
Litmus Tests for Comparing Memory Consistency Models:
How Long Do They Need to Be?∗

Sela Mador-Haim
University of Pennsylvania

Rajeev Alur
University of Pennsylvania

Milo M. K. Martin
University of Pennsylvania

ABSTRACT
Memory consistency litmus tests are small parallel programs
that are designed to illustrate subtle differences between
memory consistency models by exhibiting different outcomes
for different models. In this paper, we show that for a class
of memory models that is restricted yet expressive enough
to include all store-atomic hardware memory models, lit-
mus tests of a bounded size are sufficient for illustrating dif-
ferences between memory consistency models in this class.
We establish a bound of two threads and no more than six
memory access instructions for differentiating litmus tests
in this class of models. Thus, we can prove equivalence of
two specification of memory consistency models in this class
by exploring a bounded number of litmus tests. We build a
tool for comparing memory models based on this result, and
we use the tool to explore and map the space of this class of
models.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures (Mul-
tiprocessors)]: Parallel processors; D.1.3 [Concurrent
Programming]: Parallel programming

General Terms
Design, Theory, Verification

Keywords
Memory Consistency Models, Concurrency, Litmus Tests

1. INTRODUCTION
Well-defined memory consistency models are required for

reasoning about the correctness of multi-core hardware,
parallel software, and compiler optimizations. Developing

∗The authors acknowledge the support of NSF grants CCF-
0905464 and CCF-0644197, and of the Gigascale Systems
Research Center, one of six research centers funded under
the Focus Center Research Program (FCRP), a Semicon-
ductor Research Corporation entity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2011, June 5-10, 2011, San Diego, California, USA.
Copyright 2011 ACM ACM 978-1-4503-0636-2 ...$10.00.

Test A
T1 T2
Write X ← 1 Write Y ← 2
Fence Read Y → r2
Read Y → r1 Read X → r3
Outcome: r1 = 0; r2 = 2; r3 = 0

T1

Write X← 1

Fence

Read Y→ r1

T2

Write Y← 2

Read Y→ r2

Read X→ r3

Read-from
Happens before

Figure 1: A litmus test for TSO

and understanding formal specifications of hardware mem-
ory models is a challenge due to the subtle differences in
allowed reorderings. Architecture manuals include litmus
tests, which are short parallel programs that can be used
to identify the effect of subtle differences between memory
consistency models on program execution, such as the
program in Figure 1. They provide guidance to hardware
developers for design validation and to software developers
for writing multi-threaded programs.

Our recent work showed memory consistency models can
be contrasted by systematically enumerating litmus tests of
a bounded length [10]. We showed our technique can aid
the process of developing specifications for hardware-level
memory models, and we provided case studies where the
technique detected subtle differences that might have gone
undetected using a manually selected set of litmus tests.
This technique, however, can not prove the equivalence of
two models. Conventional wisdom is that contrasting litmus
tests are typically short, but a bound for litmus tests has not
been established.

Without restricting the class of memory models, there
is no bound for the size of contrasting litmus tests. For
example, for any bound k, we can define two models that
behaves differently only for one specific test of size k + 1.
Therefore, we need to consider a more restricted class of
memory models.

This paper defines a class of memory models that is
limited to show a bound, yet expressive enough to contain
store-atomic hardware memory models, including Sun’s
SPARC [15], Intel’s x86 [7] and Alpha [13]. This class is
defined using a must-not-reorder function that specifies
which instructions in the program cannot be reordered.
We prove that short litmus tests consisting of two threads
and up to three memory access instructions (reads and
writes) in each thread are sufficient to illustrate differences
between any two models in this class. Furthermore, we
show that the number of non-memory-access operations is

1

also bounded and depends on the choice of predicates in
the must-not-reorder function. In addition, we show that
instantiations of seven different templates are sufficient for
contrasting all memory models in this class. Consequently,
we reduce the number of litmus tests necessary for equiva-
lence checking of two memory models by several orders of
magnitude over naive enumeration.

