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ABSTRACT
Bridging the gap between model-based design and platform-
based implementation is one of the critical challenges for
embedded software systems. In the context of embedded
control systems that interact with an environment, a va-
riety of errors due to quantization, delays, and scheduling
policies may generate executable code that does not faith-
fully implement the model-based design. In this paper, we
show that the performance gap between the model-level se-
mantics of proportional-integral-derivative (PID) controllers
and their implementation-level semantics can be rigorously
quantified if the controller implementation is executed on a
predictable time-triggered architecture. Our technical ap-
proach uses lifting techniques for periodic, time-varying lin-
ear systems in order to compute the exact error between
the model semantics and the execution semantics. Explic-
itly computing the impact of the implementation on overall
system performance allows us to compare and partially order
different implementations with various scheduling or timing
characteristics.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and Application-based Systems—Real-time and embedded sys-
tems; C.4 [Computer Systems Organization]: Perfor-
mance of Systems—Modeling techniques, Performance at-
tributes; J.7 [Computer Applications]: Computers in
other Systems—Real time,Command and control
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1. INTRODUCTION
Bridging the gap between high-level modeling or program-

ming abstractions, and implementation platforms is one of
the key challenge for embedded software research [15, 14].
The goal of our research, initiated in a recent paper [19],
is to address this challenge in the context of implementing
feedback control loops by software [7].

Consider a physical plant interacting with a controller
that measures some plant signals and generates appropri-
ate control signals in order to influence the behavior of the
plant. The models of both the plant and the controller have
well-defined timed semantics that can be used for simula-
tion and analysis. Once the controller design is complete,
the designed controller model is typically expressed as a set
of control (usually Matlab) blocks. Each control block is
compiled into an executable code in a host language such as
C, and the control designer specifies a period for the corre-
sponding task. To implement the resulting periodic tasks on
a specific platform, one needs to determine the worst-case-
execution-time for each block, and check whether the task
set is schedulable (c.f. [5, 12]).

While the real-time scheduling based implementation of-
fers a separation of concerns using the abstraction of real-
time tasks with periods and deadlines, it introduces sev-
eral sources of unpredictability. In particular, there are no
guarantees regarding when a control block actually reads its
inputs and when its outputs become available to its environ-
ment, and the order in which the various blocks execute. As
a result, quantifying the error between the timed semantics
of the control blocks and the possible executions of scheduled
tasks, and understanding its impact on the application-level
quality-of-service, remains difficult.



The recent emergence of time-triggered architecture as an
implementation platform for embedded systems offers op-
portunities for a more predictable mapping of control mod-
els [13, 12]. In a time-triggered implementation, instead of
mapping control blocks to periodic tasks, the compiler can
allocate well-defined time slots to control blocks. Given a
mapping of all the control blocks to the time slots, one can
precisely define the trajectories of the implementation and
quantify the error with respect to the model-level semantics.

In our formalization, given a dynamic controller model as
a set of interacting control blocks, we define the controller
implementation on a time-triggered platform using a dis-
patch sequence that gives the order in which the blocks are
repeatedly executed, and a timing function that gives the
number of time slots needed to execute each block. For a
given model of the plant, we can precisely define the seman-
tics of the implementation, and measure its quality by met-
rics, such as the L2-norm, of the discrepancy between the
trajectories of the model and the implementation. Given
linear control plants, proportional-integral-derivative (PID)
controllers, a dispatch sequence, and a timing function, we
model the controller implementation naturally as a periodic
linear time-varying system (PLTV). Compared to our pre-
vious work [19], in this paper we consider more general dy-
namic controllers (PID). This in turn requires us to consider
the error dynamics of the numerical integration and differ-
entiation algorithms in our error computation. Using the
lifting technique for transforming a PLTV to a linear time-
invariant linear system, we can compute the error with re-
spect to the model semantics measured by L2-norms. Since
different implementations correspond to different PLTVs,
this gives us a way of comparing implementations quanti-
tatively, as illustrated via examples in Section 4.

Related Work : Programming abstractions for embed-
ded real-time controllers include synchronous reactive pro-
gramming (languages such as Esterel and Lustre [9, 8]),
and the related Fixed Logical Execution Time (FLET) as-
sumption used in the Giotto project [10]. Research on time-
triggered architecture has focused on achieving clock syn-
chronization, fault tolerance, real-time communication, and
automotive applications (c.f. [12, 13]). The goal of this
research has been ensuring predictable communication be-
tween components. In the context of this paper, time-triggered
platform offers pre-defined time slots for scheduling, and we
study how this can be exploited for predictable execution of
control blocks.

Recently, the problem of generating code from timed and
hybrid automata has been considered in [2, 11, 18], but
the focus has been on choosing the sampling period so as
to avoid errors due to switching and communication. The
work on mapping Simulink blocks to Lustre focuses on sig-
nal dependencies [6]. In [1], relative scheduling as a way
of generating a dispatch sequence for a control model for
soft real-time applications has been explored but it did not
have a framework for quantifying the errors. Many varia-
tions of basic scheduling model have been explored, but the
emphasis is not on quantifying the errors introduced during
mapping control model to the task model. Perhaps the most
related of these efforts is control-aware scheduling [17] and
control-scheduling co-design [3].

There is a rich literature on sampled control systems [4]
along two main approaches. The first approach discretizes
a continuous plant given implementation dependent sam-

pling times, and a controller is designed for the discretized
plant. The second approach starts with a designed contin-
uous controller and focuses on discretizing the controller on
some implementation platform [4]. Even though this is the
spirit of our approach, the resulting error analysis has his-
torically focused on quantifying the errors introduced due to
sampling without paying attention to more detailed models
of implementation platforms that must sequentially execute
multiple control blocks.

2. MODELING
In this section, we model embedded control systems and

provide two different semantics: model-level semantics used
for control design, and implementation-level semantics used
for execution on a time-triggered platform. The goal of this
paper will be to compute a distance between these two se-
mantics, thus providing a measure for the quality of the
implementation.

