
Hierarchical Hybrid Modeling of Embedded

Systems ?

R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivan�ci�c, V. Kumar, I. Lee,
P. Mishra, G. Pappas, and O. Sokolsky

University of Pennsylvania
http://www.seas.upenn.edu/hybrid/

Abstract. This paper describes the modeling language Charon for
modular design of interacting hybrid systems. The language allows spec-
i�cation of architectural as well as behavioral hierarchy, and discrete as
well as continuous activities. The modular structure of the language is
not merely syntactic, but is exploited by analysis tools, and is supported
by a formal semantics with an accompanying compositional theory of
re�nement. We illustrate the bene�ts of Charon in design of embedded
control software using examples from automated highways concerning
vehicle coordination.

1 Introduction

An embedded system typically consists of a collection of digital programs that
interact with each other and with an analog environment. Examples of embed-
ded systems include manufacturing controllers, automotive controllers, engine
controllers, avionic systems, medical devices, micro-electromechanical systems,
and robots. As computing tasks performed by embedded devices become more
sophisticated, the need for a sound discipline for writing embedded software be-
comes more apparent (c.f [23]). Model-based design paradigm, with its promise
for greater design automation and formal guarantees of reliability, is particularly
attractive given the following trends.

Software Design Notations. Modern object-oriented design paradigms
such as Uni�ed Modeling Language (UML) allow speci�cation of the architec-
ture and control at high levels of abstraction in a modular fashion, and bear
great promise as a solution to managing the complexity at all stages of the
software design cycle [7]. There are emerging tools such as RationalRose (see
www.rational.com) that support modeling, simulation, and code generation,
and are increasingly becoming popular in domains such as automotive software
and avionics.

Control Engineering. Traditionally control engineers have used tools for
continuous di�erential equations such asMatlab (see www.mathworks.com) for
modeling of the plant behavior, for deriving and optimizing control laws, and
for validating functionality and performance of the model through analysis and

? Supported by DARPA MoBIES grant F33615-00-C-1707

simulation. Tools such as Simulink recently augmented the continuous modeling
with state-machine-based modeling of discrete control.

Formal Veri�cation Tools. Model checking is emerging as an e�ective
technique for debugging of high-level models (see [10] for a survey). Model check-
ers such as SMV [26] and SPIN [20] have been successful in revealing subtle errors
in cache coherency protocols in multiprocessors and communication protocols in
computer networks. In recent years, the model checking paradigm has been suc-
cessfully extended to models with continuous variables leading to tools such as
UPPAAL [22], HyTech [18], and CheckMate [8].

This paper describes our modeling language, Charon, that is suitable for
high-level speci�cation of interacting embedded systems. We proceed to discuss
the three distinguishing aspects of Charon.

Hybrid Modeling. Traditionally, control theory and related engineering
disciplines, have addressed the problem of designing robust control laws to en-
sure optimal performance of processes with continuous dynamics. This approach
to system design largely ignores the problem of implementing control laws as a
piece of software and issues related to concurrency and communication. Com-
puter science and software engineering, on the other hand, have an entirely
discrete view of the world, which abstracts from the physical characteristics of
the environment to which the software is reacting to, and is typically unable to
guarantee safety and/or performance of the embedded device as a whole. An
embedded system consisting of sensors, actuators, plant, and control software
is best viewed as a hybrid system. The relevance of hybrid modeling has been
demonstrated in various applications such as coordinating robot systems [2],
automobiles [6], aircrafts [29], and chemical process control systems [13].

Early formal models for hybrid systems include phase transition systems [25]
and hybrid automata [1]. While modularity in hybrid speci�cations has been
addressed in languages such as hybrid I/O automata [24], Charon allows richer
speci�cations. Discrete updates in Charon are speci�ed by guarded actions la-
beling transitions connecting the modes. Some of the variables in Charon can
be declared analog, and they ow continuously during continuous updates that
model passage of time. The evolution of analog variables can be constrained in
three ways: di�erential constraints (e.g. by equations such as _x = f(x; u)), al-
gebraic constraints (e.g. by equations such as y = g(x; u)), and invariants (e.g.
jx� yj � ") which limit the allowed durations of ows.

Hierarchical Modeling. Modern software design paradigms promote hi-

erarchy as one of the key constructs for structuring complex speci�cations. We
are concerned with two distinct notions of hierarchy. In architectural hierarchy ,
a system with a collection of communicating agents is constructed by parallel
composition of atomic agents, and in behavioral hierarchy , the behavior of an
individual agent is described by hierarchical sequential composition. The for-
mer hierarchy is present in almost all concurrency formalisms, and the latter,
while present in all block-structured programming languages, was introduced for
state-machine-based modeling in Statecharts [17].

In Charon, the building block for describing the system architecture is an
agent that communicates with its environment via shared variables. The lan-
guage supports the operations of composition of agents to model concurrency,
hiding of variables to restrict sharing of information, and instantiation of agents
to support reuse. The building block for describing ow of control inside an
atomic agent is a mode. A mode is basically a hierarchical state machine, that
is, a mode can have submodes and transitions connecting them. Variables can be
declared locally inside any mode with standard scoping rules for visibility. Modes
can be connected to each other only via well-de�ned entry and exit points. We
allow sharing of modes so that the same mode de�nition can be instantiated in
multiple contexts. To support exceptions , the language allows group transitions
from default exit points that are applicable to all enclosing modes, and to sup-
port history retention, the language allows default entry transitions that restore
the local state within a mode from the most recent exit.

