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ABSTRACT
Embedded devices like smart cards can now run multiple inter-
acting applications. A particular challenge in this domain is to
dynamically integrate diverse security policies. In this paper we
show how a framework based on a concise formal model lets us
securely customize a payment card equipped with a programmable
chip. We present policy automata, a formal model of computations
that grant or deny access to a resource. This model combines de-
feasible logic with state machines, representing complex policies as
combinations of simpler modular policies. We use the model in a
framework for specifying, merging and analyzing modular policies.
This framework is implemented as Polaris, a tool which analyzes
policy automata to reveal potential conflicts or redundancies, and
compiles automata into Java Card applets.

Categories and Subject Descriptors: C.3 [Computer Systems Or-
ganization]: Special-Purpose and Application-Based Systems real-
time and embedded systems, smartcards; D.2.4 [Software Engi-
neering]: Software/Program Verification formal methods; model
checking; D.2.11 [Software Engineering]: Software Architectures
domain-specific architectures; languages (e.g., description, inter-
connection, definition); F.4.3 [Mathematical Logic and Formal Lan-
guages]: Formal Languages

General Terms: Design, Theory, Verification

Keywords: Policy Integration, Model Based design, Smartcards,
Java Cards
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1. INTRODUCTION
Embedded computer systems are now routinely deployed in a

wide range of engineered products such as appliances, medical
devices, communication devices, and automobiles. Increasingly,
embedded devices, such as smart cards and cell phones, are pro-
grammable, and offer an open application programming interface
(API) for software applications. While this offers the user the much
coveted flexibility to customize and enhance functionality, it un-
derscores the need for formal assurances about system operation
as many embedded devices are used in safety-critical and security-
critical contexts. We believe that the model-based design paradigm,
with its promise for greater design automation and formal guaran-
tees of reliability, is particularly relevant for this purpose. In this
paper, we describe a model-based approach to adding policies to
payment cards.

Smart cards are plastic cards, usually no larger than a credit card,
that contain a tamper-resistant embedded processor. They are com-
monly used for identification, payment, and access control. Java
Cards are programmable smart cards with an API that supports
a restricted subset of Java (see java.sun.com/products/
javacard). The GlobalPlatform architecture provides an exten-
sion framework for these cards, allowing installation of certified ap-
plets that run in restricted contexts or security domains (see www.
globalplatform.org). This enabling technology, together
with the obvious need for assurances of security and integrity for
downloading applications on such cards, prompted us to explore
formal and model-based development.

We focus on a specific form of programs called policies. A pol-
icy specifies whether or not a transaction should be approved, pos-
sibly based on the history of transactions. Sample policies are “the
total amount of money spent during the past month should not ex-
ceed a specified limit,” and “transactions involving a specified list
of emergency services are always allowed.” These policies can be
written by multiple parties, and installed at any time. While this of-
fers flexibility, it is necessary to detect and resolve conflicts among
different policies. Also, a new policy needs to be integrated with
existing policies, possibly with checks for redundancy since on-
card memory is limited.



We therefore need to solve the following problem: how can we
create and integrate modular security policies securely and reliably
in such a way that the policies can function in an embedded envi-
ronment?

The Java Card platform gives us the basic ability to combine
policies which are implemented as applets written in Java. We
could simply write our policies in Java and use existing Java-specific
tools (for example, Java editors, type-checkers and model-checkers)
to assure ourselves that our policies will behave as intended. This
is unsatisfactory for the following reasons:

� A policy developer should concentrate on the core function-
ality of a policy—guarding access to a resource—instead of
worrying about the byte-level manipulations and system calls
required by the Java Card. Developers should work with a
more abstract representation of policies.

� General purpose Java tools cannot exploit domain-specific
knowledge to make validating a policy more efficient. Nor
are general purpose tools aware of the specific problems that
a policy developer is concerned with.

Our solution is a model-based approach in which we use a new
formal model, policy automata, to define and reason about our se-
curity policies. This formal model concisely expresses the behav-
ior with which we are concerned, while leaving other functionality
to be supplied by an automatic code generator. This focus on ac-
cess control and policy integration allows the developer to concen-
trate on correctly implementing the core functionality of an applet.
Similarly, analysis tools can be optimized to check domain-specific
properties. A clear formal semantics makes it easier to reason about
the behavior of a policy. This approach therefore retains the ability
to integrate modular policies, but it allows us to do so securely and
reliably. Finally, the model is designed so that policies can easily
be translated from a formal notation to Java Card applets, so the
model is suitable for embedded devices.

A policy automaton is an extended finite-state machine that ex-
amines the requested transaction and votes on whether it should
be accepted. Votes are written as rules in defeasible logic that es-
sentially say which outcome the policy automaton prefers and how
strong that preference is. The domain of votes is also equipped
with a decision rule that combines the votes of all the policy au-
tomata and determines whether to approve the transaction, reject it,
or declare a conflict. The individual policy automata update their
states based on this global resolution. Using this framework one
can specify policies in a modular fashion. Note that the constraints
imposed by these policies are non-monotonic (as policies are added
approval of a transaction can switch from yes to no and back to
yes), and stateful (approval of a transaction depends on decisions
on previous transactions). We show that static techniques such as
model checking can be used to detect potential conflicts among a
set of policy automata, and also to check whether a new policy is
redundant with respect to a set of existing policy automata. Our
policy description framework is relevant in other contexts such as
firewall policies, where multiple parties wish to independently add
rules governing approval of access requests.