2.1 Feedback Control Model
Consider a finite set X = {x1, . . . , xn} of plant variables, a

set Y = {y1, . . . , yp} of output variables, a set U = {u1, . . . , um}
of control variables, and a set Z = {z1, . . . , zq} of internal
variables. All variables take values in R. A state over a
set of variables is a mapping from the set of variables to
corresponding values. The set of all possible plant states is
thus R

n, and we obtain similar sets of states for all other
variables.

A feedback control model is a tuple M = 〈MP ,MC〉
consisting of a plant model MP and a controller model MC .
A plant model MP consists of

• A function f : R
n ×R

m → R
n that defines the dynam-

ics of variables xi in terms of the current plant state
and control inputs.

• A function h : R
n → R

p that expresses the observable
output of the plant given the current plant state.

A controller model MC = (BI ,B1, . . . ,Bm), consists of

• A control block BI that describes the function g : R
q ×

R
p → R

q that expresses the dynamics of the internal
variables zi in terms of the current internal variables
and plant outputs.

• A finite set of control blocks (B1, . . . ,Bm), one control
block Bj for every control variable uj ∈ U . Every
control block Bj describes a function

kj : R
p × R

p × R
q × R

j−1 → R

expressing the feedback control law for the control vari-
able uj as a function of observable plant outputs and
their derivatives, internal variables, and other control
variables.

We assume that the dependence among the control variables
is acyclic so that the feedback law for the control variable
uj is a function of the plant outputs and their derivatives,
the internal states, and the control variables u1, . . . , uj−1.

Note that the class of controllers considered by this model
is dynamic due to the existence of the internal variables
zi that have their own dynamics. In addition, the deriva-
tives of the plant outputs are included in the computation
of control blocks Bj . This model captures the widely used



proportional-integral-derivative (PID) controllers as well as
more general observer-based controllers. This is a significant
extension of the class of static controllers considered in our
previous work [19].

2.2 Model Level Semantics
Given a feedback control model M = 〈MP ,MC〉 with

variables X, Y , U , Z, a trajectory for M is a function from
the time domain R≥0 to the set of states over all variables.
Let x(t) = (x1(t), . . . , xn(t)) denote plant trajectories in vec-
tor notation, and, similarly, y(t) = (y1(t), . . . , yp(t)), u(t) =
(u1(t), . . . , um(t)), and z(t) = (z1(t), . . . , zq(t)). Given feed-
back control model M, we denote the continuous-time se-
mantics of the feedback control model by [[M]] and define
[[M]] as the collection of all trajectories (x(t), y(t), u(t), z(t))
that for all t ≥ 0 satisfy the following differential and al-
gebraic constraints modeling the feedback interconnection
between the plant and the controller dynamics:

MP :

��
�

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))
x(0) ∈ R

n
(1)

MC :

�����
����

ż(t) = g(z(t), y(t))
u1(t) = k1(y(t), ẏ(t), z(t))
uj(t) = kj(y(t), ẏ(t), z(t), u1(t), . . . , uj−1(t))

2 ≤ j ≤ m
z(0) = 0

(2)

In this paper, we assume that the feedback composition to
be well-posed, meaning that for any initial plant state x(0)
the above equations have unique solutions. Given x(0), we
denote the unique solution for the continuous-semantics as

(x(t), y(t), u(t), z(t)) = [[M]](x(0)) (3)

The continuous-time semantics is implementation indepen-
dent semantics that is used for the mathematical analysis
and design of controllers that achieve desired performance
specifications of the output trajectories y(t), using a variety
of techniques from control theory. Our goal in this paper
is to quantify the deviation from this ideal semantics when
the controller MC is implemented on a given time-triggered
platform.

2.3 Implementation Level Semantics
The ideal model-level semantics assumes that all control

blocks of controller MC = (BI ,B1, . . . ,Bm) are “computed”
instantaneously and simultaneously. Of course, any soft-
ware implementation of the controller MC will violate both
assumptions. In addition, the continuous-time semantics
assumes that the internal variables, described by the dif-
ferential equation ż(t) = g(z(t), y(t)) of control block BI ,
are ideally integrated, with no error. Clearly, any numerical
method for approximately solving this differential equation
will introduce errors depending on the integration step size.
Moreover, ideal differentiation computation assumed by the
model-level semantics cannot be satisfied by the implemen-
tation, where an approximation algorithm must be used.

As discussed in the introduction, mapping control blocks
to periodic tasks does not allow a mathematically rigorous
execution semantics. Instead, we assume that the imple-
mentation is on a time-triggered platform in which time
can be allotted in fixed-size slots. To model the order in

which the control blocks are executed we consider a dis-
patch sequence ρ, which is an infinite string over the set
{B0,BI ,B1, . . . ,Bm}. Here, B0 is used to model idling from
the viewpoint of the controller (e.g., idling, or allocation of a
time slot to activities other than the computation of control
outputs). Typically, ρ will be periodic, and will be specified
by a finite string that repeats. Each control block is to be
executed without pre-emption, and when one control block
completes its execution, the next block can start immedi-
ately. For example, given a controller MC = (BI ,B1,B2,B3)
with one internal and three control blocks, possible dispatch
sequences are the uniform sequence (BIB1B2B3)

ω or the
nonuniform sequence (BIB1BIB2BIB1BIB3B0)

ω that also in-
cludes idling. Note that a dispatch sequence contains only
ordering information, and is thus independent of the pro-
cessing speed of the platform.

A time-triggered platform provides an atomic time slot of
length δ, and each block is assigned to a fixed number of
such slots. The computation of each control block Bi (or
BI) consists of reading the relevant plant output variables
using sensors, updating the control variable ui (or internal
variables z), and finally writing the computed control value
to the actuators at the end of its allotted time. The com-
putation time of each control block is captured by a timing
function τ : {BI ,B1, . . . ,Bm} → Z

+ which associates to each
control block the number of time slots needed to execute it.
Without loss of generality, we assume τ (B0) = 1.