We explore this class of memory models by testing for
equivalence between pairs of models in this class. We select
a set of predicates that specifies the commonly used prop-
erties of memory models including reordering of different
memory access instructions, fences, and data dependencies.
We show that for this class of memory models, consisting
of 90 different models, there are eight pairs of equivalent
models, and identify nine litmus tests that are sufficient for
differentiating all memory models in this class.

The main contributions of this paper are: (1) proving a
theorem that bounds the size of contrasting litmus tests,
which justifies the conventional wisdom regarding the size
of litmus tests; (2) describing a tool for comparing mem-
ory consistency models, which works in a reasonable time
(seconds) and can show the equivalence between memory
models based on the theorem we proved; and (3) exploring
the space of memory models in our class of models to show
how different choices in the specification affect the models
and which models are equivalent.

2. SPECIFYING MEMORY MODELS
This section defines the class of memory models studied

in this paper. We provide a definition for an expressive
but limited class of memory models, describe the predicates
used for defining the models, and show how different known
memory models are defined in our framework.

2.1 Program Executions
A parallel program P is a set of concurrently executed

threads, where each thread is a sequence of instructions. In
the context of memory models, we classify instructions into
two groups: memory access instructions that read and write
to memory, and non-memory access instructions, consisting
of all other instruction including memory fences, arithmetic
operations, and branches.

Memory consistency models define the possible behaviors
of a parallel program and constrain the values each read may
observe. A general way to define a memory model is as a
set of allowed program executions. Informally, a program
execution specifies the sequence of instructions that were
executed in each thread, annotated with the actual values for
all the involved registers. In each step, a program executes
an instruction with concrete values for all of the involved
registers. An instance of instruction i, annotated with the
values for all the involved registers, is called an instruction
execution.

A thread may exhibit many different executions, because
an execution usually depends on the other threads. A thread
execution, αt is a sequence of instruction executions in the
order they are executed in thread t. In case an instruction
is executed more than once (due to a loop), there can be
several instruction executions that correspond to the same
instruction, so loops are unrolled. As an example for thread
executions, suppose a thread t reads from memory to regis-
ters r1 and r2, computes r3 = r1 + r2, and then writes r3
to memory. An execution αt of that thread could have any

value for r1 and r2, but each write would always be r1 + r2.
The order of two instruction executions x and y with re-

spect to a given thread execution αt is called program order.
We use the notation x < y when x precedes y in αt. A
program execution, αP , associates a thread execution with
each thread in a program P . A memory model M is defined
as a set of allowed program executions. For two memory
models, M1 and M2, we say that M1 ⊆M2 if and only if for
every program execution αP , αP ∈M1 implies αP ∈M2. If
M1 ⊆M2 and M2 ⊆M1, the two models are equivalent.

2.2 The Class of Memory Models
Our approach is to consider a class of memory models

that is limited enough to bound the size of contrasting lit-
mus tests yet expressive enough to include most existing
hardware memory models. The class of memory models we
consider is a class of relaxed memory models that allow re-
orderings of local instructions. Memory access operations
(read and write) may be performed out of program order.
The types of instructions that can and cannot be reordered
vary between different memory models. We allow a thread
to read its own writes early, but do not allow it to read
other threads’ writes early [1]. Thus, this class of memory
models is expressive enough to include most hardware mem-
ory models, including Sequential Consistency (SC) [9], Sun’s
SPARC [15] and Intel’s x86 [7], but not non-store-atomic
models like PowerPC [12].

These memory models are defined using a must-not-
reorder function F that maps a pair of instructions to a
boolean. Intuitively, if F (x, y) is true for instructions x
and y of the same thread, these instructions cannot be
reordered and must be executed in program order. Based
on the choice of F , we define which program executions are
allowed, using two relations between instruction executions
in a program execution αP : A read-from map 7→, mapping
reads to the writes they are reading from, and a happens-
before order ⇒, representing a global order of instruction
executions in the program.