After presenting our policy description language, we describe a
prototype implementation of our approach in the tool Polaris. Po-
laris provides a graphical editor for specifying policies as extended
state machines, and an enumerative reachability checker to detect
conflicts and redundancy. We have modified the development kit
from Oberthur Card Systems that allows us to install applets onto
Java cards. To install a policy onto the card, Polaris compiles a
policy automaton into a Java package, installs it on the card, and
registers the new policy with the manager routine that polls all the
registered policies before deciding on a transaction. We believe that
this architecture for dynamically adding policies to a Java card is
an advance in the state-of-the-art for smart card technology.

The paper is organized as follows. Section 2 discusses the con-
flicts that arise when policies are merged and how this behavior
can be modeled. Section 3 introduces our target application, pro-
grammable payment cards, and discusses the technology that makes
such cards possible. Section 4 presents our formal model. Sec-
tion 5 discusses our prototype tool for working with policy au-
tomata. Section 6 summarizes our contribution and discusses re-
lated and future work.

2. POLICY MERGING AND CONFLICTS
A common task for computer systems is to guard access to a

resource. The policy that is used to grant or deny access is often
based on a diverse set of criteria, possibly representing the inter-
ests of many different stakeholders. Describing such a policy as a
combination of sub-policies may aid a developer by allowing her
to focus on one piece of a policy at a time. However, when the
individual policies are combined there is potential for conflicts or
other interactions that make the combined policy inappropriate for
its intended purpose.

Consider three policies regarding the use of a swimming pool.
Each policy represents the interests of a separate stakeholder:

��� �
is

the policy put in place by the lifeguard,
���

is the policy put in place
by the business administrators of the pool, and

���
is the policy put

in place by the pool cleaner.�	� �
In an emergency no one except the lifeguard can enter the pool.

The lifeguard can always enter the pool. No more than 30
people should be in the pool at one time.���

Nobody but the owner can enter the pool between 5pm and
9am.� �

When 100 people have used the pool, it should be closed and
cleaned.

The policies are simple to understand and are modular in the
sense that each is solely concerned with the interests of the respec-
tive stakeholder. However, the policies contain potential conflicts.
For example, can the lifeguard enter the pool at 6pm? A model-
based approach to designing and implementing such policies will
need some mechanism to reason about conflicts among stakehold-
ers’ interests.

Non-monotonic logics[5] are a family of logics in which new in-
formation may lead to previously valid conclusions being retracted.



These logics are partially motivated by a desire to capture real
world common-sense reasoning. For example, if we are told that
Tweety is a bird we may tentatively conclude that Tweety can fly.
However, if we later learn that Tweety is a penguin we will be
forced retract our conclusion. Non-monotonic logics are one pos-
sible tool for representing and analyzing the kind of conflicting
swimming pool policies we see above. We can encode a rule such
as “no one can enter the pool after 5pm” by marking it a tentative
rule, possibly overridden if we learn more information—for exam-
ple, the lifeguard needs to enter the pool because of an emergency.

The policies described above also have features that are more
naturally represented as a reactive system. The decision to admit
a swimmer depends on the previous events at the pool. Imagine
a gatekeeper at the pool who has to decide when to let people in.
If the gatekeeper cannot see the pool from where she sits she will
have to keep track of how many people have entered and left the
pool in order to keep the number of people in the pool below 31
(to satisfy the lifeguard) and to stop admitting people when 100
people have used the pool (so that the pool can be cleaned). So our
model must have some notion of storing information and making
decisions based on the history of past events.

Embedded devices like smart cards have minimal space for stor-
ing information so it is undesirable to maintain a complete history
of past transactions. However, we do not want to arbitrarily restrict
what information can be used to make access control decisions; we
should record exactly the minimal amount of information needed
by policies. In our framework we accomplish this by making the
security policies responsible for collecting their own information.

In order to represent state and handle conflicts we propose a hy-
brid scheme for modeling interacting policies. Our model uses
classical finite state automata, extended with some high-level con-
structs like variables, to model how policies react to and store in-
formation about previous events. We choose automata because they
allow straightforward analysis and it is simple to translate them into
code suitable for a smart card. These automata interact with each
other using defeasible logic [22], a non-monotonic logic designed
so that statements can be proved or disproved efficiently—an im-
portant consideration if the policies must be integrated in smart card
with limited computational power. We have found that this hybrid
approach succinctly models many policies that one might want to
install on a programmable payment card.

3. PROGRAMMABLE PAYMENT CARDS
Payment cards such as credit cards and debit cards are a com-

mon substitute for cash and checks. There are a variety of ways
in which cards come into the hands of users. A user may directly
contact a bank to obtain the card, or it may be supplied to the user
by an employer or parent. In the latter cases the card has a kind of
‘secondary issuer’ such as an enterprise or family. This secondary
issuer may have policies that extend those of the bank. For instance
an enterprise may stipulate that a card for an employee is used only
for business expenses or a parent may stipulate that a card can only
be used in an emergency. Such policies can be enforced in basically
two ways in most systems. The bank or payment gateway can (and

typically does) enforce certain basic restrictions such as an out-
standing balance limit on the card. Other polices are enforced in a
more reactive fashion by the secondary issuer when reconciling the
purchase records with bills it receives. (For example, an employee
can be fired or a child admonished for deviation from policy.)