Informally, given a feedback control model M = 〈MP ,MC〉,
a dispatch sequence ρ, a timing function τ and a time slot
length δ, we can define the implementation semantics as-
sociated with M, denoted as [[M]](ρ,τ,δ), to be the set of
trajectories obtained by executing the control blocks of con-
troller MC according to the dispatch sequence ρ, where the
number of slots of length δ for each control block are chosen
according to the timing function τ .

Formally, to define the implementation semantics, we note
that the dispatch sequence ρ, timing function τ and time
slot length δ result in the following sequence of timing in-
stants ti: t0 = 0 and ti =

�i−1
k=0 τ (ρ(k))δ for i ≥ 1. Ex-

cept for t0, these are the precise timing instants when a
control block completes its computation and its outputs are
updated. In addition, we recursively define the time instants
ΔI(i), where ΔI(0) = 0 and

ΔI(i+ 1) =

�
ΔI(i) + τ (ρ(i))δ if ρ(i) 	= BI

τ (BI)δ if ρ(i) = BI

(4)

in order to model the time elapsed since the last execution of
the integration block BI . Similarly, we define the sequence of
time instants ΔD(i), where ΔD(0) = 0 and j = 1, 2, . . . ,m,

ΔD(i+ 1) =

�
ΔD(i) + τ (ρ(i))δ if ρ(i) ∈ {B0,BI}
τ (Bj)δ if ρ(i) 	∈ {B0,BI} (5)

to model the time elapses between executions of blocks Bj ,
1 ≤ j ≤ m, which are essential to the differentiation compu-
tation. The derivatives of plant outputs y are numerically
computed in the controller and are hold in internal variables
w. The implementation semantics [[M]](ρ,τ,δ) can now be
defined as the collection of trajectories (x(t), y(t), u(t), z(t))
that for all t ≥ 0 satisfy the continuous-time plant dynamics
defined by Eq. (1), and the following controller implemen-
tation constraints for every 1 ≤ j ≤ m and i ≥ 0,



Initialization

z(0) = 0, w(0) = 0, uj(0) = 0 (6)

Inter-sample

z(t) = z(ti), w(t) = w(ti), uj(t) = uj(ti)

for ti < t < ti+1 (7)

Controller Updates

uj(ti+1) =

���
��
uj(ti) if ρ(i) 	= Bj

kj(y(ti), w(ti+1), z(ti),

u1(ti) . . . uj−1(ti)) if ρ(i) = Bj

(8)

Numerical Differentiation

w(ti+1) =

���
��
w(ti) if ρ(i) ∈ {B0,BI}
D(y(ti), y(ti − ΔD(i)),

ΔD(i), w(ti)) if ρ(i) 	∈ {B0,BI}
(9)

Numerical Integration

z(ti+1) =

���
��
z(ti) if ρ(i) 	= BI

G(z(ti), y(ti), z(ti − ΔI(i)),

y(ti − ΔI(i)),ΔI(i)) if ρ(i) = BI

(10)

Implementation constraints (6) capture initialization, con-
straints (7) express the fact that during the execution of any
control block all computed values remain constant, equa-
tion (8) describes the equations for updating the control
variables, (9) represents the numerical computation of the
derivatives of plant outputs, and (10) captures the numeri-
cal scheme for integrating the internal variables when con-
trol block BI is scheduled. The implementation constraints
clearly show that uj(t), z(t), and w(t) are piecewise-constant
signals.

Note that the function G(z(ti), y(ti), z(ti − ΔI(i)), y(ti −
ΔI(i)),ΔI(i)) can be used to model a variety of fixed-step
numerical integration algorithms. Different choices for this
function can model different choices for well known numer-
ical algorithms as shown in Table 1. Euler is a one-step
method, whereas Trapezoid and Adams-Bashforth are two-
step methods that utilize information in two different time
instants in integrating the dynamics of the internal vari-
ables. Higher order methods could easily be modeled at the
expense of more variables, one for each step1. Note that ev-
ery time the integration block BI is executed, the numerical
methods needs to integrate the internal dynamics starting
from the last time block BI was executed. Therefore the
dispatch sequence will have a direct effect on the size of
the integration step ΔI(i) and therefore the quality of the
approximation.

Similarly, the functionD(y(ti), y(ti−ΔD(i)),ΔD(i), w(ti))
can be used to model the numerical computation of the
derivatives of y. Some commonly used algorithms for ap-
proximating the derivatives are
1Note that Runge-Kutta methods, even though popular for
simulation, are problematic for code generation, as they re-
quire evaluations such as g(z(ti+ΔI(i)), y(ti+ΔI(i))), which
in turns requires predicting the sensed input y(ti + ΔI(i))
in the future.

Backward Difference

w(ti+1) =
1

ΔD(i)

�
y(ti) − y(ti − ΔD(i))

�

Tustin’s Approximation

w(ti+1) =
2

ΔD(i)

�
y(ti) − y(ti − ΔD(i))

�− w(ti)

Given x(0), we denote the solutions for the implementation-
semantics as

(x(t), y(t), u(t), z(t)) = [[M]](ρ,τ,δ)(x(0)) (11)

The main goal of this paper is to quantify the quality
of the controller implementation for a particular dispatch
sequence ρ, timing function τ and time slot length δ. Having
defined both the ideal platform-independent semantics, and
the platform-dependent semantics, we can directly define
the error of the implementation as a function of the initial
plant state x(0) simply as

(x(t), y(t), u(t), z(t)) = [[M]](x(0))

(x̃(t), ỹ(t), ũ(t), z̃(t)) = [[M]](ρ,τ,δ)(x(0))

eM(ρ, τ, δ, x(0)) =

	 +∞

0

‖y(t) − ỹ(t)‖2
2dt (12)

We are therefore measuring the implementation error in the
L2 sense. Note that we are measuring the implementation
error on the output variables of the overall closed loop sys-
tem, rather than the error on the controller variables. We
are therefore directly measuring the effect of controller im-
plementation on the performance of the overall feedback in-
terconnection.