Given a program execution αP and a must-not-reorder
function F , a relation 7→ is a read-from relation between
instruction executions in αP , if: (1) if x 7→ y, then x is a
write, y is a read, and the value read by y is same as the
value written by x; (2) if x 7→ y and z 7→ y, then x = z
(only one write is mapped to each read); (3) if x is a read
and there is no write y such that y 7→ x, then x reads the
initial value; and (4) if x > y, then x 67→ y (cannot read from
a future write in the same thread).

Given a program execution αP , a must-not-reorder func-
tion F and a read-from map 7→, a happens before relation
⇒ is a partial order between instruction executions in αP

with the following properties:
1. Program order: If F (x, y) and y > x then x⇒ y.
2. Write-write: If x and y are both writes to the same

address, then either x⇒ y or y ⇒ x.
3. Write-read: If x 7→ y and x and y are from different

threads, then x⇒ y.
4. Read-Write: If x is a read and y is a write to the

same address such that y 67→ x, and there is no write z such
that z 7→ x and y ⇒ z, then x⇒ y.

5. Ignore local: If x > y then x 6⇒ y.
A program execution αP is allowed in MF , the model

defined by F , if for some read-from relation 7→ for αP there
is a happens-before relation ⇒ which is acyclic.

2

2.3 Must-not-reorder Function Predicates
The must-not-reorder function F we use in our class of

models is a quantifier-free positive boolean formula, con-
structed from a set of predicates D on instruction execu-
tions. Predicates are either unary or binary, and are defined
for instruction executions x, y in αP .

For example, some commonly used predicates are:
Read(x), Write(x), F ence(x) — the instruction is a read,
a write or a fence, DataDep(x, y), ControlDep(x, y) —
data and control dependence, and SameAddr(x, y) — x
and y access the same address.

Our analysis is not restricted to a specific set of predicates.
However, we require all predicates to preserve register, ad-
dress, and value symmetries for read and write operations.

2.4 Memory Model Examples
Using the must-not-reorder function, we can define differ-

ent hardware models. For example, Sequential Consistency
(SC) does not allow any reordering and is therefore specified
using FSC = True.

IBM370’s memory model allows reordering writes after
reads, except reads to the same address. FIBM370(x, y) =
(Write(x) ∧ Read(y) ∧ SameAddr(x, y)) ∨ (Write(x) ∧
Write(y)) ∨Read(x) ∨ Fence(x) ∨ Fence(y).

SPARC’s Total Store Order (TSO) allows reordering
writes after reads, including reads to the same address. In
case a write is ordered after a read to the same address,
there is an effect of load forwarding, where a load observes
local writes before they become visible to other threads.
As seen in Figure 1, the ⇒ relation does not include
write-read edges between writes and reads in the same
thread. There is no happens-before edge from Write Y ← 2
to Read Y → r2 and thus ⇒ is acyclic. FTSO(x, y) =
(Write(x) ∧Write(y)) ∨Read(x) ∨ Fence(x) ∨ Fence(y).

Finally, SPARC’s Relaxed Memory Order (RMO) allows
reordering everything except fences, dependent instructions
and read/write instructions after a write to the same
address. FRMO(x, y) = (Write(y) ∧ SameAddr(x, y)) ∨
Fence(x) ∨ Fence(y) ∨DataDep(x, y) ∨ ControlDep(x, y).

3. SMALL LITMUS TEST THEOREM
Given two memory model specifications, we want to find

whether they are equal or different. We show that for the
family of memory models defined in Section 2.2, litmus tests
with a bounded size are sufficient. We find the bound for
these tests in terms of the number of memory accesses in
the test and number of threads.

Theorem 1. For every two memory models, M1 and M2,
that are defined via a must-not-reorder function, if M2 6⊆
M1, then there is a test P and an execution αP with two
threads and up to six memory access operations, such that
αP 6∈M1, αP ∈M2.