Compositional Semantics. Formal semantics leads to de�nitions of seman-

tic equivalence (or re�nement) of speci�cations based on their observable behav-
iors, and compositional means that semantics of a component can be constructed
from the semantics of its subcomponents. Such formal compositional semantics
is a cornerstone of concurrency frameworks such as CSP [19] and CCS [27], and is
a prerequisite for developing modular reasoning principles such as compositional
model checking and systematic design principles such as stepwise re�nement.
The global nature of time makes it challenging to de�ne semantics of hybrid
components in a modular fashion. For rich hierarchical speci�cations, features
such as as group transitions, exceptions, and history retention, cause additional
di�culties.

Charon supports observational trace semantics for both modes and agents [4].
The key result is that the set of traces of a mode can be constructed from the
traces of its submodes. This result leads to a compositional notion of re�nement
for modes. Suppose we obtain an implementation design I from a speci�cation
design S simply by locally replacing some submode N in S by a submode M .
Then, to show I re�nes S, it su�ces to show that M re�nes N .

Overview. The remaining paper is organized as follows. In Section 2, we
present the features of the language Charon, and in Section 3 we describe
the formal semantics and accompanying compositional re�nement calculus. We
use examples from the automotive experimental platform of the DARPA's Mo-
BIES program for illustrative purposes. Section 4 gives a summary of the design
toolkit, and we conclude in Section 5 with pointers to ongoing research on formal
analysis.

2 Modeling Language

2.1 Agents and Architectural Hierarchy

We present an example from the MoBIES Automotive Open Experimental Plat-
form (OEP) to illustrate the features ofCharon. Figures 1, 2, and 3 areCharon
agent diagrams illustrating the architectural hierarchy of a team of two vehicles.

Vehicle

accOut

velOut

accIn

velIn

(a)

VehicleFollower

fA

fV

lA

lV

VehicleLeader

VehicleSystem

lV lA

(b)

Fig. 1. The Leader-Follower Vehicle System

A single vehicle is represented by the agent Vehicle, shown in Figure 1(a).
Each agent has a well-de�ned interface which consists of its typed input and
output variables. In the case of Vehicle, velIn and accIn are the input variables,
and velOut and accOut are the outputs. Formally, an agent consists of a set
of variables V , a set of initial states, and a set of modes TM . The set V is
partitioned into local variables Vl and global variables Vg ; global variables are
further partitioned into input and output variables. Type correct assignments of
values to variables are called valuations and denoted QV . The set of initial states
I � QV speci�es possible initializations of the variables of the agent. The modes,
described in more detail below, collectively de�ne the behavior of the agent. An
atomic agent has a single top-level mode. Composite agents have many top-level
modes and are constructed from other agents as described below.

Figure 1(b) illustrates the three operations de�ned on agents. It shows a com-
posite agent VehicleSystem that contains two instances of the agent Vehicle
composed in parallel. The parallel agents execute concurrently and communi-
cate through shared variables. To enable communication between the two vehi-
cles, global variables are renamed. For example, velIn of the follower agent and
velOut of the leader agent are both renamed to lV. Finally, the communication
between the vehicles can be hidden from the outside world. In our example, only
the leader's outputs lV and lA are the outputs of the composite system. The
composite agent is written in Charon syntax as below:1

agent VehicleSystem {

write analog real lV, lA;

private analog real fV, fA;

agent VehicleLeader= Vehicle[velIn,velOut,accIn,accOut := fV,lV,fA,lA];

agent VehicleFollower= Vehicle[velIn,velOut,accIn,accOut := lV,fV,lA,fA];}

1
Charon also allows parameterized de�nitions. For instance, the initial position of the
vehicle can be de�ned as a parameter within the agent Vehicle, and can be assigned
to di�erent values in the two instances VehicleLeader and VehicleFollower.

VehiclePlant

xDot_hsl
CarSensorRegulationController

Vehicle

xDDot_hsl

u_isl

xD
D

ot

xD
ot

velIn

accIn

velOut

accOut

xDDot: plant acceleration

u_isl: desired acceleration

xDot_hsl: sensed plant velocity

xDDot_hsl: sensed plant acceleration

xDot: plant velocity

Fig. 2. The Vehicle Agent

DynamicSensorDynamicController

VehiclePlant

u_isl xDDot

xDot

ud

PowerTrain v

a

Fig. 3. The VehiclePlant Agent

The agent Vehicle itself has a hierarchical structure. Figure 2 illustrates
the overall vehicle architecture, which comprises the regulation controller, the
car sensor, and the vehicle plant. The higher level regulation controller handles
data from the car sensor or other vehicles and generates a desired acceleration
to the vehicle plant. The lower level dynamics controller equipped in the vehicle
plant controls actual vehicle dynamics such as throttling and braking. The ve-
hicle plant is composed of the dynamic controller, the dynamic sensor, and the
powertrain. Figure 3 describes the vehicle plant. The dynamic controller maps
the control command u onto a desired throttle position or brake command u d.
The sign of u d will de�ne two submodes of the powertrain: acceleration and
brake. We show how the behavior of an agent is modeled in the next section.