Given a feedback control model M and a set of initial
plant statesX0, we will say that the implementation (ρ1, τ1, δ1)
is more accurate than the implementation (ρ2, τ2, δ2) (noted
(ρ1, τ1, δ1) �M (ρ2, τ2, δ2)) if the implementation error of
(ρ1, τ1, δ1) is smaller than the one of (ρ2, τ2, δ2) for all initial
states:

∀x(0) ∈ X0 eM(ρ1, τ1, δ1, x(0)) ≤ eM(ρ2, τ2, δ2, x(0)).
(13)

Note that the relation �M is a preorder on the set of imple-
mentations. The challenge is now to compute the L2 norm
of the implementation error as a function of x(0), given im-
plementation specifics (ρ, τ, δ).

3. ERROR ANALYSIS
In this section we provide a method for the computation of

the implementation error eM(ρ, τ, δ, x(0)) for an important
class of plants and embedded controllers. We assume that
the plant model is a linear, time-invariant (LTI) system:

MP :

���
��
ẋ(t) = Apx(t) +Bpu(t)

y(t) = Cpx(t)

x(0) ∈ R
n

(14)

where Ap ∈ R
n×n, Bp ∈ R

n×m and Cp ∈ R
p×n. We will

also assume that the feedback controller model MC has the



Euler
z(ti+1) = z(ti) + ΔI(i)g(z(ti), y(ti))

Trapezoid

z(ti+1) = z(ti) +
ΔI(i)

2
(g(z(ti), y(ti)) − g(z(ti − ΔI(i)), y(ti − ΔI(i))))

Adams-Bashforth

z(ti+1) = z(ti) +
ΔI(i)

2
(3g(z(ti), y(ti)) − g(z(ti − ΔI(i)), y(ti − ΔI(i))))

Table 1: Function G for some well known numerical integration algorithms

following structure

MC :

���
��
ż(t) = Bcy(t)

u(t) = KP y(t) +KIz(t) +KDẏ(t) + LCu(t)

z(0) = 0

(15)
where BC ∈ R

q×p, KP ∈ R
m×p, KI ∈ R

m×q , and LC ∈
R

m×m. The controller model MC = (BI ,B1, . . .Bm) con-
sists of one control block BI for integrating all the inter-
nal variables zi, and one control block Bi for every variable
ui (i.e. u1 is a linear combination of y1, . . . , yp, z1, . . . , zq ,
dy1/dt, . . . , dyp/dt, and uj is a linear combination of y1, . . . , yp,
z1, . . . , zq, dy1/dt, . . . , dyp/dt and u1, . . . , uj−1). Note that
the assumption that the dependence between control vari-
ables are acyclic implies that LC is a lower triangular matrix.
Since the internal variables zi simply integrate the output
variables yi, we obtain that

u(t) = KP y(t) +KIBc

	 t

0

y(τ )dτ +KD
dy

dt
(t) + LCu(t)

We can thus readily see that the controllers captured in this
class are the so-called proportional-integral-derivative (PID)
controllers.

Without loss of generality and for the sake of simplicity,
we will assume that all the execution of all the control blocks
require the same time. Thus, τ (BI) = 1, and for all 1 ≤ j ≤
m, τ (Bj) = 1, and for all i ≥ 0, ti = iδ. The challenge
is to compute the difference eM(ρ, τ, δ, x(0)) between the
model-semantics and implementation-semantics for the class
of plants and controllers described. Our first result along
this direction is a sampling result that allows us to exactly
compute the implementation error, defined over all t ≥ 0, by
using plant, output, and internal state information on the
timing instants ti.

Theorem 1. There exists a computable, symmetric, pos-
itive semi-definite matrix Q such that the implementation
error defined by equation (12) is equal to

eM(ρ, τ, δ, x(0)) =

i=+∞

i=0

ψ(ti)
TQψ(ti) (16)

where vector ψ(t) is defined as ψ(t) = [x(t) z(t) x̃(t) ũ(t)]T .

Theorem 1 has effectively replaced a continuous integra-
tion with an infinite sum. The computation of matrix Q is
described in the proof in the Appendix. Given Q, what we
need for all ti are the values of x(ti), z(ti) from the model-
level semantics, and the values of x̃(ti) and ũ(ti) from the

implementation level semantics. We will now define two
discrete-time dynamical systems, that will generate these
desired sequences.

Model-Level Semantics
Using equations (14), (15) and notice that ẏ(t) = CP ẋ(t),
the evolution of the closed loop feedback system for the
model-level semantics can be described as :�

ẋ(t)
ż(t)

�
= Â

�
x(t)
z(t)

�
=
�

M(Ap+Bp(I−Lc)−1KP Cp) MBp(I−Lc)−1KI

BcCp 0

� �
x(t)
z(t)

�
(17)

where M =
�
I −Bp(I − Lc)

−1KDCp

�−1
. Given the timing

sequence ti = iδ, we can directly generate the desired se-
quences x(ti), z(ti) by considering successive iterations of
the following discrete-time, linear, time-invariant system:

x(ti+1)
z(ti+1)

�
= E


x(ti)
z(ti)

�
x(t0) = x(0) z(t0) = 0 (18)

where E = eδÂ is simply the matrix exponential of δÂ.
Thanks to Theorem 1, the model level semantics that are
relevant for the computation of the implementation error
are all captured in model (18).

Implementation-Level Semantics
Our goal is now to develop a similar discrete-time model for
the implementation semantics. The main idea is that the
execution of any particular control block can be modeled
as a discrete-time linear system. However, as the dispatch
sequence switches control blocks, this results in a switch-
ing discrete-time linear system. Furthermore, since the se-
quence of executions of the control blocks is periodic, the
implementation semantics will be captured by a periodic,
linear, time-varying (PLTV) system.

