use it to run all
tasks, including interrupt handlers, real-time components
and background applications. The macro scheduler medi-
ates the execution of the real-time components, as follows.
At the beginning of every logical execution slot, the macro
scheduler invokes all readInput methods and spawns a set
of tasks that wrap the methods of the real-time components
to be executed in that slot. At the end of the slot, the macro
scheduler invokes all writeOutput methods.

Macro Scheduler

Component Component· · ·

Micro Scheduler
(built-in task scheduler)

Interrupt
Handlers

Background
Computations

CPU

Figure 7: Micro and macro schedulers.

Priorities are assigned as follow. The lowest priority is
assigned to the background applications that run only when
the real-time threads and the interrupt handlers are inac-
tive. The highest priority is given to interrupt handlers and
to the macro scheduler which is considered as the highest
priority interrupt handler (assuming that readInputs and

writeOutputs are short and deterministic). The real-time
tasks, spawned by the macro scheduler, run in a priority
higher than all background application and lower than in-
terrupt handlers.

This priority assignment scheme allows coexistence of real-
time tasks with both non real-time background applications
and interrupt handlers, as follows. For interrupt handlers,
we assume that the added latency can be bounded to al-
low guarantees of real-time tasks completion within allotted
slots. For background application, the scheduler can spawn
less real-time tasks at some times to allow more room for
lower priority tasks (but not too low to disallow performance
guarantee). For example, in Section 6 below, an example is
given where a minimal set of real-time tasks is spawned when
the background load is high and more tasks are spawned
when the background load is low.

Note that our approach is independent of the algorithm
used by the micro scheduler for tasks scheduling, which can
be, e.g., Earliest Deadline First (EDF), Least Slack Time
(LST), rate Monotonic (RM), Deadline Monotonic (DM) or
any scheduling algorithm that allows guarantees of termina-
tion of all tasks before the end of each slot. More gener-
ally, the interface with the micro-scheduled does not have to
be the set of tasks to run in a slot. For example, a micro-
scheduler that allows task graphs to execute in slots can also
fit in our framework. In this case, the alphabets of the au-
tomata are going to be task graphs (partially ordered sets of
tasks) instead of unordered sets. The macro-scheduler will
then compute the language of sequences of task graphs and
delegate a task graph to the micro-scheduler in each slot.

4.4 Dynamic admission
A notable advantage of using automata based scheduling

is that new components can be added without disturbing the
continuous execution of existing ones. Specifically, when a
new component is added, the existing components are as-
sured to continue a schedule which satisfies their scheduling
specifications, but possibly not the one that was planned
(because the new component may not allow the one that
was planned).

As a simple example, consider a component with four
methods f1,f2,f3,f4 that need to execute cyclically (for
all i = 1, 2, . . . and j = 1, 2, 3, 4, the function fj needs to
execute in slot 4i+j). Assume that this component is added
and scheduled for a while. Later on, anther component is
added that has only one method, f, that needs to execute in
all slots. When the second component is added, the count of
the running component should not be disturbed, as shown
in the following figure.

-
{c1.f1}

1∆

-
{c1.f2}

2∆


c2.f
c1.f3

ff
3∆


c2.f
c1.f4

ff
4∆0

-
· · ·

Figure 8: An addition of a component (at time 2∆)
without interrupting the running one.

In RTComposer, macro-scheduling is done by simulating
a random walk over the automaton whose language is the
intersection of all the scheduling specification of the compo-
nents. When a new component is added, we need to start
a random walk over the intersection of the running automa-

ton and the scheduling specifications of the new component.
The new random walk needs to assure that the existing com-
ponents will be scheduled consistently with the current state
of the running automaton.