Section 3.1 defines conflict cycles, and proves that for any
two observably different models, there is an execution con-
sisting only of one conflict cycle that is feasible in one model
but not in the other. Section 3.2 constructs a minimal test
from a conflict cycle, and thus proves Theorem 1. Section 3.3
shows a bound for non-memory-access instructions, and Sec-
tion 3.4 shows how to further reduce the number of litmus
tests.

3.1 Conflict Cycle
Given two memory models M1 and M2, if M2 6⊆ M1,

there is a test P and execution αP such that αP ∈ M2 and
αP 6∈ M1. In this case, there is a read-from map 7→ and a
happens-before relation ⇒2 for αP and M2, such that ⇒2

is acyclic, and for every read-from map (including 7→) and
⇒1 for αP and M1, ⇒1 is cyclic.

Given⇒1, a happens-before relation for M1, αP , 7→, let C
be the set of instruction executions in the smallest cycle in
⇒1. We construct the following execution, αP ′ , based on
the instructions in C:

1. If x ∈ C then x ∈ αP ′ .
2. If x is a write, y is a read and x ⇒1 y, the value read

by y in αP ′ is the value written by x
3. If x is a read, y is a write and x ⇒1 y, the value read

by x in αP ′ is the initial value.
4. If x, y are write instructions and x⇒1 y, we add a new

read instruction z at the end of the thread of x, reading the
value written by y.

Lemma 1. αP ′ is in M2 but not in M1

Proof: ⇒2, the happens-before relation for M2 is acyclic,
and therefore the instructions in C do not form a cycle
in ⇒2. There are two instructions x, y ∈ C, such that
x ⇒1 y, x 6⇒2 y and there is no other instruction before
x connected to any instruction after y in the graph of ⇒2

(there is no bypass edge). We call this edge between x and
y a critical edge. The only source of difference between ⇒1

and ⇒2 is the difference in the must-not-reorder function,
and therefore x and y belong to the same thread.

The only edges αP ′ adds to C are due to the added read
operations. These operations have incoming edges but no
outgoing edges and therefore can not form a cycle. Hence,
αP ′ has an acyclic happens-before relation in M2.

For any happens-before relation⇒P ′ for αP ′ and M1 and
any x, y in C, if x ⇒1 y is a program order edge, then
x⇒P ′ y as well, because the must-not-reorder function stays
the same. If x is a write and y is a read, then x ⇒P ′ y
because y still reads the value written by x. If x is a read
and y is a write, then x ⇒P ′ y because x reads the initial
value and all writes precede it. If x and y are both writes,
x ⇒P ′ y as well, because the added read in x’s thread sees
the value of y, which is possible only if y precedes x. All the
edges in the cycle of⇒1 are preserved in⇒P ′ , and therefore
it is cyclic.

3.2 Constructing Minimal Test
A segment is a sequence of instructions, connected by

program-order edges, that starts with a memory access op-
eration (read or write), ends with a memory access, and
has no other memory access in between them. We can clas-
sify the segments according to the type of memory accesses:
read-read, read-write, write-read, and write-write.

A segment that contains a critical edge is a critical seg-
ment. We can now prove Theorem 1 by showing that for
each type of critical segment, we can construct a litmus test
with only two threads and up to six memory access opera-
tions, as illustrated in the diagrams in Figure 2.

Case 1. The critical segment is read-write. Use this
segment at thread T1. Add an identical segment for T2,
changing the address of the read to match the write in T1,
and the write to match the read in T1. Total number of
memory access operations: four.