Differentiation Computation
Since each control variable uj depends on the derivatives
ẏ(t) of plant outputs, we assume that in the execution of
each control block Bj , the derivatives ˙̃y(ti) = w̃(ti+1) are
numerically computed and are then used in updating con-
trol variable uj . Because in general, the numerical differen-
tiation algorithm requires the old values ỹ(ti − ΔD(ti)), we
extend the system by adding the memory variables ỹm(ti) =
ỹ(ti−ΔD(ti)) which capture the needed information for the
differentiation computation at ti. Consider the computation



of control block ρ(i) in time interval [ti, ti+1]. If ρ(i) = B0 or
ρ(i) = BI , the values of variables w̃ and ỹm are not changed,
that is w̃(ti+1) = w̃(ti) and ỹm(ti+1) = ỹm(ti). On the other
hand, in the execution of control block Bj , 1 ≤ j ≤ m, the
values of ỹ(ti) are saved to the memory variables ỹm, that
is ỹm(ti+1) = ỹ(ti) = CP x̃(ti), and the variables w̃ are up-
dated according to the chosen algorithm for differentiation
computation:

Backward Difference

w̃(ti+1) = 1
ΔD(i)

(CP x̃(ti) − ỹm(ti)) (19)

Tustin’s Approximation

w̃(ti+1) = 2
ΔD(i)

(CP x̃(ti) − ỹm(ti)) − w̃(ti) (20)

Modeling integration block BI

Let us consider the evolution of the implementation seman-
tics when integration block BI is executed. Since the exe-
cution of BI does not change the control variables, we have
that ũ(ti+1) = ũ(ti). On the time interval [ti, ti+1], the
plant evolves continuously according to equation (34). By
integration we thus obtain that

x̃(ti+1) = eδAp x̃(ti) + αp(δ)ũ(ti) (21)

where αp(δ) =
� δ

0
eApτBp dτ , which reduces to αp(δ) =

(eδAp − I)A−1
p Bp if Ap is invertible. Since BI is the inte-

gration block, the evolution of the internal variables zi is
captured by the equations describing the numerical algo-
rithm that integrates the equations (15). Since the Trape-
zoid and Adams-Bashforth methods are two-step methods
that depend on ỹ(ti − ΔI(i)), we can extend the system so
that all the relevant information is available at ti by defining
the memory variables z̃m(ti) = ỹ(ti −ΔI(i)). Recalling that
ỹ(ti) = Cpx̃(ti), we obtain following discrete-time models
for the numerical integrators above

Euler

z̃(ti+1) = z̃(ti) + ΔI(i)BcCpx̃(ti) (22)

Trapezoid

z̃(ti+1) = z̃(ti) + ΔI (i)
2

Bc(Cpx̃(ti) + z̃m(ti)) (23)

z̃m(ti+1) = Cpx̃(ti) (24)

Adams-Bashforth

z̃(ti+1) = z̃(ti) + ΔI (i)
2

Bc(Cp3x̃(ti) − z̃m(ti)) (25)

z̃m(ti+1) = Cpx̃(ti) (26)

Note that more precise, higher order (multi-step) methods
can be easily considered by using more memory variables.

Let us define the vector

ϑ̃(t) =
�
x̃(t) z̃(t) z̃m(t) w̃(t) ỹm(t) ũ(t)

�T
which consists the variables of the implementation seman-
tics. Collecting all the above equations allows us to con-
struct a discrete-time linear system that models the evo-
lution of the implementation when the integration block is
executed. For example, for the two-step Adams-Bashforth

scheme, the discrete-time model is

ϑ̃(ti+1) = EBI (i)ϑ̃(ti) =

�
���

eδAp 0 0 0 0 αp(δ)
3ΔI (i)

2 BcCp I −ΔI(i)
2 Bc 0 0 0

Cp 0 0 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

�
��� ϑ̃(ti)

(27)
Note that matrix EBI (i) is not fixed but depends on ΔI(i).
However, since we assume that ρ is periodic, ΔI(i) is pe-
riodic after the first period of the dispatch sequence. For
Euler, Trapezoid and other numerical schemes we can ob-
tain similar discrete-time models. Note that for the first or-
der Euler method, there is no need for the extended z̃m(ti)
variables.

Modeling idle block B0

The execution of the idle block B0 does not affect either
the internal or control variables. Therefore we have that
ũ(ti+1) = ũ(ti), w̃(ti+1) = w̃(ti), ỹm(ti+1) = ỹm(ti), z̃(ti+1) =
z̃(ti), and z̃m(ti+1) = z̃m(ti) in case a higher order integra-
tion method is used. On the time interval [ti, ti+1], the plant
still evolves continuously according to equation (21). There-
fore, the value of the variables are modified by the execution
of the control block B0 according to the following discrete-
time system

ϑ̃(ti+1) = EB0ϑ̃(ti) =

�
��

eδAp 0 0 0 0 αp(δ)
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

�
�� ϑ̃(ti) (28)

Note that unlike matrix EBI , matrix EB0 is fixed.