A Programmable Payment Card (PPC) is a payment card that
can be specialized with custom policies written by a secondary is-
suer, such as an enterprise, a family, or even the user of the card
himself. PPC policies can provide privacy and risk management.
For instance, in some kinds of PPC it is possible to disallow pur-
chases before they are made on the basis of policies that are never
revealed to the bank, payment gateway, or merchant. In these cases
banks and payment gateways can benefit from PPCs because they
shift liability for policy enforcement to the secondary issuer and
user. Secondary issuers benefit by preventing some problems be-
fore admonishing or firing become necessary.

As a case study for purposes of specific analysis for policy in-
tegration we now sketch the architecture and implementation of
PPCs presented in [11]. This approach is based on the GlobalPlat-
form implemented on Java Cards and provides for policies written
in Java. These policies control payment transactions based on the
Secure Electronic Transactions (SET) protocol [21]. Our PPC im-
plementation is based on an implementation of SET by Mykhailo
Lyubich [18]. There are two primary extensions. First, it is ported
to run on the GlobalPlatform for the IBM JCOP Java Card simula-
tor or the Oberthur CosmopolIC cards and, second, it is extended by
a basic policy integration technique called ‘simple conjunctive re-
finement’. In simple conjunctive refinement a collection of policies
are consulted by a transaction management applet. Policies provide
a boolean result and a SET transaction is allowed if, and only if, it is
approved by each of the policies based on the form of the purchase
request (PReq) message in the SET protocol. After it is issued, the
card allows parties to add such policies but not remove them. Con-
sequently, each new policy allows no more payment transactions
than the card allowed before it was added. Policies must be ap-
proved by a certification process to ensure that they do not violate
the language-based protection mechanisms of the Java Card Run-
time Environment (JCRE). It is possible in principle for the JCRE
to run defensively so that this step can be omitted, but this is expen-
sive for the card. Fortunately, the policy certification only requires
verifying that the program is well-formed code.

Our implementation of the simple conjunctive refinement tech-
nique was unsatisfactory for two reasons. We could not express
policies which override other policies as each policy had veto power
over a transaction request. Secondly, the policies were written in
Java, which made it difficult to formally analyze a policy’s behav-
ior. The next section describes our formal model, which gives a
more expressive policy integration mechanism and a rigorous de-
scription of policy behavior.

4. FORMAL FRAMEWORK
A policy model approves or rejects a transaction request based

on the characteristics of the transaction request and the history of
previous transactions. The model is composed of separate policy



automata that vote individually as to whether a transaction request
should be approved. The votes are coalesced into an approval or
disapproval using a resolution function.

4.1 Votes and Conflicts
We use 
 to denote the abstract set of possible votes. Associated

with 
 is a function � , which resolves votes into ���� , ��� , or � ,
representing accept, reject, and conflict (or error), respectively. As
a simple example, 
 contains ���� , ��� , and �������� , and � maps a
set of votes to ���� if the set contains ���� and does not contain ��� ;
to ��� if contains ��� and does not contain ���� ; and to � otherwise.

For our payment card application we use defeasible logic to de-
scribe and resolve votes. We briefly introduce defeasible logic here.
Readers who want a more detailed explanation of the logic are re-
ferred to [22, 19].

Atomic formulas and their negations make up the literals of de-
feasible logic. For example, ��� �!�#"$���#"�� are all literals. Defeasible
logic has three kinds of rules:

Strict rules Strict rules are like normal implication:%'&)(!*,+!-.(0/ "2143
The meaning of this rule is “if %'&)(!*,+!-.( is true then fly is not
true” (or, in other words, penguins don’t fly).

Defeasible rules Defeasible rules are like strict rules except that
they can be preempted by other information. For example,
the rule 5 -.6 798 143
says that “if

5 -.6 7 is true then we conclude that 143 is true
unless we have some reason to think otherwise.”

Defeater rules Defeater rules are used to block the tentative con-
clusions of defeasible rules. For example, the rule-.(�:�+!6;& 7�< "=143
will block a rule like

5 -.6 7>8 143 since the knowledge that
a bird is injured counteracts our intuition that birds tend to
fly. However, the defeater rule (unlike a similar defeasible
rule) does not lead to the conclusion "2143 —since we have
no intuition about whether injured birds fly or not we do not
want to make a tentative conclusion either way.

Each of the rules can have a set of literals on the left hand side
instead of just a single literal. In such a rule all literals in the set
must be true for the rule to apply.

In defeasible logic there are two notions of provability. Given
a set of literals that are known to be true, called facts, a literal is
definitely provable if it can be proved using strict rules and facts.
A literal is defeasibly provable if it can be proved using facts and
any of the rules. Space limitations make it impossible to include a
formal description of the algorithm used to determine if a literal is
defeasibly provable; readers are referred to [19].

In our framework, policies vote by giving rules that reason about
a special literal ���� which stands for “approve the transaction re-
quest.” More precisely, there is a set of atomic formulas ? which is

fixed for an application. The atomic formula ��)� is one element of? . Let @ be the set all rules (strict, defeasible and defeater) made
of elements of ? . The set 
 of votes is the set of finite subsets
of @ . In other words, every vote A>BC
 is a list of zero or more
rules. All the votes are combined by taking the union of all the sets
of rules. This combined set of rules forms the defeasible logic the-
ory which we use to test the provability of the formula ���� . If the
votes yield a theory in which one can defeasibly prove ���� with-
out making "����� defeasibly provable then the transaction request
is approved. If ���� is not defeasibly provable then the transaction is
rejected. If both ���� and "����� are defeasibly provable (possible in
defeasible logic) then there is a conflict.

4.2 Policy Models
Let D be the set of all transaction requests for a particular ap-

plication domain. For example, in an e-commerce application we
might have D be a set of integer-string pairs that represent the price
and the seller of the transaction request. Let 
 be a set of votes.