To provide continuous schedules for the existing compo-
nents, the computation of the new product automaton is
done as a non real-time background computation. Also, the
new product automaton should not always start executing
form its initial state (as the existing components are not
necessarily at their initial state). To account for that, and
still provide quick turnover, a hash-table is constructed that
maps the states of the running automaton to the sates of
the automaton that is going to replace it. Then, when the
computation of product automaton is completed, the state
of the running automaton is replaced with the correspond-
ing state of the new automaton. Removal of components
can done in a similar manner.

5. SCHEDULING REQUIREMENTS
While automata based specifications are rich and intu-

itive, it is often useful to write the specifications in higher
level languages and translate them to Büchi automata auto-
matically. This approach simplifies specifications formula-
tion and allows expressing requirements in a language closer
to the application domain and to the relevant performance
criteria. In this context, Büchi automata can be viewed as
an “assembly” language to which useful specifications com-
pile, as we show below.

public class Translator {

...

void weakPeriodic(String predicate ,

int period ,

int offset ,

int deadline);

void strongPeriodic(String predicate ,

int period ,

int offset ,

int deadline);

void temporalLogic(String formula);

void stability(Matrix [] modes ,

String [] predicates ,

int h,

double rho);

}

Listing 4: A class for translation of other specifica-
tion languages to automata.

Tool support for translation of high level languages to
automata is provided by the class Translator depicted in
Listing 4. The methods of this class are described in the
following subsections.

5.1 Periodic execution
A useful type of specifications for scheduling is the, so

called, periodic task model [20]. With this model, periodic
activities are defined by means of periods, deadlines and

offsets. Examples of specifying periodic constraints using
the functions weakPeriodic and strongPeriodic follow.

• strongPeriodic("p",8,1,5): the method p is invoked
exactly once in slots 8i + 1, . . . , 8i + 6 for every i =
1, 2, . . .

• weakPeriodic("p",5,0,5): the method p must run at
least once in slots 5i, . . . , 5i+ 4 for every i = 1, 2, . . .

• weakPeriodic("p \/ q",1,0,6) : either p or q are
invoked at least once in slots i, . . . , i+ 6 for every i =
1, 2, . . .

• strongPeriodic("p /\ ()q",7,0,0) : p and q are in-
voked at times 7, 14, . . . and 8, 15, . . . , respectively.

Following are some examples that show how such require-
ments are translated to automata. An automaton for the
language strongPeriodic("p",8,1,5) is depicted in Fig-
ure 9 (note the similarity to Tree Communication Sched-
ules [3]).

p p

¬p

¬p
p

¬p

¬p
p

¬p

¬p
p

¬p

¬p

Figure 9: Strong periodic specification.

An automaton for weakPeriodic("p",1,0,6) is depicted
in Figure 10, as an example of weak periodic specification
with deadline longer than period.

p

¬p

p

¬p

p

¬p

p

¬p

p

Figure 10: Weak periodic specification.

Note that strongPeriodic("p /\ ()q",7,0,0) could also
be written as the conjunction of strongPeriodic("p",7,0,0)
and strongPeriodic("q",7,1,1). In general, requirements
can be formed as conjunctions and disjunctions of atomic
specifications. Because requirements are composed using a
translation to automata, no constraints are imposed on pe-
riodicity. Specifically, we do not assume harmonic periods.

5.2 Temporal Logic
Another specification language enabled by our tool, us-

ing GOAL, is the safety fragment of linear temporal logic
(LTL) [11, 22]. Following are some specification patterns
written in temporal logic. The full syntax is described in [31].

• temporalLogic([](p <--> ~q)): at any logical execu-
tion slot, either method p or q execute, but not both.

• temporalLogic([]~(p /\ q)): the methods p and q

should never run in the same logical execution slot.

• temporalLogic([](p --> <-> q)): run p only if q is
invoked in the preceding slot.

• temporalLogic([](p --> q U r)): if p is invoked then
q must run in all slots until r runs.

Temporal logic is an alternative to drawing automata, of-
ten allowing shorter and more intuitive representation.

5.3 Exponential stability
Control software is a specific type of real-time components

where the high level requirements are expressed in terms of
performance statistics such as exponential stability (see e.g.
the case-study described in Section 2, above).