2.2 Modes and Behavioral Hierarchy

Modes represent behavioral hierarchy in the system design. The behavior of each
atomic agent is described by a mode, which corresponds to a single thread of

read analog real ud;
write analog real v, a;

{a == k1*(ud-k2*v*v -k3*Math.sin(theta)-k4)}
alge algeAcceleration
diff diffVelocity {d(v) == a}

Fig. 4. The Behavior of the Agent PowerTrain

BrakeNormal

ThrottleNormal

BrakeSaturated

ThrottleSaturated

{u 0 }
d

d
{u < 0 }inv

d

inv

u < 0

du 0

dx

dx

ThrottleControl

de

BrakeControl

dx

dx
dx

dx

de

de

de

d
u 0

init

u < 0d

≥

≥

≥

DynamicController

Fig. 5. The Behavior of the Agent DynamicController

control. At the lowest level of the behavioral hierarchy are atomic modes. They
describe continuous behaviors. For example, Figure 4 illustrates the behavior
of the agent PowerTrain. There is a di�erential constraint diffVelocity that
asserts the relationship between velocity v and acceleration a: _v = a, and an
algebraic constraint algeAcceleration for the acceleration, relating it to the
current speed v, the control input ud, and the road grade �: a = k1 � (ud � k2 �
v2 � k3 � sin(�) � k4) for some constants k1; : : : ; k4.

Composite modes contain a number of submodes. During execution, a com-
posite mode performs discrete transitions, switching between its submodes. Each
(sub)mode has a well-de�ned data interface consisting of typed global variables
used for sharing state information, and also a well-de�ned control interface con-
sisting of entry and exit points that are used to connect modes modes via tran-
sitions. For example, the behavior of the agent DynamicController is captured
by the mode shown in Figure 5. Depending on the sign of the input variable ud
that represents the acceleration desired by the higher-level controller, the dy-
namic controller applies either brake or throttle, represented by the submodes
BrakeControl and ThrottleControl, respectively. The condition for staying in
the ThrottleControlmode is captured by the invariant ud � 0. When the sign

of ud changes to negative, the invariant is violated and the controller is forced
to take a transition to BrakeControl. Note that the mode ThrottleControl

also has internal structure: acceleration may be normal, when a larger desired
acceleration translates in more torque supplied by the engine, or saturated,
when the limit of the engine capacity has been reached. The transition from
ThrottleControl to BrakeControl happens regardless of which submode of
ThrottleControl was active at that time, interrupting any lower-level behav-
iors.

Formally, a mode M consists of a set of submodes SM , a set of variables V ,
a set of entry control points E, a set of exit control points X , a set of transitions
T , and a set of constraints Cons. As in agents, variables are partitioned into
global and local variables. For the submodes of M , we require that each global
variable of a submode is a variable (either global or local) of M . This induces a
natural scoping rule for variables in a hierarchy of modes: a variable introduced
as local in a mode is accessible in all its submodes but not in any other mode.
Every mode has two distinguished control points, called default entry (de) and
exit (dx) points. They are used to represent such high-level behavioral notions as
interrupts and exceptions, which will be discussed in more detail in the following
section.

The set Cons of constraints contains constraints of three kinds. An invariant

speci�es when a mode can be active. Continuous trajectories of a variable x can
be given by either an algebraic constraint Ax, which de�nes the set of admissible
values for x in terms of values of other variables, or by a di�erential constraint
Dx, which de�nes the admissible variables for the �rst derivative of x with respect
to time.

Transitions of a mode M can be classi�ed into entry transitions, which con-
nect an entry point of M with an entry point of one of its submodes, exit transi-
tions, connecting exit points of submodes to exit points of M , and internal tran-
sitions that lead from an exit point of a submode to an entry point of another
submode. Every transition has a guard, which is a predicate over the valuations
of mode variables that tells when the transition can be executed. When a transi-
tion occurs, it executes a sequence of assignments, changing values of the mode
variables. A transition that originates at a default exit point of a submode is
called a group transition of that submode. A group transition can be executed
to interrupt the execution of the submode.

In Charon, transitions and constraints can refer to externally de�ned Java
classes, thus allowing rich discrete and continuous speci�cations.

3 Formal Semantics and Compositional Re�nement

We proceed to de�ne a compositional formal semantics for Charon. First, the
operational semantics of modes and agents makes the notion of executing a
Charon model precise, and can be used, say, by a simulator. Second, we de�ne
an observational semantics for modes and agents. The observational semantics
hides the details about internal structure, and retains only the information about

inputs and outputs. Informally, the observational semantics consists of the static
interface (such as the global variables and entry/exit points) and dynamic in-
terface consisting of the traces, that is, sequences of updates to global variables.
Third, for modularity, we show that our semantics is compositional. This means
that the set of traces of a component can be de�ned from the set of traces of
its subcomponents. Intuitively, this means that the observational semantics cap-
tures all the information that is needed to determine how a component interacts
with its environment. Finally, we de�ne a notion of re�nement (or equivalence)
for modes/agents. This allows us, for instance, to relate di�erent models of the
agent PowerTrain. We can establish that the abstract (simpli�ed) version of
powertrain re�nes the detailed version, and then, to analyze the system of ve-
hicles, use the abstract version instead of the detailed one. The compositional
rules about re�nement form the basis for analysis in a system with multiple
components, each with a simpli�ed and a detailed model.