3

Read x

Write y

Read y

Write X

Case 1

T2

Write X

Read y

Write y

Read x

Case 4

Write X

Write y

Write Z

Write W

Read Z Read X

Case 2

Read x

Read y Write X

Write y

T1 T2T1 T2 T1 T2

Case 3

Write X

Read x

Write y

Read y

Write X

Read x

T1 T2

Case 5

Seg A
(critical)

Copy of
Seg A Seg A

(critical)
Copy of
Seg A

Seg A
(critical)

Copy of
Seg A Seg A

(critical)

Seg B
Seg A
(critical)

Seg B

Copy of
Seg B

T1

Figure 2: Litmus test templates by critical segment

Case 2. The critical segment is a write-write. Use this
segment for thread T1, duplicate it for thread T2, switching
addresses. Add a read at the end of T1, reading the value
of the first write in T2, and a read at the end of T2, reading
the value of the first write in T1. Total number of memory
access operations: six.

Case 3. The critical segment is a read-read. Because
there are no inter-thread read-read edges in ⇒, there must
be either a write-write segment or both a write-read segment
W1, ...R1 and a read-write segment R2, ...W2 in the cycle.
In the latter case, according to the symmetry requirement in
Section 2.3, there is a symmetric segment R2′, ...W2′ such
that R2′ = R1. Therefore, we merge both segments into
a write-write segment: W1, ...R1, ...W2′. Use the read-read
segment for thread T1 and the write-write segment for thread
T2. Total number of memory access operations: four to five.
Case 4. The critical segment is a write-read to different

addresses. Use this segment as T1, duplicate it for T2, change
the read in T2 to match the address of the write in T1 and
vice versa. Each read gets the initial value. Total number
of memory access operations: four.
Case 5. Like Case 4, but write and read are both to

the same address. If there is a segment with a write and
then a read to the same address, there cannot be a memory-
access read-write edge involving this read because according
to our definition of a minimal cycle, the read should receive
the initial value, which is impossible in this case. So we
conclude there is another read-read or read-write segment
in the same thread.

1. If there is a read-read segment to two different ad-
dresses, merge it after the critical segment (combined
segment have three operations), and continue as in
Case 4. Total number of memory access operations:
six.

2. If there is a read-write segment, merge it after the
critical segment, resulting in a write-write segment.
Copy the read-write segment to T2, connect the end of
T1 with T2 using a write-read edge, and connect the
end of T2 with the beginning of T1 (adding a read at
the end of T2 as previously discussed). Total number
of memory access operations: six.

3.3 Local Segments
Theorem 1 bounds the number of threads and the number

of memory access operations (reads and writes) required in a
litmus test. However, additional instructions such as fences,
arithmetic operations or branches affect the dependency re-
lations between memory access instructions and therefore
may be required. The bound for these additional instruc-
tions depends on the specific choice of predicates in D.

For example, consider a hypothetical model with n special
fence instructions f1, ...fn and the predicate special(x, y)
which is true if either: (1) x is a memory access instruc-
tion and y = f1, (2) x = fn and y is a memory access, or (3)
x = fi and y = fi+1. Consider F1(x, y) = SameAddr(x, y)∨
special(x, y) and F2(x, y) = SameAddr(x, y). Any litmus
test contrasting F1 and F2 should include a local segment of
n+2 instructions such as Read X, f1, ...fn,Write y. There-
fore, the minimal number of non-memory access instructions
in a local segment depends on the choice of predicates and
the instruction set.

The length of local segments is bounded by the number
of equivalence classes of instructions according to our choice
of predicates. Given a set of predicates D, two instruction x
and y are equivalent with respect to D, x ≡D y if for every
predicate d ∈ D and every instruction z, d(x, z) = d(y, z)
and d(z, x) = d(z, y). Consider the memory model with a
must-not-reorder function F1, and a segment i1, ...in in a
minimal conflict cycle for this model. Because it is a seg-
ment in a cycle, for every two adjacent instructions ij , ij+1,
F1(ij , ij+1) is true. Suppose two instructions in the segment
are equivalent ij =D ik (1 < j < k < n), then F1(ij , ik+1)
is also true and therefore we can reduce the segment to
i1, ..ij , ik+1, ..in, in contradiction to the minimality of the
cycles. We conclude that a local segment cannot contain two
equivalent non-memory-access instructions, and therefore its
length is bounded by the number of equivalence classes for
these instructions.