Modeling control blocks Bj

Let us now consider the control block Bj , 1 ≤ j ≤ m, ex-
ecuted during the time interval [ti, ti+1]. Clearly z̃(ti+1) =
z̃(ti), and z̃m(ti+1) = z̃m(ti) in case a higher order method
is used. For k 	= j, the execution of Bj does not modify the
value of the variable ũk. Thus, the value of the variable ũj

is updated according to

ũk(ti+1) = ũk(ti), if k 	= j

ũj(ti+1) = [KP ]jCpx̃(ti) + [KI ]j z̃(ti) + [KD]jw̃(ti+1)

+ [LC ]j ũ(ti)

where [KC ]j , [KI ]j , [KD]j and [LC ]j denote the jth rows
of matrices KC , KI , KD and LC respectively. Note that
ũj(ti+1) depends on w̃(ti+1) which is computed from cur-
rent values at instant ti by some formula determined by the
differentiation algorithm. For example, for the Tustin’s Ap-
proximation method (Eq. (20)), ũj(ti+1) can be written as

ũj(ti+1) =
�
[KP ]j + 2

ΔD(i)
[KD]j

�
Cpx̃(ti) + [KI ]j z̃(ti)

− [KD]jw̃(ti) − 2
ΔD(i)

[KD]j ỹm(ti) + [Lc]j ũ(ti)

Let Uj(i) be the matrix whose rows [Uj(i)]k are 0 if k 	= j and
[Uj(i)]j is the coefficient of x̃(ti) in the equation of ũj(ti+1).
Note that Uj(i) depends on ΔD(i) and the differentiation
method used. Similarly let Vj be the constant matrix whose
rows [Vj ]k are 0 if k 	= j and [Vj ]j = [KI ]j , matrix Wj(i) be
the matrix whose rows [Wj(i)]k are 0 if k 	= j and [Wj(i)]j is
the coefficient of w̃(ti) in the equation of ũj(ti+1), Xj(i) be
the matrix whose rows [Xj(i)]k are 0 if k 	= j and [Xj(i)]j
is the coefficient of ỹm(ti), and Yj be the matrix such that



[Yj ]k are 0 if k 	= j and [Yj ]j = [LC ]j . Also, let Zj be the
matrix whose coefficients are all zero except the jth element
of its diagonal [Zj ]j,j = −1. Then,

ũ(ti+1) = Uj(i)x̃(ti) + Vj z̃(ti) +Wj(i)w̃(ti)

+Xj(i)ỹm(ti) + (I + Yj + Zj)ũ(ti)

Thus, the value of the variables are modified by the exe-
cution of the control block Bj according to the following
discrete-time system:

ϑ̃(ti+1) = EBj (i)ϑ̃(ti)

=

�
���

eδAp 0 0 0 0 αp(δ)
0 I 0 0 0 0
0 0 I 0 0 0

2
ΔD(i) Cp 0 0 −I − 2

ΔD(i) I 0

Cp 0 0 0 0 0

Uj(i) Vj 0 Wj (i) Xj(i) I+Yj+Zj

�
��� ϑ̃(ti)

for the Tustin’s Approximation method. Note that for i =
0, ΔD(0) = 0 and 1

ΔD(0)
is replaced by 1

ΔD(0)
= 0. Also

observe that like matrix EBI (i), matrix EBj (i) is not fixed
but periodic after the first period of the dispatch sequence.

From dispatch sequences to PLTV systems
Let us consider a dispatch sequence ρ defining the order in
which the control blocks have to be executed. The sequences
x̃(ti), z̃(ti), z̃m(ti), w̃(ti), ỹm(ti), and ũ(ti), for i ≥ 0, can
be determined from the following discrete-time dynamical
system:

ϑ̃(ti+1) = E(i)ϑ̃(ti) (29)

where E(i) = Eρ(i)(i) when ρ(i) 	= BI , and E(i) = EBI (i)
when ρ(i) = BI . Therefore the implementation values at
instants ti are captured by a discrete-time linear system that
is time-varying. Furthermore, since we assume that ρ is
periodic (let nρ denote its period), this dynamical system is
a PLTV system.

3.1 Error Computation
Having modeled both the model-level and implementation

level semantics at the instants ti, we define a system which
describes both the discretized model-level semantics and the
discrete-time implementation level semantics. Its state is the
vector ψ̄(t) defined as

ψ̄(t) = [x(t) z(t) x̃(t) z̃(t) z̃m(t) w̃(t) ỹm(t) ũ(t)] .

Then,

ψ̄(ti+1) = Ē(i) ψ̄(ti) =


E 0
0 E(i)

�
ψ̄(ti) (30)

Note that Ē(i) is periodic after the first period of the dis-
patch sequence. Thus the composite system is also a PLTV
system of period nρ. Using so-called lifting techniques for
the analysis of PLTV systems (see for instance [16]), which
transform a periodic time-varying system into a higher order
linear time-invariant system, we can state the main result of
this paper.

Theorem 2. The implementation error is exactly equal
to

eM(ρ, τ, δ, x(0)) = x(0)THT ÔHx(0) (31)

where H =
�
I 0 I 0 0 0 0 0

�T
, and Ô, O are so-

lutions to the following nested matrix Lyapunov equations

Ô = ĜT
0 Q̂Ĝ0 + ÊT

0 OÊ0 (32)

O = ÊTOÊ + ĜT Q̂Ĝ. (33)

for implementation-dependent matrices Ê0, Ĝ0, Ê, Ĝ, Q̂
(see proof in Appendix).

Theorem 2 states that the implementation error can be
computed exactly for this class of systems and controllers,
and furthermore, the L2-norm error is a global quadratic
function of the initial state x0. Algorithmically, the con-
struction of the implementation-dependent matrices Ê0, Ĝ0,
Ê, Ĝ, Q̂ requires straightforward matrix operations (sums,
products, exponentiation) on matrices E and E(i) in (30),
whereas solving Lyapunov equations is polynomial in the
size of the matrices. The largest matrices in Theorem 2 are
matrices Ĝ and Ĝ0 which have nρ × (2n+5p+m) rows and
2n+ 5p+m columns.