3.1 Formal semantics of modes

Intuitive semantics. Before presenting the semantics formally, we give the
intuition for mode executions. A mode can engage in discrete or continuous be-
havior. During an execution, the mode and its environment either take turns
making discrete steps or take a continuous step together. Discrete and continu-
ous steps of the mode alternate. During a continuous step, the mode follows a
continuous trajectory that satis�es the constraints of the mode. In addition, the
set of possible trajectories may be restricted by the environment of the mode.
In particular, when the mode invariant is violated, the mode must terminate its
continuous step and take one of its outgoing transitions. A discrete step of the
mode is a �nite sequence of discrete steps of the submodes and enabled transi-
tions of the mode itself. A discrete step begins in the current state of the mode
and ends when it reaches an exit point or when the mode decides to yield con-
trol to the environment and lets it make the choice of the next step. Technically,
when the mode ends its discrete step in one of its submodes, it returns control to
the environment via its default exit point. The closure construction, described
below, ensures that the mode can yield control at appropriate moments, and
that the discrete control state of the mode is restored when the environment
schedules the next discrete step.

Preemption. An execution of a mode can be preempted by a group tran-
sition. A group transition of a mode originates at the default exit of the mode.
During any discrete step of the mode, control can be transferred to the default
exit and an enabled group transition can be selected. There is no priority be-
tween the transitions of a mode and its group transitions. When an execution
of a mode is preempted, the control state of the mode is recorded in a special
history variable, a new local variable that we introduce into every mode. Then,
when the mode is entered through the default entry point next time, the control
state of the mode is restored according to the history variable.

The history variable and active submodes. In order to record the
location of discrete control during executions, we introduce a new local variable

h into each mode that has submodes. The history variable h of a mode M has
the names of the submodes of M as values, or a special value � that is used to
denote that the mode does not have control. A submode N of M is called active

when the history variable of M has the value N .

Flows. To precisely de�ne continuous trajectories of a mode, we introduce
the notion of a ow. A ow for a set V of variables is a di�erentiable function
f from a closed interval of non-negative reals [0; �] to QV . We refer to � as the
duration of the ow. We denote a set of ows for V as FV .

Syntactic restrictions on modes. In order to ensure that the semantics of
a mode is well-de�ned, we impose several restrictions on mode structure. First,
we assume that the set of di�erential and algebraic constraints in a mode always
has a non-empty set of ows that satisfy them. This is needed to ensure that the
set of behaviors of a mode is non-empty. Furthermore, we require that the mode
cannot be blocked at any of its non-default control points. This means that the
disjunction of all guards originating from a control point evaluates to true.

State of a mode. We de�ne the state of a mode in terms of all variables of
the mode and its submodes, including the local variables on all levels. We use V�

for the set of all variables. The set of local variables of a mode together with the
local variables of the submodes are called the private variables and is denoted
as Vp.

The state of a mode M is a pair (c; s), where c is the location of discrete
control in the mode and s 2 QM:V� . Whenever the mode has control, it resides
in one of its control points, that is, c 2M:C. Given a state (c; s) of M , we refer
to c as the control state of M and to s as the data state of M .

Closure of a mode. Closure construction is a technical device to allow the
mode to interrupt its execution and to maintain its history variable. Transitions
of the mode are modi�ed to update the history variable h after a transition is
executed. Each entry or internal transition assigns the name of the destination
mode to h, and exit transitions assign � to h. In addition, default entry and exit
transitions are added to the set of transitions of the mode. These default tran-
sitions do not a�ect the history variable and allow us to interrupt an execution
and then resume it later from the same point.

The default entry and exit transitions are added in the following way. For
each submode N of M , the closure adds a default exit transition from N:dx to
M:dx. This transition does not change any variables of the mode and is always
enabled. Default entry transitions are used to restore the local control state of
M . A default entry transition that leads from a default entry ofM to the default
entry of a submode N is enabled if h = N . Furthermore, we make sure that the
default entry transitions do not interfere with regular entry transitions originat-
ing from de. The closure changes each such transition so that it is enabled only
if h = �. The closure construction for the mode DynamicController introduced
in Section 2 is illustrated in Figure 6.