A policy automaton
�

is a tuple EGFH�JIK� ��L�� MN� O�P . The compo-
nents of

�
are

F A finite set of modes

I A finite set of variables, each of which has a type. We write Q$R
for the set of possible tuples of values for all the variables
in I . A state � of the policy automaton is a pair ETSU� VWP
with SXBYF and VZB[Q R , and we use \^]_Fa`bQ R to
denote the set of all possible states. (We separate states into
variables and modes to make automaton descriptions more
readable.)

� L An initial state ETS L � V L P that specifies the initial mode and ini-
tial values of all the variables.

M The rule-set of
�

. M is a function

Mdc�\e`fD / 

which determines how the policy automaton votes in a given
state to process a given transaction. Recall that 
 is the set
of possible votes, each of which is a list of defeasible logic
rules. M is called a ‘rule-set’ because in practice we specifyM by attaching ‘rules’ to modes in a policy automaton.

O The transition function,

ONc�\g`hDY`ji������������k / \
which governs how the policy automaton updates its state
when a transaction request has been approved or disapproved.

As discussed in the next section, in practice we specify a policy
automaton using a graph over its modes. The edges are annotated
by guards and assignments that refer to the variables and transac-
tion parameters, and specify the transition function O . The modes
are annotated with rules that refer to the current state and the trans-
action parameters, and specify the function M .

A policy model is a triple ( lm�;
0�#� ) where l is a finite set of
policy automata, 
 is the set of votes, and � is a resolution function
that maps a set of elements of 
 to i�����������W�#�mk .



4.3 Semantics
Consider a policy model ETlN� 
0�)�2P , where ln]oi �qp ��r�r�r�� ��s k .

Let \mt be the set of states of each policy automaton
� t . The state of

the policy model at any point in time can be described by a vectorET� p ��r�r�r�� � s P , where each ��t	BK\ut . Initially, each policy automaton
starts in its initial state. We proceed to describe how transactions
are processed and states are updated.

Suppose the current state of the policy model is ET� p ��r�r�r � s P and
the current transaction request is v . For each policy automaton

� t ,
its vote is AWtw]xMNET��tJ�Jv;P . We then evaluate ��E2yAWP , where yAz]i�A p ��r�r�r;A s k , and interpret the outcome as follows:

���� the transaction request is approved.

��� the transaction request is rejected.

� there is a conflict between two or more policies.

One desirable property for a policy model is that if votes yA are pro-
duced by the individual policies then ��E2yAWP{]z��)� or ��� —in other
words, policies do not conflict with each other when composed.

Once a transaction request is approved or rejected each policy
automaton updates its state. Intuitively, a policy automaton always
has two possible transitions that it can follow—one to record ap-
provals and another to record rejections. If a policy automaton is
in state � and a transaction request v is approved then the state is
updated to OWET�W�|v��J����#P . Similarly, if the transaction request v is re-
jected, the state will be updated to be O'ET�!�Jv)������P .

This update extends in the natural way to states of a policy model.
For a state ET� p ��r�r�r � s P of the policy model and a transaction v , letA t ][M9ET� t �Jv;P be the vote the policy automaton

� t supplies, and let} ]H��E~i�A p ��r�r�r�� A s k�P . If } ]����� or } ]���� , then we write

ET� p ��r�r�r � s Pz�.�;�] 8 ET�,�p ��r�r�rJ�,�s P
where � �t ][OWET��t �Jv�� } P gives the updated state of the automaton

� t .
If } ]_� then there is a conflict between policies and the policy
model moves into a special error state ��� , essentially terminating
the operation of all the automata. We denote this case by

ET� p ��r�r�r�� � s PC�.� �] 8 ���
Once the policy model enters the error state it responds to all trans-
action requests with � , indicating an error:

� v�BhD��0�����.� �] 8 ����r
The update relation is now generalized to a sequence of transaction
requests. Given a sequence of transaction requests ��]Cv p ��r�r�r��|v � ,
we write

y�z���;�] 8 y� � r
If there exist model states y� p ��r�r�r�� y���W� p

, and �d] } p r�r�r } � such
that

y� �T�;�;���] 8 y� p �.�#�#���] 8 ����� �.��� � �#����� �] 8 y� �W� p � � �#� �] 8 y� � r

Given a policy model � and a sequence � of transaction requests
we say � emits � on � if for the initial state y� L of the model, there
exists some y� � such that

y��L����#�] 8 y� � r
4.4 Conflicts

A policy model with initial state y� L is conflict-free if for all se-

quences � of transaction requests, y��L����#�] 8 y� � implies y� �q�]H��� . It is
easy to see that a conflict-free model will never emit � in response
to a transaction request. Typically a developer will want to ensure
that her policy model is conflict-free before deploying it.

4.5 Redundancy
Intuitively, a redundant policy automaton is one which has no

effect on the responses to transaction requests.
Given a policy model �[]eETlN�J
0�)�2P where lH]Yi � p ��r�r�r�� ��s k

then policy automaton
� t is redundant in � if for all sequences �

of transaction requests, � emits � on � if and only if the policy
model ETl���i � t k��;
0�)�2P emits � on � .

In some circumstances having a redundant policy automaton may
be undesirable—it may be an indication that a policy is being over-
ridden by other policies. At the very least, it indicates that a sim-
pler, smaller model could be used to do the same job. If a device has
a limited amount of memory in which to store programs then a de-
veloper would want to avoid installing redundant policy automata.
However, if a policy automaton

�
is redundant with respect to a

policy model �^]�ETlN� 
0�#�2P it may not remain redundant if we
add some policy automaton

� � to l . A developer may therefore
want to install a redundant policy automaton on a device if she
expects more policy automata to be installed on the device in the
future.