3.4 Reducing the Number of Litmus Tests
A consequence of the proof of Theorem 1 in Section 3.2

is that not only we can bound the size of the litmus tests,
we can further reduce the number of litmus tests by explor-
ing the cases described in the proof of Theorem 1. There
are five different cases listed in the proof, and two of the
cases (Case 3 and Case 5) are split into two sub-cases, which
amounts to a total of seven templates. We can therefore
compare memory models by instantiating these seven tem-
plates with all possible local segments.

Two segments s1, s2 are equivalent with respect to D if
they are of the same length and for every pair of instructions
in s1, every predicate in D would have the same value as for
a pair of instructions in the same position in s2. Corollary 1
gives a bound for the number of tests as a function of the
number of distinct segments of each type.

Corollary 1. Suppose the number of distinct local seg-
ments of each type given by NWW , NWR, NRW , and NRR.
The total number of required tests is given by NRW +NWW +
NRR(NWW +NWR ×NRW) +NWR(1 +NRR +NRW)

4

Test L1
T1 T2
Write X ← 1 Read Y → r1
Write Y ← 1 Fence

Read X → r2
Outcome: r1 = 1; r2 = 0

Test L2
T1 T2
Write X ← 1 Read X → r1
Write X ← 2 Read X → r2

Outcome: r1 = 2; r2 = 0

Test L3
T1 T2
Write X ← 1 Read Y → r1
Fence Read X → r2
Write Y ← 2

Outcome: r1 = 2; r2 = 0

Test L4
T1 T2
Write X ← 1 Read Y → r1
Fence t1 = r1-r1+X
Write Y ← 2 Read [t1]→ r2

Outcome: r1 = 2; r2 = 0

Test L5
T1 T2
Read X → r1 Read Y → r2
Write Y ← 1 Write X ← 1

Outcome: r1 = 1; r2 = 1

Test L6
T1 T2
Read X → r1 Read Y → r2
t1 = r1-r1+1 t2 = r2-r2+1
Write Y ← t1 Write X ← t2

Outcome: r1 = 1; r2 = 1

Test L7
T1 T2
Write X ← 1 Write Y ← 1
Read Y → r1 Read X → r2

Outcome: r1 = 0; r2 = 0

Test L8
T1 T2
Write X ← 1 Write Y ← 1
Read X → r1 Read Y → r3
t1 = r1-r1+Y t2 = r3-r3+X
Read [t1]→ r2 Read [t2]→ r4

Outcome:
r1 = 1; r2 = 0; r3 = 1; r4 = 0

Test L9
T1 T2
Write X ← 1 Read Y → r2
Read X → r1 t2 = r2-r2+2
t1 = r1-r1+1 Write X → t2
Write Y ← [t1] Read X → r3
Outcome: r1 = 1; r2 = 1; r3 = 1

Figure 3: Contrasting litmus tests

As discussed in Section 3.3, it is sufficient to know the set
of predicates to bound the number of local segments. For
example, suppose the predicates are: Read(x), Write(x),
Fence(x), SameAddr(x, y) and DataDep(x, y). For read-
write segments, we need to consider segments with only
independent read and write, with dependent read and write,
and a segment with a fence between the read and the write.
For each of these three cases, we need to consider read and
write to the same address and to different addresses, so
NRW = 6 and similarly NRR = 6. For write-read and write
write segments we do not need to consider dependencies
(writes do not generate dependencies), so NWR = NWW =
4. According to Corollary 1, we need a total of 230 tests to
contrast memory models expressible with these predicates.
Similarly, without data dependencies, we need 124 tests.