Operational semantics. An operational view of a closed mode M with the
set of variables V consists of a continuous relation RC and, for each pair c1 2 E,
c2 2 X , a discrete relation RD

c1;c2
.

du < 0
h =

h := BrakeControl

init

dx

de

BrakeControl

ε

h := BrakeControl

dx
dx

d
h:=ThrottleControl

u 0

h = ThrottleControl

u < 0 h =

ThrottleControl dede

ε

u 0

h :=ThrottleControl

h = BrakeControl

≥

∧

≥ ∧

Fig. 6. Closed modes

The relation RC � QV �FV gives, for every data state of the mode, the set of
ows from this state. By de�nition, if the control state of the mode is not at dx,
the set of ows for the state is empty. RC is obtained from the constraints of a
mode and relations SM:RC of its submodes. Given a data state s of a mode M ,
(s; f) 2 RC i� f satis�es the constraints of M and, if N is the active submode
at s, (s; f), restricted to the global variables of N , belongs to N:RC .

The relation RD
e;x, for each entry point e and exit point x of a mode, com-

prises macro-steps of a mode starting at e and ending at x. A macro step con-
sists of a sequence of micro-steps. Each micro-step is either a transition of the
mode or a macro-step of one of its submodes. Given the relations RD

e;x of the
submodes of M , a micro-execution of a mode M is a sequence of the form
(e0; s0); (e1; s1); : : : ; (en; sn) such that every (ei; si) is a state of M and for even
i, ((ei; si); (ei+1; si+1)) is a transition ofM , while for odd i, (si; si+1) is a macro-
step of one of the submodes of M . Given such a micro execution of M with
e0 = e 2 E and en = x 2 X , we have (s0; sn) 2 RD

e;x. To illustrate the notion of
macro-steps, consider the closed mode DynamicController from Figure 6. Con-
sidering only the control points, we have the following micro-execution when
u > 0 and uc < maxThrottle: init, ThrottleNormal.de, ThrottleNormal.dx, dx.
For every u; uc satisfying the above inequalities this micro-execution gives us a
macro-step in RD

init;dx.
The operational semantics of the mode M consists of its control points

E [X , its variables V and relations RC and RD
e;x. The operational semantics

of a mode de�nes a transition system R over the states of the mode. We write

(e1; s1)
o
!(e2; s2) if (s1; s2) 2 RD

e1;e2
, and (dx; s1)

f
!(dx; s2) if (s1; f) 2 RC , where

f is de�ned on the interval [0; t] and f(t) = s2. We extend R to include environ-
ment steps. An environment step begins at an exit point of the mode and ends
at an entry point. It represents changes to the global variables of the mode by
other components while the mode is inactive. Private variables of the mode are
una�ected by environment steps. Thus there is an environment step (x; s)

"
!(e; t)

whenever x 2 X , e 2 E, and s[Vp] = t[Vp]. We let � range over FV [fo; "g. An

execution of a mode is now a path through the graph of R:

(e0; s0)
�1! (e1; s1)

�2! : : :
�n!(en; sn):

Trace semantics. To be able to de�ne a re�nement relation between modes,
we consider a trace semantics for modes. A trace of the mode is a projection of
its executions onto the global variables of the mode. The trace semantics for M
is given by its control points E and X , its global variables Vg , and its set of its
traces LM .

In de�ning compositional and hierarchical semantics, one has to decide, what
details of the behavior of lower-level components are observable at higher levels.
In our approach, the e�ect of a discrete step that updates only local variables of
a mode is not observable by its environment, but stoppage of time introduced
by such a step is observable. For example, consider two systems, one of which
is always idle, while the other updates a local variable every second. These two
systems are di�erent, since the second one does not have ows more than one
second long. De�ning a modular semantics in a way that such distinction is not
made seems much more di�cult.

3.2 Trace semantics for agents

An execution of an agent follows a trajectory, which starts in one of the initial
states and is a sequence of ows interleaved with discrete updates to the variables
of the agent. An execution of A is constructed from the relations RC and RD of
its top-level mode. For a �xed initial state s0, each mode M 2 TM starts out
in the state (initM ; sM), where initM is the non-default entry point of M and
s0[M:V] = sM . Note that as long as there is a mode M whose control state is
at initM , no continuous steps are possible. However, any discrete step of such a
mode will come from RD

initM ;dx and bring the control state ofM to dx. Therefore,
any execution of an agent A = hTM; V; Ii with jTM j = k will start with exactly
k discrete initialization steps. At that point, every top-level mode of A will be
at its default exit point, allowing an alternation of continuous steps from RC

and discrete steps from RD
de;dx. The choice of a continuous step involving all

modes or a discrete step in one of the modes is left to the environment. Before
each discrete step, there is an environment step, which takes the control point
of the chosen mode from dx to de and leaves all the private variables of all
top-level modes intact. After that, a discrete step of the chosen mode happens,
bringing control back to dx. Thus, an execution of A with jTM j = k is a sequence

s0
o
! s1

o
! : : : sk

�1! sk+1
�2! : : : such that

{ The �rst k steps are discrete and initialize the top-level modes of A.
{ for every i � k, one of the following holds:

� the ith step is a continuous step, in which every mode takes part, or
� the ith step is a discrete environment step, or
� the ith step is a discrete step by one of the modes and the private vari-
ables of all other modes are unchanged.

...

...

...

...

...... ...N1<
M

k

M

k M11 M1

M

M M

C1

N

1 k < Nk< N1

<

<
C

M

1

Mk Mk

C2

C2

Fig. 7. Compositionality rules for modes

Note that environment steps in agents and in modes are di�erent. In an agent,
an environment step may contain only discrete steps, since all agents participate
in every continuous step. The environment of a mode can engage in a number
of continuous steps while the mode is inactive.