5. PROTOTYPE
We are implementing a prototype called Polaris (www.cis.

upenn.edu/˜mmcdouga/polaris) that performs policy au-
tomata analysis and compilation. It includes a graphical interface
for editing the automata, an analysis engine that checks for policy
conflicts, and a code-generator that creates Java Card applets that
implement the policy automata. The architecture of the prototype
is shown in Figure 1. The tool is being implemented in Java and is
using the Hermes [1] code base. The prototype has four modules:

Front end: A developer uses the graphical front-end to create,
edit and save policy automata. The automata are described using a
graphical language made up of boxes and arrows which are anno-
tated with small pieces of text; creating automata is much like using
a graphics application like xfig or Adobe Illustrator. The automata
are stored as XML. The front end must also interact with the anal-
ysis engine to illustrate the outcome of any analysis procedures.
Figure 2 shows a screen shot of the automata editor.

Analysis engine: The analysis engine takes a policy model from
the front end and checks that the automata satisfy various proper-
ties the designer chooses: conflict-freedom, reachability of certain
states or whether an automaton is redundant with respect to other
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Figure 1: Polaris architecture

Figure 2: Polaris automata editor

automata. The analysis algorithms are discussed in more detail in
Section 5.3. The analysis engine borrows some code from the enu-
merative reachability procedures of Hermes but is still only par-
tially complete.

Code generator: The code generator converts a policy model
into Java that is suitable for a Java Card. Each policy automaton is
compiled into a separate applet that implements that policy. This
architecture of separate applets allows new policy applets to added
to the card dynamically.

Payment card: The payment card provides the run-time envi-
ronment for the policy automata that have been compiled into Java
Card applets. The payment card takes part in a SET transaction
with a remote website via a local PC that has a Java Card reader.
Before the transaction takes place the policy model implementation
must approve the purchase request.

5.1 Graphical Language
Polaris uses a graphical language to describe policy automata. A

policy model is created by drawing a number of rectangles, each
of which represents a policy automaton. Each of the policy rect-
angles can be annotated with a list of variables I that store infor-
mation needed by the policy automata. Inside those rectangles, the
developer can draw rounded rectangles which represent the policy

automaton’s modes. Figure 2 shows a policy automaton with three
modes being edited in Polaris.

The O transition function is specified by drawing arrows from one
mode to another. Each arrow is annotated with ���� or ��� , indicating
whether the transition should apply to an accepted or rejected trans-
action request, and a boolean expression involving the variables of
the policy automaton and the transaction, and a list of updated val-
ues for the variables. The boolean expression is similar to the ex-
pressions in high-level programming languages like Java or C. For
example, a transition from S to S � could be annotated with ����
and the expression “t.price<30 & count==1”, where �;  +!(¢¡
is a variable and v is a transaction request, and variable update
“count:=2”. Such a transition gives a partial description of O ,
mapping E ETSU�|VWP)�Jv��|����#P to ETS � � V � P for all variable settings V where�;  +!(¢¡ ]^£ , for all v with a price under 30, and where V � has the
same variable settings as V except that �;  +!(¢¡ is now 2.

The rule-set function M is specified by annotating the mode rect-
angles with rules. Each rule has a boolean expression (like the
expressions attached to the transition arrows) referring to the cur-
rent transaction request and the variables of the automaton, and a
vote A . If a policy automaton is in a mode S which is annotated
with rule ¤ and a transaction request arrives that, along with the
current variable settings, makes the boolean expression true, then
vote A becomes the policy automaton’s vote. Votes are lists of de-
feasible logic rules written in the syntax of the Deimos defeasible
logic query tool [20]. Each rule therefore gives a partial description
of M . Figure 2 shows a list with one rule that has been attached to
the “bonus purchase allowed” mode. The expression is “price
< 100” and the vote is “ i�k => yes”, which is i�k 8 ��)� written
using ASCII characters. The rule essentially says “conclude ����
tentatively unless others override.”

We use simple typing rules to check if expressions involving pol-
icy automaton variables and the transaction requests are well typed.
Each variable must be declared as a particular type (for example,
a boolean, integer or enumerated type). Transaction requests are
treated as records with a number of fields, each of which has a
particular type. We check that types are used consistently—for ex-
ample, an integer is not compared to a symbol or a boolean variable
is not set to 3. We also perform checks on the graphical structure to
ensure that the picture on the screen can be translated into a policy
automaton.

5.2 Example: a payment card policy
We now show an example of a policy model made up of the

following policies:��¥
Allow up to 3 purchases per day.

��¦
Guarantee payment to emergency services twice.

�q§.§
A cash card: spend no more than $500 total.

��¨
No alcohol can be purchased.

� � Prevent purchases of prescription drugs which conflict with the
anti-depressant Tofranil.