Theorem 2 provides a criterion for comparing two different
time-triggered implementations of an embedded controller.
Let M be a feedback control model, and let (ρ1, τ1, δ1) and
(ρ2, τ2, δ2) be two implementations. Then, from Theorem 2,
there exist two symmetric matrices O1 and O2 such that for
all x(0) ∈ R

n,

eM(ρ1, τ1, δ1, x(0)) = x(0)THT Ô1Hx(0)

eM(ρ2, τ2, δ2, x(0)) = x(0)THT Ô2Hx(0)

Given a set of initial states X0, we have (ρ1, τ1, δ1) �M
(ρ2, τ2, δ2) if for all x(0) ∈ X0 we have that x(0)THT Ô1Hx(0) ≤
x(0)THT Ô2Hx(0) or equivalently 0 ≤ x(0)THT (Ô2−Ô1)Hx(0).
This is equivalent to checking whether

min
x(0)∈X0

x(0)THT (Ô2 − Ô1)Hx(0) ≥ 0.

If X0 is a convex polytope (or more general convex set),
then this can be performed using convex programming. On
the other hand, if X0 = R

n, then checking whether 0 ≤
x(0)THT (Ô2−Ô1)Hx(0) for all x(0) ∈ R

n reduces toHT (Ô2−
Ô1)H being a positive semi-definite matrix.

4. COMPUTATIONAL EXAMPLE
Our method has been implemented in Matlab/Simulink

to automate the computation of the implementation errors
and to simulate the time-triggered implementation consid-
ered in this paper. Given M = 〈MP ,MC〉 and implemen-
tation specifics (ρ, τ, δ), for a particular initial state x(0), we
can simulate the Simulink model shown in Figure 1 in order
to visualize the discrepancies between the output variables
y(t) and ỹ(t). We now illustrate the performance of various
implementations for control system�

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

�
=

−1020 −156.3 0 0
128 0 0 0
0 0 −10.2 −2.002
0 0 1 0

�� x1(t)
x2(t)
x3(t)
x4(t)

�
+


8 0
0 0
0 0.5
0 0

� �
u1(t)
u2(t)

�
�

y1(t)
y2(t)

�
= [ 0 4.8828 0 0

0 0 0 0.4 ]

�
x1(t)
x2(t)
x3(t)
x4(t)

�

Note that the plant consists of two separate subsystems,
one subsystem (captured by variables x1, x2) being much
faster than another (captured by variables x3, x4). The



Figure 1: Simulink Model For Error Computation

PID controller that has been designed for this plant is�
u1(t)
u2(t)

�
= KP

�
y1(t)
y2(t)

�
+KI

� � t
0 y1(τ)dτ
� t
0 y2(τ)dτ

�
+KD

�
dy1(t)/dt
dy2(t)/dt

�
where

KP =
�−116 0

0 −250

�
KI =

�−480 0
0 −30

�
KD =

�−0.2 0
0 −20

�
Control variable u1 regulates the faster subsystem, whereas
u2 regulates the slower subsystem. For initial state x1(0) =
x2(0) = x3(0) = x4(0) = 2, Table 2 summarizes the im-
plementation errors for various dispatch sequences and dif-
ferent numerical integration and differentiation algorithms.
For comparison, we include in Table 2 the corresponding
results for a PI controller with the same parameters KP

and KI . Figure 2 shows the evolution of output y1(t) for
various implementation choices. From Table 2, it is observ-
able that the implementation errors for the PI controller are
generally less than the corresponding errors for the PID con-
troller. This shows the effect of the derivative part on the
performance of the software implementation. Though the
ideal closed loop system is stable, implementation (ρ1, τ1, δ1)
destabilizes the plant (for the PI controller), or produces a
large error (for the PID controller). By using a better nu-
merical integration algorithm, (ρ2, τ2, δ2) avoids instability
and reduces the implementation error. It is worth noting
that scheduling can have great effect on the overall perfor-
mance of the system, as clearly illustrated when compar-
ing implementations (ρ1, τ1, δ1), (ρ3, τ3, δ3), (ρ4, τ4, δ4), and
(ρ5, τ5, δ5). With the same numerical integration and dif-
ferentiation methods and the same time slot length δ, but
a slight change in the dispatch sequence, implementation
(ρ3, τ3, δ3) outperforms (ρ1, τ1, δ1). Moreover, for the PID
controller case, it produces a smaller error than those of
other implementations, even those on much faster platforms.
Implementation (ρ4, τ4, δ4) destabilizes the plant with the
PID controller while, by allocating more time slots to control
block B1, implementation (ρ5, τ5, δ5) destabilizes the plant
with the PI controller but greatly improves the performance
when the PID controller is used. The above observations
show that the performance of a controller can be consider-
ably increased without changing the platform, however care
should be taken when choosing the dispatch sequence. Fur-
thermore, even on a slightly faster computer, the perfor-
mance of (ρ7, τ7, δ7) may be worse than (ρ6, τ6, δ6) execut-
ing on a slower computer but with better dispatch sequence.
Nonetheless for sufficiently faster platform (ρ8, τ8, δ8), the
performance is improved greatly.
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Figure 2: Plots of y1 for the ideal semantics [[M]]

(top), and implementations [[M]](ρ1,τ1,δ1) (second to top),

[[M]](ρ7,τ7,δ7) (second to bottom), [[M]](ρ3,τ3,δ3) (bottom).

5. CONCLUSIONS
In this paper, we continue our efforts aimed at under-

standing and quantifying the gap between model-level timed
semantics of embedded controllers and their implementation
on time-triggered platforms. For linear plant models and dy-
namic PID controllers, we have presented a method to ex-
actly compute the L2-error of the deviation of the output of
the plant in the implementation semantics from the output
of the plant in the continuous time semantics. This method
gives a criterion to compare different implementations.