A trace of an agent A is an execution of A, projected onto the set of its
global variables. The denotational semantics of an agent consists of its set of
global variables Vg and its set of traces LA.

Trace semantics for modes and agents can be related to each other in an
obvious way. Given an atomic agent A whose behavior is given by a mode M ,
we can obtain a trace of A by taking a trace of M and erasing the information
about the control points from it.

3.3 Compositionality results

We show that our semantics is compositional for both modes and agents. First,
the set of traces of a mode can be computed from the de�nition of the mode
itself and the semantics of its submodes. Second, the set of traces of a composite
agent can be computed from the semantics of its sub-agents.

Mode Re�nement. The trace semantics leads to a natural notion of re�ne-
ment between modes: a mode M re�nes N if it has the same global variables
and control points, and every trace of M is a trace of N . A mode M and a mode
N are said to be compatible if M:Vg = N:Vg , M:E=N:E andM:X=N:X . Given
two compatible modes M and N , M re�nes N , denoted M�N , if LM�LN .

The re�nement operator is compositional with respect to the encapsulation.
If, for each submode Ni of M there is a mode N 0

i such that Ni � N 0

i , then we
have that M � M 0, where M 0 is obtained from M by replacing every Ni with
N 0

i . The re�nement rule is explained visually in Figure 7, left.
A second re�nement rule is de�ned for contexts of modes. Informally, if we

consider a submode N within a mode M , the remaining submodes of M and the
transitions of M can be viewed as an environment or mode context for N .

As with modes, re�nement of contexts is also de�ned by language inclusion
and is also compositional. If a context C1 re�nes another context C2, then insert-
ing modes M1; : : : ;Mk into the two contexts preserves the re�nement property.
A visual representation of this rule is shown in Figure 7, right. Precise statements
of the results can be found in [4].

Compositionality of agents. An agent is, in essence, a set of top level
modes that interleave their discrete transitions and synchronize their ows. The

compositionality results for modes lift in a natural way to agents too. The op-
erations on agents are compositional with respect to re�nement. An agent A
and an agent B are said to be compatible if A:Vg = B:Vg . Agent A re�nes a
compatible agent B, denoted A�B, if LA�LB . Given compatible agents such
that A�B;A1�B1 and A2�B2, let V1 = fx1; : : : ; xng; V2 = fy1; : : : ; yng be in-
dexed sets of variables with V1 � A:V and let Vh � A:V . Then AnfVhg �
BnfVhg; A[V1 := V2] � B[V1 := V2] and A1jjA2 � B1jjB2

4 The Charon Toolkit

In this section we describe the Charon toolkit. Written in Java, the toolkit
features an easy-to use graphical user interface, with support for syntax-directed
text editing, a visual input language, a powerful type-checker, simulation and a
plotter to display simulation traces. The Charon GUI uses some components
from the model checker jMocha [3], and the plotter uses a package from the
modeling tool Ptolemy [12].

The editor windows highlight theCharon language keywords and comments.
Parsing on the y can be enabled or disabled. In case of an error while typing,
the �rst erroneous token will be highlighted in red. Further, a pop up window
can be enabled that tells the user what the editor expects next. Clicking one of
the pop up options, the associated text is automatically inserted at the current
cursor position. This allows the user not only to correct almost all syntactic
errors at typing but also to learn the Charon language.

The Charon toolkit also includes a visual input language capability. It al-
lows the user to draw agent and mode de�nitions in a hierarchical way, as shown
in Figures 1 { 5. The interpreter of the visual input translates the speci�cation
into text-based Charon source code using an intermediate XML-based repre-
sentation. The visual input tool is depicted in Figure 8.

Once an edited and saved Charon language �le exists, the user can simulate
the hybrid system. In this case the Charon toolkit calls the parser and the type
checker. If there are no syntactic errors, it generates a project context that is
displayed in a separate project window that appears on the left hand side of the
desktop, as shown in Figure 9.

The project window displays the internal representation of Charon in a
convenient tree format. Each node in the tree may be expanded or collapsed by
clicking it. The internal representation tree consists of two nodes: agents and
modes. They are initially collected from the associated Charon �le.

A Charon speci�cation describes how a hybrid system behaves over the
course of time. Charon's simulator provides a means to visualize a possible
behavior of the system. This information can be used for debugging or simply
for understanding in detail the behavior of the given hybrid system description.

The simulation methodology used in the Charon toolkit, which is depicted
in Figure 10, resembles concepts in code generation from a speci�cation. As
Charon allows to write external Java source code the simulator needs to be an
executable Java program. Charon has a set of Java �les that represent a core

Fig. 8. The visual input tool of Charon: The agent car is de�ned as the composition
of two other agents. The arrows depict variable renamings.

simulator. Given a Charon �le, Java �les are automatically generated which
represent a Java interpretation of the Charon speci�cation of a hybrid system.
They are used in conjunction with the prede�ned simulator core �les and the
external Java source code to produce a simulation trace.