The method Translator.stability is an implementation
of the algorithm given in [32] for translating exponential
stability requirements to automata:

• stability({A1,A2},{"p","~p"},10,.5) : for square
matrices A1 and A2, assuming the dynamics x(t+1) =
Aσ(t)x(t) where

σ(t) =

(
1 if p runs at the tth slot;

2 otherwise,

assure that, for all t, |x(t + 10)/x(t)| < .5 no matter
what x(t) is.

This type of specification is useful when the assignment
of tasks to slot affect the dynamics of a physical system, as
follows.

Assume, for example, that a real-time component is de-
signed to stabilize a physical plant. Let x(1), x(2), . . . be
the states of the system at the beginning of each logical
execution slot. In many cases, the evolution of x can be de-
scribed by the linear switched system x(t + 1) = Aσ(t)x(t)
where σ(t) is a function of the tasks assigned to the tth
slot, modeled by predicates as demonstrated above. Then,
the method Translator.stability can be used to translate
stability requirements to scheduling specifications.

We propose the following recipe for combining our tool
with tools such as Simulink [28]:

1. Design a sampled-data linear switched system with
modes that require excessive computations and other
modes that can be implemented with light computa-
tions.

2. Extract the state-space matrices for the modes (using
e.g. linearize built-in MATLAB script).

3. Generate code for each mode (manually or automat-
ically). Wrap the implementation of each mode by a
method of a class called e.g. Controller.

4. Use Translator.stability to generate an automaton
for class Controller.

6. EXPERIMENTS FOR DYNAMIC CONTROL
PERFORMANCE

To illustrate different scenarios in which performance of
real-time systems can benefit from the flexibility offered by
RTComposer, we describe some illustrative experiments. The
experiments involve applications of the system described in
Section 2, consisting of two software controllers implemented
as real-time components.

For the experiments, software simulations of the controlled
plants are implemented. The simulations run as high prior-
ity interrupt handlers that update the state of the plant,
at high speed, according to its state-space model. These
tasks run independently of RTComposer, interacting with
the controllers using shared memory.

The controllers are design as Linear Quadratic Regulators
(LQR), as described in [2]. The scheduling specification
automata are computed using the Translator.stability

function, described in the preceding section. All reported
data is collected on a machine with AMD Athlon 64 Dual
Core processor running SUN� Java RTS 2.1 on SUSE�
Linux Enterprise Real Time 10 operating system.

6.1 Varying load
As a first experiment, we study the ability of RTComposer

to adjust to varying load conditions. Particularly, referring
to Figure 7, assume that the amount of background compu-
tations vary in time and that we want the macro-scheduler
to adjust to this factor.

Specifically, assume that a parameter γ ∈ [0, 1] is avail-
able to the scheduler that represents the current load in the
system (γ = 1 means high background load, γ = 0 means
no background computations). We want to schedule heav-
ier computations when γ is low and lighter computations
when γ is high, but always assuring the minimal perfor-
mance requirements (i.e. always choosing a schedule within
the language of the product automaton). Note that real-
time threads have priority over background computations,
so it is up to the macro-scheduler to schedule less real-time
computations when the background load is high.

To achieve this requirement, the following execution mech-
anism is used. As said earlier, a random walk is simulated
over the product of all the specifications, but the proba-
bilities of choosing successors are not necessarily uniform.
Specifically, assume that we are in a state with m successors
s1, . . . , sm. For each i = 1, . . . ,m, let ti be the sum of worst
case execution times of the functions that we need to exe-
cute if we choose to step to si, divided by the slot length (i.e.
ti is the fraction of the logical execution slot that is going
to be used if si is chosen to be the next state). Then,the
probability p(i) of choosing si as the next state is given by

p(i) =
γ (1− ti)Pm
j=1 (1− tj)

+
(1− γ)tiPm

j=1 tj
.