PE:
  no variables

P3:
  var time:=0

mode 2

mode 0

if true then {} => yes

end mode

if true then {} => yesif (t.time-time<24)
 then {} ~> ~yes
else {}=>yes

mode 1

if true then {} => yes

yes;

yes;

yes;
time:=t.time

mode 0

if E(t.seller)
  then {}->yes; {}->e;
  else {}->~e

yes &
E(t.seller);

end mode

if true then {}->~e

yes &
E(t.seller);

mode 1

if E(t.seller)
  then {}->yes; {}->e;
  else {}->~e

yes;
time:=t.time

mode 0
if  t.price<=total
  then {}=>yes
  else {}~>~yes

Pcc:
  var total:= 500

yes & total>t.price;
total := total - t.price

yes &
total>=t.price;

end mode

if true then
{} ~> ~yes

mode 0

if (t.type==ALCOHOL)
then ~e->~yes

PN:
  no variables

mode 0

if (t.type==MAOI) then {} ->~ yes
if (t.type==ALBUTEROL) then {} ~>~ yes
else {} -> tof

Pt:
  no variables

Figure 3: Example payment card policy model

The last policy,
� � , deserves some explanation. Tofranil is an

prescription drug used to treat depression. It can be fatal when com-
bined with a drug that is a monoamine oxidase inhibitor (MAOI).
We envision

� � being installed by a doctor or a pharmacist when
the card holder begins taking Tofranil. This policy will prevent
purchases of drugs that conflict with Tofranil, thereby reducing the
risk that a mistake by a doctor or pharmacist leads to a fatal drug
interaction. Tofranil can also interact with another drug called Al-
buterol, but the interaction is less severe so our policy automaton is
not as insistent about rejecting purchases of Albuterol.

Figure 3 shows these five policy automata in a simplified form
of the graphical language accepted by our prototype. Variables are
declared at the left of the diagram, along with the initial value of
the variable. For example, the initial value of

�4§.§
’s variable total

is 500.
Modes are indicated by rectangles with solid lines. A mode’s

rules are contained in a rectangle with a dotted border within the
mode. Rules are written in the form “if expression then vote”.
The expression E(t.seller) used in the rules of

� ¦
is a pred-

icate that is true if t.seller is contained in a set of approved
emergency service sellers (for example, hospitals and ambulance
companies). The word ALCOHOL in the rule of

�	¨
refers to a stan-

dard product identifier that identifies a purchase as alcohol. Sim-
ilarly, the words MAOI and ALBUTEROL in

� � refer to standard
identifiers for particular classes of drugs.

The rule’s vote is written as a list of rules of defeasible logic. We
describe a few of the votes that appear in the example here.

i,k =>yes the transaction request should be approved tentatively
but can be overridden

i,k,© > © yes override a tentative approval

i�k ->yes; i�k ->e approve the transaction and assert that the lit-
eral e is true. Making e true signals to other automata that
the transaction request is an emergency.

© e-> © yes if e is not true then reject the transaction request.
This vote allows

� ¨
to override

� ¥
and

���|�
without con-

flicting with
��¦

.

When no rule applies in a given state then an empty set of defeasible
logic rules is used as the vote.

As described above, arrows represent transitions between modes.
The annotation attached to the arrow has the form “expression ; up-
date”. The expression indicates when that transition is enabled and
the update section determines how the variables are updated. For
example, in

�q§ª§
the transition with an expression “yes & total

== t.price” is enabled when a transaction request has been ap-
proved and the total is equal to the transaction price. If the up-
date section is empty then no change will be made to the variables.
When there is no enabled arrow starting at a mode then no update
is made to variables or modes when the transaction request is ap-
proved or rejected. For example, if

� §.§
is in mode 0 and a transac-

tion request is rejected then the variable total is left unchanged
and the automaton stays in mode 0.

We now quickly sketch how the policies in figure 3 react when
given the following sequence of transaction requests: v p , a $40 al-
cohol purchase which is not an emergency; and v#« , a $300 bicycle
purchase. The request v p has its ‘type’ field set to ALCOHOL so
policy

��¨
will vote © e-> © yes, while

��¦
will vote i,k -> © e be-

cause the request is not from an emergency seller (i.e. E(t.sel-
ler) is false). The defeasible logic engine will recognize that
these two votes form a proof of © yes. Policies

���|�
and

� ¥
both

contribute i�k =>yes as votes, but this defeasible rule is overrid-
den by the strict rule in

� ¨
’s vote. Policy

� � contributes a vote



i,k ->tof, but this vote does lead to a proof of yes or © yes.
Since © yes has been defeasibly proved and yes has not been
proved we reject the transaction. All the arrows in our policies are
enabled only when a transaction is accepted so no updates are made
to variable or modes after the first transaction request is rejected.

When v « is submitted the policy
� �~�

supplies the vote i,k =>yes
because the price of $300 is below the value of the variable total,
which was set to 500.

��¥
submits the same vote as

� �|�
. Since this

purchase does not involve alcohol the policy
� ¨

has no specific
vote—a default empty vote (i.e. a zero-length list of defeasible
logic rules) is therefore submitted.

� ¦
submits the vote i,k -> © e

since the seller is not an emergency seller. Policy
� � again sub-

mits i,k ->tof since the purchase involves neither Albuterol nor
an MAOI. The defeasible logic engine will show that yes is de-
feasibly provable since no votes overrule

� �|�
’s vote. Nor do any

votes conclude © yes so the transaction is approved. This triggers��¥
to move from mode 0 to mode 1 and update its time variable

to the time of the transaction.
� ¦

will not change modes because
the seller is not an emergency seller.

� �|�
will stay in mode 0 but it

will change the value of its variable total from 500 to 200.
� ¨

and
� � each have one mode and no variables so they do not update

their state.

5.3 Analysis
If the types of the variables are finite then a policy model must be

in one of a finite number of states. For infinite types we can make
the number of states finite by using abstraction. We can therefore
use a conservative on-the-fly reachability analysis to look for states
where conflicts occur. If none of the reachable states will emit �
on any transaction request then we know that our model is conflict-
free.