The Charon plotter allows the visualization of a simulation trace generated
by the simulator. It draws the value of all selected variables using various colors
with respect to time. It also highlights the time that selected transitions have
been taken. A screen-shot of the plotter is given in Figure 11.

More information on the Charon toolkit, along with a preliminary release,
is available at www.cis.upenn.edu/mobies/charon/.

5 Research in Formal Analysis

Since Charon models have a precise semantics, they can be subjected to a vari-
ety of analyses. In this �nal section we will give a brief overview of our ongoing
research e�orts in formal analysis methods for hybrid systems. These include
new techniques for accurate and e�cient simulation, reachability analysis to de-
tect violations of safety requirements, and abstraction methods for enhancing
the applicability of analysis techniques.

Accurate event detection. The problem of accurately detecting and local-
izing the occurrence of transitions when simulating hybrid systems has received
an increased amount of attention in recent years. This is partially motivated
by the observation that the commonly used technique of simply checking the
value of the guards at integration points can cause the simulator not to detect
enabling of transitions. It has been shown that such inaccuracies can lead to
grossly inaccurate simulations due to the discontinuous nature of hybrid sys-

Fig. 9. The editor frame on the right hand side of the Charon desktop and the cor-
responding project frame on the left

CHARON
model

external
Java

classes

Java
simulation
core files

files
simulation

Java
generated

Java

Virtual

Machine

Fig. 10. The simulation methodology of Charon

tems. We have developed a method [15] which is guaranteed to detect enabling
of all transitions. Our method has the advantage of being the only method which
can properly detect such events when they occur in the neighborhood of model
singularities. We select our step size in such a way as to steer the system toward
the event surface without overshooting it.

Multirate simulation. Many systems, especially hierarchical ones, nat-
urally evolve on di�erent time scales. For example the center of mass of an
automobile may be accelerating relatively slow compared to the rate at which
the crank shaft angle changes; yet, the evolution of the two are intimately cou-
pled. Despite this disparity, traditional numerical integration methods force all
coupled di�erential equations to be integrated using the same step size. The
idea behind multi-rate integration method is to use larger step sizes for the slow
changing sets of di�erential equations and smaller step sizes for the di�erential

Fig. 11. A plot of a simulation trace of a three car vehicle-to-vehicle coordination
model. The three graphs represent the x-coordinates of the three respective cars.

equations evolving on the fast time scale. Such a strategy increases e�ciency
without compromising accuracy. To implement such a schme we need to show
how to accommodate coupling between the sets of fast and slow equations when
they are integrated asynchronously and how to schedule the order of integration.
In [14] we resolve these issues and introduce a multirate algorithm well suited
to hybrid system simulation.

Distributed Simulation. Another way for simulation speed-up is to uti-
lize more computing resources in a multi-processing platform by exploiting the
inherent modularity of systems described in Charon. Each agent of Charon
has di�erent dynamics and thus does not have to be integrated at the same
speed. The challenge is to determine an e�ective scheme for communication of
the values of the shared variables among the various agents simulated on di�erent
processing units.

Requiem for reachability analysis. Formal veri�cation of safety require-
ments of hybrid systems requires the computation of reachable states of continu-
ous systems. Requiem is a Mathematica notebook which, given a nilpotent linear
di�erential equation and a set of initial conditions, symbolically computes the
set of reachable states exactly. Given various classes of linear di�erential equa-
tions and semi-algebraic sets of initial conditions, the computation of reachable
sets can be posed as a quanti�er elimination problem in the decidable theory of
the reals as an ordered �eld. Given a nilpotent system and a set de�ned by poly-
nomial inequalities, Requiem automatically generates the quanti�er elimination
problem and invokes the quanti�er elimination package in Mathematica 4.0. If
the computation terminates, it returns a quanti�er free formula describing the
reachable set. More details can be found in [21]. The entire package is available
for free at www.seas.upenn.edu/hybrid/requiem.html.

Predicate Abstraction. Abstraction is emerging as the key to formal ver-
i�cation as a means of reducing the size of the system to be analyzed [11]. The
main obstacle towards an e�ective application of model checking to hybrid sys-
tems is the complexity of the reachability procedures which require expensive
computations over sets of states. For analysis purposes, it is often useful to ab-

stract a system in a way that preserves the properties being analyzed while
hiding the details that are of no interest [5]. We build upon notion of predicate
abstraction [28] for formal analysis of hybrid systems. Using a set of boolean
predicates, that are crucial with respect to the property to be veri�ed, we con-
struct a �nite partition of the state space of the hybrid system. The states of the
abstracted system correspond to truth assignments to the set of predicates. By
using conservative reachability approximations we guarantee that if the prop-
erty holds in the abstracted system, then it also holds in the concrete system
represented by the hybrid system. Conversely, if the property does not hold in
the abstract system, then it may or may not hold in the concrete system. In
the latter case, the concrete system will be checked against the counter-example
found during the model checking of the abstract system. If a trace correspond-
ing to the counter-example is feasible in the concrete system we have established
the property to be false. This procedure can also help discover new predicates
that can be used to re�ne the abstraction, as it is suggested in [9] for analysis
of discrete systems. The combination of this method for �nding new predicates
and our abstraction procedure thus provides an e�ective way to apply a �nite
state model checking approach to hybrid systems.