A naive enumeration of all tests within the bounds of The-
orem 1 results in approximately million tests even without
dependencies. Our earlier work describes optimizations that
reduce the number of tests to several thousands [10]. This
paper improves upon earlier work by more than an order of
magnitude.

4. EXPERIMENTAL RESULTS

4.1 Implementation
We implemented a tool for contrasting memory model

specifications via systematic exploration of litmus tests.
This tool improves upon our previous work [10] by re-
ducing the number of tests using the method described
in Section 3.4. The memory models are specified using a
must-not-reorder function and the axioms in Section 2.2.
We use the SAT solver mini-sat [6] to test if a litmus test is
admissible for a given memory model.

�����
�����
���

�����
�����

��

�����

�� �����

��

�����
�����

�	

�����

��

�����
�����

��

�����
�����

�	��

�����

��

�����

�	

�����

��

�����

�	

�����

�

�����

�	

��

�����
�����

�	

����

�����

�	

��

�����

�	

�����

�	

����

��

�����

��

�� ��

�����

���� ��

�����

��

��

�����

��

�

�����
��

��

��

�����
������

��

����

�����

��

��

�����

��

�����
�

��

��

�����

�� ��

�����

���� ���� ��

��

�����
������

���� ��

��

�� ��

�� ����

����

Figure 4: Relation between explored models (with-
out data dependencies)

4.2 Exploring the Space of Memory Models
Using this tool, we performed an exhaustive exploration

of all memory models that are expressible using the frame-
work described in Section 2.2, with the predicates: Read(x),
Write(x), Fence(x), SameAddr(x, y) and DataDep(x, y).
This set of predicates is sufficient to describe most common
properties of memory models, including data dependencies.
Models expressible in this framework include IBM370, In-
tel’s x86, SPARC’s TSO, PSO and variants of RMO and
Alpha (for a complete specification of RMO and Alpha, we
need to add control dependencies, which were not imple-
mented in the tool but are supported by our framework).
As discussed in Section 3.4, it is sufficient to check 230 lit-
mus tests to contrast all models when using the above set of
predicates.

Based in the selected predicates, there are five possible
choices for each of the four pairs of memory operations
(write-write, write-read, read-write and read-read). The
options to allow reordering are: (0) always reorder, (1)
reorder accesses to different addresses, (2) reorder if there
are no data dependencies, (3) reorder if different addresses
and no data dependencies, and (4) never reorder.

Some of the above options can be eliminated in certain
cases. Reordering read-write and write-write with the same
address violates single-thread consistency and therefore we
do not consider them. Additionally, there is no need to
consider dependencies for write-read and write-write. Af-
ter eliminating these cases, there are two choices for write-
write, three choices for write-read and read-write, and all
five choices are available for read-read, which result in 90
possible memory models.

Using our tool, we compared these 90 models with each
other. The tool tested whether each model is equivalent or

5

strictly stronger than the other models, and which litmus
tests can be used to contrast each pair of models. Compar-
ing each pair of models took a few seconds, and a pairwise
comparison of all 90 models completed in 20 minutes.

Out of the 90 different models, eight pairs of models are
equivalent. All equivalent pairs of models differ only with
the choice of whether to allow reordering of writes with
later reads to the same address. Furthermore, a set of nine
different litmus tests is sufficient to contrast any two non-
equivalent memory models in this space. Figure 3 shows
the set of nine litmus tests. The relationships between the
explored models is shown in Figure 4. The direction of the
arrows is from weaker to stronger models, and the labels
on the edges are the litmus tests that distinguish between
the models. Due to space considerations, Figure 4 does not
include models with data dependencies.