Namely, if γ = 1, the probability is (1− ti)/
Pm
j=1 (1− tj)

which means that light computations are more probable.
If γ = 0, the probability is ti/

Pm
j=1 tj which means that

heavy computations are more probable. And, if 0 < γ < 1,
a convex combination of the two probabilities is used.

This scheduling approach allows dynamic adaptation to
time-varying conditions as the macro-scheduler continues its
random-walk simulation with varying probabilities, depend-
ing on the varying values of γ.

The graphs in Figure 11 demonstrate the gain in perfor-
mance obtained by applying the ability of RTComposer to
dynamically allocate resources based on varying conditions.
Specifically, it is apparent that lower values of γ allow better
control performance.

6.2 Platform portability
As a second experiment, we study the benefits of using

RTComposer for implementing platform portability of real-

0

0.1

0.2

100 150 200 250 300

γ = 1
γ = 0

γ = 0.5

Figure 11: Plot of the state of the controlled system
for different values of γ.

time applications. Particularly, we experiment with the abil-
ity of RTComposer to allow better schedules when a faster
platform is used.

Assume, for example, that the system runs on a platform
that executes all functions twice as fast as the reference plat-
form. In that case, the heavy computations of both the con-
trollers can execute in the same execution slot. In particular,
this allows the macro-schedule depicted in Figure 12.


c1.est
c2.est

ff
10ms


c1.est
c2.est

ff
20ms


c1.est
c2.est

ff
30ms


c1.est
c2.est

ff
40ms0

· · ·

Figure 12: A macro-schedule allowed on a fast plat-
form.

Compared to the schedule depicted in Figure 2, this sched-
ule takes advantage of the better platform to deliver best
performance for both control loops.

0

0.1

0.2

50 100 150 200 250 300

fast platform
slow platform

Figure 13: Performance of the controlled loop with
different platforms.

The gain in performance is displayed in Figure 13. Clearly,
when running on the faster platform, RTComposer chooses
a better schedule which is translated to better controller

performance. Note that platform independence can be im-
plemented also without macro-scheduling (by choosing long
enough logical execution slots), but the unique feature of our
approach is that the system performs better with the faster
platform (without re-engineering).

6.3 Dynamic admission control
The last experiment we describe shows how dynamic ad-

mission control allows the scheduler to allocate resources
based on current need and not necessarily as it would allo-
cate them when all components are loaded.

As discussed in Section 4.4, RTComposer supports dy-
namic admission control. A typical use for this mechanism is
when a real-time software is designed for configurable hard-
ware. In this case, one may want to install and remove
software components when the corresponding hardware is
installed or removes, respectively.

0

0.025

0.05

2500 3000 3500 4000

Figure 14: Response to periodic disturbance de-
grades when a new component is added (at time
3300).

Figure 14 depicts the response of the control loop to a
periodic disturbance. It is apparent that the response until
time 3300 is better than the response after this time. This
degradation of performance is due to admission of a second
component that only allows the controller to run estimation
every other slot. The computation of the new automaton,
which is done as a background computation, takes about
half a minute.

This experiment demonstrates the ability of RTComposer
to deliver guaranteed performance while using temporarily
free resources to improve performance, as opposed to apply-
ing a constant schedule that guarantees performance at the
price of worst-case performance all the time.

7. RELATED WORK
Many researchers have identified the lack of composability

as a problem for scalable component-based design and inte-
gration, and offered composable and hierarchical scheduling
frameworks based on the classical periodic task model [10,
23, 24, 27]. For example, [27] proposes the periodic resource
model, where the specification of a component consists of
(T,C) meaning that the component should get C units of
computation every T units of time, and shows how to ab-
stract a set of periodic tasks with EDF or rate-monotonic

scheduling policies into a single periodic resource. While
these efforts address composability, the expressiveness is still
limited to specifying periods for individual components. For-
mal methods literature consists of general frameworks such
as I/O automata [21], fair transition systems [22], and in-
terface automata [8,9,29] for capturing interfaces with well-
developed theories of composition and refinement. Our use
of automata is consistent with such general frameworks, and
can be viewed as “light-weight” instantiation for the specific
purpose of scheduling. The idea of using formal languages
and Büchi automata as an interface to capture the set of ac-
ceptable schedules over the alphabet of task identifiers, was
first advocated in our recent work [2, 32], which shows how
to specify stability of control systems using automata and
how such specifications can be applied for the LQG control
designs.