Future research includes the extension of our framework
to larger classes of plant models, including nonlinear and hy-
brid systems, as well as more general nonlinear controllers.
Whereas exact computation of the error may not be feasible
in these general settings, computable error bounds for ap-
propriate norms will still enable the comparison of different
implementations. Finally, our approach may enable us to
develop a scheduling framework on time-triggered platforms
in order to reduce implementation error, while potentially
achieving a decomposition between dispatch sequences and
timing functions.
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APPENDIX

Proof of Theorem 1. First, note that eM(ρ, τ, δ, x(0)) =�i=+∞
i=0 Ii where Ii =

� ti+1
ti

‖ (y(t) − ỹ(t)) ‖2
2 dt. On the in-

terval [ti, ti+1), the evolution of the closed loop system for
the model-level, continuous time semantics can be described
by the differential equations (17). For the implementation,
on the same interval [ti, ti+1), the input ũ(t) = ũ(ti) since
the computed control stays constant until the next compu-
tation, and therefore the evolution of the implementation
semantics is given by

˙̃x(t) = Apx̃(t) +Bpũ(ti). (34)

We now define the following system with output variable
ye(t) = y(t) − ỹ(t)�

�ẋ(t)ż(t)
˙̃x(t)

�
� =


Â 0
0 Ap

���x(t)z(t)
x̃(t)

�
�+


0
Bp

�
ũ(ti)

ye(t) =
�
Cp 0 −Cp

� ��x(t)z(t)
x̃(t)

�
�

Letting ϕ(t) =


x(t)
z(t)
x̃(t)

�
, the above equation is a linear sys-

tem with constant input ũ(ti), having the form�
ϕ̇(t) = Aϕ(t) +Bũ(ti),
ye(t) = Cϕ(t)

(35)

By explicitly solving the differential equation, we obtain

ye(t) = C


eA(t−ti)ϕ(ti) +

	 t

ti

eA(t−τ)B dτ ũ(ti)

�

The integral term can be written as	 t

ti

eA(t−τ)B dτ =

	 t−ti

0

eAτB dτ = α(t− ti)



where α(·) is a matrix-valued function mapping t ∈ R to a

matrix α(t) ∈ R
(2n+p)×m. On the interval [ti, ti+1], we can

check that

Ii =

	 ti+1

ti

‖(y(t) − ỹ(t))‖2
2 dt =

	 ti+1

ti

ye(t)
T ye(t) dt

= ϕ(ti)
T

�	 δ

0

eAT tCTCeAt dt

�
ϕ(ti)

+ ϕ(ti)
T

�	 δ

0

eAT tCTCα(t) dt

�
ũ(ti)

+ ũ(ti)
T

�	 δ

0

α(t)TCTCeAt dt

�
ϕ(ti)

+ ũ(ti)
T

�	 δ

0

α(t)TCTCα(t) dt

�
ũ(ti)

(36)

Let us define the following matrices

Q1,1 =
� δ

0
eAT tCTCeAt dt

Q1,2 = QT
2,1 =

� δ

0
eAT tCTCα(t) dt

Q2,2 =
� δ

0
α(t)TCTCα(t) dt

Then, we have

Ii =

�
���
x(ti)
z(ti)
x̃(ti)
ũ(ti)

�
���

T 
Q1,1 Q1,2

Q2,1 Q2,2

�����
x(ti)
z(ti)
x̃(ti)
ũ(ti)

�
��� = ψ(ti)

TQψ(ti) (37)

Note that matrix Q is constant and computable. In case
matrix A is invertible, it is straightforward to see that α(t) =�
eAt − I

�
A−1B.

The desired result is directly obtained from (37).

Proof of Theorem 2. Consider the following matrices

Ê0 = Ē(nρ − 1)Ē(nρ − 2) . . . Ē(1)Ē(0) (38)

Ĝ0 =

�
������

I
Ē(0)

Ē(1)Ē(0)
...

Ē(nρ − 2) . . . Ē(0)

�
������ (39)

Ê = Ē(2nρ − 1)Ē(2nρ − 2) . . . Ē(nρ + 1)Ē(nρ) (40)

Ĝ =

�
������

I
Ē(nρ)

Ē(nρ + 1)Ē(nρ)
...

Ē(2nρ − 2) . . . Ē(nρ)

�
������ (41)

Then, we have,�������
������

ψ̄(tnρ) = Ê0 ψ̄(0)

�
��

ψ̄(0)
...

ψ̄(tnρ−1)

�
�� = Ĝ0 ψ̄(0)

(42)

and for all l ≥ 1,�������
������

ψ̄(t(l+1)nρ) = Ê ψ̄(tlnρ)

�
��

ψ̄(tlnρ)
...

ψ̄(tlnρ+nρ−1)

�
�� = Ĝ ψ̄(tlnρ)

(43)

Note that we can write vector ψ(t), defined in Theorem 1,
as ψ(t) = Fψ̄(t) where

F =

�
���
I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 I

�
��� .

We define the block diagonal matrix Q̂ composed of nρ

blocks equal to F TQF where matrix Q is given by Theo-
rem 1: �

��
F TQF

. . .

F TQF

�
�� .

From Theorem 1, we have

eM(ρ, τ, δ, x(0)) =

l=+∞

l=0

i=lnρ+nρ−1

i=lnρ

ψ(ti)
TQ ψ(ti)

=

l=+∞

l=0

i=lnρ+nρ−1

i=lnρ

ψ̄(ti)
TF TQ Fψ̄(ti)

= ψ̄(0)T ĜT
0 Q̂Ĝ0 ψ̄(0)

+
l=+∞


l=1

ψ̄(tlnρ)T ĜT Q̂Ĝ ψ̄(tlnρ)

= ψ̄(0)T ĜT
0 Q̂Ĝ0 ψ̄(0)

+ ψ̄(0)TÊT
0

�
l=+∞


l=0

(Êl)T ĜT Q̂ĜÊl

 
Ê0ψ̄(0)

= ψ̄(0)T
�
ĜT

0 Q̂Ĝ0 + ÊT
0 OÊ0

�
ψ̄(0)

= ψ̄(0)T Ô ψ̄(0)

where

O =
l=+∞


l=0

(Êl)T ĜT Q̂Ĝ Êl

From the theory of LTI systems O is the solution of the
Lyapunov equation (33). Moreover, from the continuous
time and the implementation semantics, we have ψ̄(0) =
Hx(0).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