Multi-robot coordination. We develop a hybrid system framework and
the software architecture for the deployment of multiple autonomous robots
in an unstructured and unknown environment with applications ranging from
scouting and reconnaissance, to search and rescue and manipulation tasks. Our
software framework allows a modular and hierarchical approach to programming
deliberative and reactive behaviors in autonomous operation. Formal de�nitions
for sequential composition, hierarchical composition, and parallel composition
allow the bottom-up development of complex software systems. We demonstrate
the algorithms and software on an experimental testbed that involves a group
of car-like robots using a single omni-directional camera as a sensor without
explicit use of odometry. More information can be found in [2, 16].

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3{34, 1995.

2. R. Alur, A. Das, J. Esposito, R. Fierro, Y. Hur, G. Grudic, V. Kumar, I. Lee, J. P.
Ostrowski, G. Pappas, J. Southall, J. Spletzer, and C. J. Taylor. A framework and
architecture for multirobot coordination. In Proc. ISER00, Seventh Intl. Symp. on

Experimental Robotics, pages 289{299, 2000.
3. R. Alur, L. de Alfaro, R. Grosu, T.A. Henzinger, M. Kang, R. Majumdar, F. Mang,

C.M. Kirsch, and B.Y. Wang. Mocha: A model checking tool that exploits design
structure. In Proc. 23rd Intl. Conf. on Software Engineering, pages 835{836, 2001.

4. R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional re�nement for hierar-
chical hybrid systems. In Hybrid Systems : Computation and Control, LNCS 2034,
pages 33{48, 2001.

5. R. Alur, T. Henzinger, G. La�erriere, and G. Pappas. Discrete abstractions of
hybrid systems. Proceedings of the IEEE, 88(7):971{984, July 2000.

6. A. Balluchi, L. Benvenuti, M. Di Benedetto, C. Pinello, and A. Sangiovanni-
Vicentelli. Automotive engine control and hybrid systems: Challenges and op-
portunities. Proceedings of the IEEE, 88(7):888{912, July 2000.

7. G. Booch, I. Jacobson, and J. Rumbaugh. Uni�ed Modeling Language User Guide.
Addison Wesley, 1997.

8. A. Chutinan and B. Krogh. Veri�cation of polyhedral-invariant hybrid automata
using polygonal ow pipe approximations. In Hybrid Systems : Computation and

Control, LNCS 1569, 1999.
9. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction re�nement. In Computer Aided Veri�cation, pages 154{169, 2000.
10. E.M. Clarke and R.P. Kurshan. Computer-aided veri�cation. IEEE Spectrum,

33(6):61{67, 1996.
11. S. Das, D. Dill, and S. Park. Experience with predicate abstraction. In Computer

Aided Veri�cation, 11th Intl. Conf., LNCS 1633, pages 160{171, 1999.
12. J. Davis, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L. Muliadi,

S. Neuendor�er, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Overview of the
Ptolemy project. Technical Report UCB/ERL M99/37, 1999.

13. S. Engell, S. Kowalewski, C. Schulz, and O. Stursberg. Continuous-discrete inter-
actions in chemical processing plants. Proc. of the IEEE, 88(7):1050{1068, 2000.

14. J. Esposito and V. Kumar. E�cient dynamic simulation of robotic systems with
hierarchy. In Intl. Conf. on Robotics and Automation, pages 2818{2823, 2001.

15. J. Esposito, V. Kumar, and G. Pappas. Accurate event detection for simulating
hybrid systems. In Hybrid Systems : Computation and Control, LNCS 2034, pages
204{217, 2001.

16. R. Fierro, A. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of formations
of robots. Proc. Int. Conf. Robot. Automat., pages 157{162, 2001.

17. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming, 8:231{274, 1987.
18. T.A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: the next generation. In Proc.

TACAS'95, LNCS 1019, pages 41{71, 1995.
19. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
20. G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,

23(5):279{295, 1997.
21. G. La�erriere, G. Pappas, and S. Yovine. Symbolic reachability computation for

families of linear vector �elds. Journal of Symbolic Computation, 2001.
22. K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Springer Intl. Journal

of Software Tools for Technology Transfer, 1, 1997.
23. E.A. Lee. What's ahead for embedded software. IEEE Computer, pages 18{26,

September 2000.
24. N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg. Hybrid I/O automata. In

Hybrid Systems III: Veri�cation and Control, LNCS 1066, pages 496{510, 1996.
25. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In Real-Time:

Theory in Practice, REX Workshop, LNCS 600, pages 447{484, 1991.
26. K. McMillan. Symbolic model checking: an approach to the state explosion problem.

Kluwer Academic Publishers, 1993.
27. R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.
28. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc.

9th Intl. Conf. on Computer Aided Veri�cation, LNCS 1254, 1997.
29. C. Tomlin, G. Pappas, and S. Sastry. Conict resolution for air tra�c management:

A study in multi-agent hybrid systems. IEEE Trans. Automatic Control, 43(4):509{
521, 1998.