Checking a given state for conflicts involves evaluating the reso-
lution function � on all possible combinations of votes in that state.
Computing � can be done efficiently as [19] gives an algorithm for
finding the consequences of a defeasible theory in time that is linear
with respect to the number of literals and defeasible logic rules.

We may also want to check for redundant policies. For a given
model state y� let A�¬�® � ® t be the vote that the ¯ -th policy automaton
gives when processing transaction v in state y� . The policy automa-
ton

� p
is redundant at y� if� vqB0D��#��E°
j¬�® � P±] ��E°
²� ¬�® � P (1)

where 
w¬�® � ]Yi�A�¬�® � ® t;³ ¯�]d£�r�r�r;´$k and 
 � ¬�® � ][
j¬�® � �µi�A�¬�® � ® p k .� p
is redundant with respect to i � « ��r�r�r ��s k if it is redundant

at each reachable model state. We can therefore check for redun-
dancy by finding all reachable model states and verifying that each
state satisfies equation (1). As discussed above, evaluating � for all
transactions can be done efficiently.

5.4 Code Generation and the Java Card Plat-
form

There are two types of Java Card applets that need to be gen-
erated: the manager applet and the policy applet. The manager
applet is responsible for polling the policy applets for their votes,
consolidating the votes to decide whether the transaction request

should be approved, and then notifying the policy applets about the
approval or disapproval. There is one manager applet on a pro-
grammable payment card and it must be installed before any of the
policy applets. Our prototype applet is based on the Lyubich’s SET
implementation [18] and most of the applet is concerned with the
details of the SET protocol. However, we have added a defeasi-
ble logic engine to the applet so that it can process the votes of the
policy applets. Most of the manager applet’s code deals with Java
Card and SET protocols; this code is specified as a template that is
constant for all manager applets. We envision different applications
using different transaction request types (for example, the transac-
tion date may be available in some applications and unavailable for
others) so we automatically generate the manager applet code that
processes the transaction request data.

The Java Card platform imposes certain constraints on the applet
implementation. Garbage collection is not available on most cards,
so care must be taken to allocate the minimal memory necessary.
All data must be stored as 8 or 16 bit values. Unlike the standard
Java platform available on desktops and servers, a Java Card has
two kinds of memory: RAM and EEPROM. RAM is like the RAM
in most computers – it can be read from and written to quickly,
and it loses its data when power is cut off (for example, when a
card is withdrawn from a card reading terminal). Due to cost and
size constraints, RAM is limited to 1 or 2K in the currently avail-
able cards. EEPROM will retain data when power is lost, and it
is cheaper than RAM so it is feasible to put as much as 64K on a
single card. However, EEPROM can only be written to a limited
number of times (typically on the order of 100,000) and writes are
slow, so EEPROM should not be used for memory which is updated
frequently.

Our on-card defeasible logic engine (DLE) needed to account for
these restrictions. The DLE needs to compute all the literals that are
defeasibly provable given a defeasible logic theory. We partition
the memory required for the algorithm into two parts: stable and
volatile. Stable memory is kept in EEPROM and volatile data is
kept in RAM. Our algorithm keeps the rules of the theory in stable
memory, while using volatile memory to track the proof status of
each of the literals in the theory. While the total memory required
by the DLE is proportional to the size of the theory, the volatile
memory required is proportional to the number of literals in the
theory. To conserve EEPROM memory, we keep only a single copy
of the rules in the defeasible logic theory. This copy is maintained
by the policy applet which is supplying the vote which contains the
rule.

A policy applet implements a single policy automaton. Many
policy applets can be installed on the same card. Starting from a
template applet, the code generator adds two methods getVote
and update, which return a vote and update the state of the ap-
plet, respectively. The set of all possible votes is computed by the
code generator and each vote is instantiated as a member variable
stored in EEPROM. We precompute this set of votes to minimize
the amount of RAM required at runtime. Examples of the out-
put of this code generation are available at the Polaris web site
(www.cis.upen.edu/˜mmcdouga/polaris).

A smart card’s limited memory makes code size an important



CAP file size methods static fields
original SET (bytes) 11291 3715 3355
modified SET (bytes) 15586 5911 3591
increase due to modification 38% 59% 7%

Table 1: Code size for original and modified SET manager ap-
plet

CAP file size methods static fields¶ ¥
(bytes) 670 364 26¶ ¦
(bytes) 707 376 26¶ �~�
(bytes) 645 342 26¶ ¨
(bytes) 579 296 24¶ �~�
(bytes) 639 339 28

Table 2: Code size for selected policy applets

consideration. Table 1 shows how much the code size increased
for the Java Card implementation of the SET protocol when we ex-
tended it to use our policy integration architecture. The second col-
umn of the table shows the size of the converted applet (CAP) file.
CAP files are the standard package format for Java Card applets.
The table also shows the number of bytes required to represent the
methods (executable code) and static fields (persistent data) of the
applet; these two components are the largest components of the
CAP files. After extending the SET applet with a defeasible logic
engine and the code necessary to manage policy applets the total
applet size is only 38% larger. Table 2 shows the size of the five
applets generated from the automata in Figure 3.