The Giotto framework provides an abstract programmer’s
model for the implementation of real-time software consist-
ing of periodic tasks and mode-switching logic [13, 14]. To
abstract away from the effects to low-level scheduling deci-
sions, we use the LET semantics for micro-scheduling as ad-
vocated by the Giotto framework. However, our framework
explicitly allows dependence on macro-scheduling decisions,
without sacrificing the potential for rigorous and modular
analysis of possible behaviors of a component.

The Exotasks project offers a Java-based programming
environment for developing real-time components [4]. The
system ensures that the behavior is time-deterministic even
in presence of other Java threads, and the technical focus is
on issues such as memory isolation and fast garbage collec-
tion. Our focus on composable scheduling specifications is
orthogonal, and we wish to explore if the ideas of the two
projects can be integrated in a fruitful way.

Another related work is tools for simulating and analysing
co-design of control and scheduling [7]. TrueTime is a Simulink
based tool for simulating real-time software that execute
controller tasks. Jitterbug is a MATLAB-based analysis
software that relates quadratic performance to delays and
jitters induced by software implementation. Extending these
tool to support automata-based scheduling can be useful to
support the methodology discussed in this paper.

8. CONCLUSIONS AND FUTURE WORK
The tool RTComposer addresses the need of real-time de-

velopers to deliver software components that can be safely
integrated with other applications. Particularly, the tool
provides means for developing real-time applications in Java,
a programming language commonly used for multi-platform
integrated applications.

The tool is based on formal specification of scheduling
constraints with automata. Specifically, each component is
equipped with an automaton specifying which sequences of
executions of its methods allows it to maintain required per-
formance. As established in this paper, this interface allows
a tool that schedules components in a way that adapt to dy-
namic conditions such as varying load, platform capabilities
and components configuration.

The project page of RTComposer is at http://www.seas.
upenn.edu/~gera/RTComposer where the implementation, ex-
amples and further information can be downloaded.

Acknowledgments
This research was partially supported by NSF grants CSR-
EHS 0509143, CNS 0524059, and CPA 0541149.

9. REFERENCES
[1] R. Alur, A. Kanade, and G. Weiss. Ranking automata

and games for prioritized requirements. In Proceedings
of the 20th conference on Computer Aided
Verification, 240–253, 2008.

[2] R. Alur and G. Weiss. Regular specifications of
resource requirements for embedded control software.
In Proceedings of the 14th IEEE Real-time and
Embedded Technology and Applications, 2008.

[3] M. Anand, S. Fischmeister, and I. Lee. Composition
techniques for tree communication schedules. In
Proceedings of the 19th Euromicro Conference on
Real-Time Systems, 235–246, 2007.

[4] J. Auerbach, D. F. Bacon, D. T. Iercan, C. M. Kirsch,
V. T. Rajan, H. Roeck, and R. Trummer. Java takes
flight: time-portable real-time programming with
exotasks. In Proceedings of the conference on
Languages, Compilers, and Tools for Embedded
Systems, 51–62, 2007.

[5] G. Bollella and J. Gosling. The real-time specification
for java. IEEE Computer, 33(6):47–54, 2000.

[6] G. Buttazo. Hard real-time computing systems:
Predictable scheduling algorithms and applications.
Kluwer Academic Publishers, 1997.

[7] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and

K.-E. Årzén. How does control timing affect
performance? IEEE Control Systems Magazine,
23(3):16–30, June 2003.

[8] A. Chakrabarti, L. de Alfaro, T. Henzinger, and
M. Stoelinga. Resource interfaces. In Embedded
Software, 3rd International Conference, 117–133, 2003.

[9] L. de Alfaro and T. Henzinger. Interface automata. In
Proceedings of the 9th Annual Symposium on
Foundations of Software Engineering, 109–120. ACM
Press, 2001.

[10] Z. Deng and J. Liu. Scheduling real-time applications
in an open environment. In Proceedings of the 18th
IEEE Real-Time Systems Symposium, 308–319, 1997.

[11] E. A. Emerson. Alternative semantics for temporal
logics. Theor. Comput. Sci., 26:121–130, 1983.

[12] E. Farcas, C. Farcas, W. Pree, and J. Templ.
Transparent distribution of real-time components
based on logical execution time. In Proceedings of the
conference on Languages, Compilers, and Tools for
Embedded Systems, 31–39, 2005.

[13] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A
time-triggered language for embedded programming.
Proceedings of the IEEE, 91(1):84–99, 2003.

[14] T. Henzinger and C. Kirsch. The embedded machine:
Predictable, portable, real-time code. In Proceedings of
the Conference on Programming Language Design and
Implementation, 315–326, 2002.

[15] T. Henzinger and J. Sifakis. The embedded systems
design challenge. In Proceedings of the 14th
International Symposium on Formal Methods, 1–15,
2006.

[16] T. A. Henzinger, B. Horowitz, and C. M. Kirsch.
Giotto: a time-triggered language for embedded
programming. Proceedings of the IEEE, 91(1):84–99,
2003.

[17] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, 2000.

[18] H. Kopetz and G. Bauer. The time triggered
architecture. Proceedings of the IEEE, 91(1):112–126,
2003.

[19] E. Lee. What’s ahead for embedded software. IEEE
Computer, 18–26, September 2000.

[20] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61, 1973.

[21] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O
automata. Information and Computation,
185(1):105–157, 2003.

[22] Z. Manna and A. Pnueli. The temporal logic of
reactive and concurrent systems: Specification.
Springer-Verlag, 1991.

[23] A. Mok and A. Feng. Towards compositionality in
real-time resource partitioning based on regularity
bounds. In Proceedings of the 22nd IEEE Real-Time
Systems Symposium, 129–138, 2001.

[24] J. Regehr and J. Stankovic. HLS: A framework for
composing soft real-time schedulers. In Proceedings of
the 22nd Real-Time Systems Symposium, 3–14, 2001.

[25] A. Sangiovanni-Vincetelli, L. Carloni, F. D.
Bernardinis, and M. Sgori. Benefits and challenges for
platform-based design. In Proceedings of the 41th
ACM Design Automation Conference, 409–414, 2004.

[26] S. Sastry, J. Sztipanovits, R. Bajcsy, and H. Gill.
Modeling and design of embedded software.
Proceedings of the IEEE, 91(1), 2003.

[27] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model. Trans. on Embedded
Computing Sys., 7(3):1–39, 2008.

[28] http://www.mathworks.com/products/simulink/.

[29] L. Thiele, E. Wanderer, and N. Stoimenov. Real-time
interfaces for composing real-time systems. In
Proceedings of the 6th International Conference on
Embedded Software, 34–43, 2006.

[30] W. Thomas. Automata on infinite objects. In
Handbook of theoretical computer science, Vol. B,
133–191. Elsevier, Amsterdam, 1990.

[31] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and
W.-C. Chan. Goal: A graphical tool for manipulating
büchi automata and temporal formulae. In Proceedings
of the 13th conference on Tools and Algorithms for
Construction and Analysis of Systems, 466–471, 2007.

[32] G. Weiss and R. Alur. Automata based interfaces for
control and scheduling. In Proceedings of the 10th
workshop on Hybrid Systems: Computation and
Control, 2007.