5.5 Adding policies dynamically
The policy model gives developers a formal framework for com-

bining the policies of different stakeholders. Different departments
in an enterprise can each create their own modular policies and
when these policies are installed on a card they can be checked
against each other to ensure that they are, for example, conflict-free.
This increases the assurance that a payment card will behave prop-
erly when given to a user. However, the Java Card/GlobalPlatform
architecture allows new applets to be installed after the card has
been issued. In this section we discuss how our framework can be
adapted for the case where arbitrary parties, who may not be af-
filiated with the enterprise that issued the card, wish to add new
policies. We call the set of policies that are initially installed the
base policies. The policies added later are called the supplemental
policies.

In order to allow new policy automata to be checked with respect
to previously-installed policies we require that an installed policy
provide a way to access its policy automaton. This can be stored
on the card or referenced by a URL. A developer will compose
these policy automata with her new policy automaton and check
that the new policy automata is conflict-free (or whatever property
is desired). If the desired properties hold, the developer follows the
steps described in [11], which exploit the GlobalPlatform security
model. She generates valid JCVM byte code and supplies it to a

certification authority, who uses it to generate a CAP file with a
digital signature. The CAP file, together with signed load and in-
stall instructions, are then supplied to the developer who uses them
to load and install the new applet onto the card. The digital sig-
natures protect the card from the installation of invalid CAP files.
When the new applet is selected (a basic Java Card operation that
chooses a particular applet for execution), it registers itself with
the manager applet installed by the primary issuer. If the applet is
subsequently removed, the manager applet disables the card.

In order to protect the functionality of the base policies from
policies that were not analyzed we modify the resolution function
slightly. If the updated set of applets generates a � then we fall
back to the base automata and evaluate � using only the votes from
the base policies. Since the base policies were installed before the
card was issued we can be confident that they are conflict-free.
Once the transaction request is approved or rejected, all policy au-
tomata (base and supplemental) update their state and continue as
if the conflict had not occurred.

6. DISCUSSION AND CONCLUSION
Our work makes three contributions. We describe a novel appli-

cation: programmable payment cards with a dynamic on-card pol-
icy management framework. We introduce policy automata, a for-
mal framework that combines state machines with defeasible logic,
which models the dynamic integration of modular policies. Finally,
we have implemented Polaris, a suite of tools that integrates design,
analysis and compilation for policies expressed as policy automata.

6.1 Related work
This work builds on a wide range of previous work in formal

methods [8], especially in model-checking [7] techniques and tools
such as SPIN [16]. Using state-machine-based models for high-
level designs is quite common in software engineering (e.g. State-
charts [13], UML [3]). Easterbrook and Chechik [6] analyze merged
state machines by using paraconsistent logics to capture the possi-
bly inconsistent views of the system. Siddiqi and Atlee [24] use
a hybrid model that combines state-transitions and logical asser-
tions to model and analyze feature interaction conflicts in telephone
systems. Lupu and Sloman [17] discuss a number of strategies
for resolving policy conflicts. There is related work using non-
monotonic logics for reasoning about policies. Grosof et al. [10]
represent business rules using courteous logic programs, while An-
toniou et al. [2] use defeasible logic to represent administrative reg-
ulations governing, for example, exam scheduling. Various pol-
icy specification languages have been proposed. Damianou et al.
[9] use the Ponder language to describe access control policies.
Hoagland et al. [15] use a graphical language to describe secu-
rity policies. Miro [14] also uses a graphical language and allows
policies to override other policies. Halpern and Weissman [12] pro-
pose using a fragment of first-order logic as a security policy model
which accommodates merged policies and has a tractable algorithm
to determine access rights. These approaches target a wide range
of access control policies protecting many resources while ours is
concentrated on protecting one resource. It is not clear whether



that they are suitable in an embedded context. As far as we know,
there is no prior work on combining state-machine based modeling,
non-monotonic logics, and formal analysis.

In recent years there has been a lot of research on formal meth-
ods for Java Cards [4]. This research typically focuses on proving
correctness of protocols and API implementation. The problem of
adding policies dynamically and merging them with existing poli-
cies has not been addressed.

Schneider [23] uses security automata to model access control
policies and generate monitors that enforce correct behavior. Schnei-
der’s security policies are primarily intended to constrain programs
while our policies constrain users. We use a voting system to in-
tegrate different policies instead of simply taking a conjunction of
policies.

6.2 Future work
We plan to extend this work in a number of directions. We will

continue refining and extending our tool to explore heuristics and
other engineering issues involved in analyzing policy automata and
generating code that implement the automata. A more rigorous
evaluation of the tool will be performed in order to quantify the
efficiency of various analysis strategies and the on-card running
time of the applets.

We think that aspects of this work will be applicable for guard-
ing access to network resources. In particular, we will examine
whether our policy model can adequately express the policies gov-
erning network packet processing and forwarding in firewalls. Sim-
ilarly, policy automata look promising as a model for representing
HTTP access policies.

The formal aspects of this work can be extended in various di-
rections as well. One possible extension would be to modify the
policy model so that transactions requests would yield more than���� and ��� as answers. For example, a request to access a file
might yield ���� - ·¸���¹ - �W��º � as an answer in addition to ���� and ��� .
Policy automata as described here get only one chance to react to
a transaction request. However, there are applications where a pol-
icy automaton may want to react to the outcome of a transaction
that has been approved. For example, a cell phone policy govern-
ing what phone numbers may be called may want to react one way
when an outgoing call where the other party fails to pick up the
phone, and another way when the other party picks up the phone
and has a conversation. The set of votes 
 and the resolution func-
tion � are abstract parameters in the definition of a policy model. In
this work we use defeasible logic for 
 and � but we could replace
them with some other voting system based on a more expressive
non-monotonic logic (such as default logic or abductive logic), de-
ontic logic, or multi-valued logic.
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