A further analysis of this minimal set of litmus tests shows
that tests L1 to L7 in Figure 3 correspond directly to the
choices in model enumeration. For example, test L5 checks if
a read can be reordered after an independent write to a dif-
ferent address, and test L6 checks if a read can be reordered
after a dependent write to the same address (ignoring data
dependencies). One exception is in the case of reordering
writes after later reads to the same address. As shown in
Case 5 of the proof of Theorem 1, when the critical segment
is a write-read segment to the same address, either a read-
read or a write-read consecutive segment is required to close
a cycle. This leads to litmus tests L8 and L9 in Figure 3,
where Test L8 detects write-read reordering in models that
do not allow reordering reads to a different address (with or
without dependencies) cannot be reordered, and Test L9 is
relevant for models that do not allow reordering reads with
later writes. In models that allow reordering both read-
write and dependent read-read, no test can observe reorder-
ing writes after reads. These models are the eight pairs of
equivalent models found by our experiments.

5. RELATED WORK
There has been a considerable amount of work on defining

frameworks for specifying memory consistency models [1, 2,
3, 4, 11, 14, 16]. The concept of happens-before partial order
between events was introduced by Lamport [8] and then
by Adve and Hill [2] in the context of memory consistency
models. Burckhardt and Musuvathi [5] provide a definition
for SPARC’s TSO using a happens-before relation. Alglave
et al [3] define a framework for specifying hardware memory
consistency models using a happens-before relation. Our
class of memory models is similar to the one described by
Alglave et al [3]. Our previous work describes a technique
for contrasting memory models via automatic generation of
litmus tests up to a certain bound, but we did not identify
a bound for showing equivalence [10].

6. CONCLUSIONS
Even though litmus tests listed in architectural manuals

are typically short, no bound was previously known for the
size of litmus tests for differentiating memory consistency
models. In this paper, we showed we can indeed bound
the size of litmus tests sufficient for contrasting all models
in a class that is expressive enough to include all existing
store-atomic memory consistency models. Furthermore, we
showed that for a selected set of predicates that represents

the common features of hardware memory models, a set of
nine litmus tests contrast all models in this class. This
set of litmus tests may assist developing specifications of
memory models, in this class, in validating hardware, and
for presenting memory models in architectural manuals.

One shortcoming of this work is that it is limited to store-
atomic memory models, in which all threads observe writes
in the same order. Some memory models such as Pow-
erPC [12] are non-store atomic and thus allow each thread to
observe writes in a different order. These models are not in-
cluded in the class of models defined in this paper, and they
are known to require larger litmus tests with more than two
threads. Extending this work to include non-store-atomic
models is future work.

References
[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory

consistency models: A tutorial. IEEE Computer, 1996.

[2] Sarita V. Adve and Mark D. Hill. Weak ordering - a new
definition. In ISCA, 1990.

[3] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter
Sewell. Fences in weak memory models. In CAV, 2010.

[4] Arvind and Jan-Willem Maessen. Memory model = instruc-
tion reordering + store atomicity. ISCA, 2006.

[5] Sebastian Burckhardt and Madanlal Musuvathi. Effective
program verification for relaxed memory models. In CAV,
2008.

[6] Niklas Een and Niklas Sorensson. Minisat - a SAT solver
with conflict-clause minimization. In SAT, 2005.

[7] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, March 2010.

[8] Leslie Lamport. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM, 21:558–565, 1978.

[9] Leslie Lamport. How to make a multiprocessor computer
that correctly executes multiprocess program. IEEE Trans-
actions on Computers, 28(9):690–691, 1979.

[10] Sela Mador-Haim, Rajeev Alur, and Milo Martin. Generat-
ing litmus tests for contrasting memory consistency models.
In CAV, 2010.

[11] Vijay A. Saraswat, Radha Jagadeesan, Maged Michael, and
Christoph von Praun. A theory of memory models. In
PPoPP, 2007.

[12] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget,
and Derek Williams. Understanding POWER multiproces-
sors. In PLDI, 2011.

[13] Richard L. Sites. Alpha Architecture Reference Manual.
Prentice Hall PTR, 1992.

[14] Robert C. Steinke and Gary J. Nutt. A unified theory of
shared memory consistency. J. ACM, 51(5), 2004.

[15] David L. Weaver and Tom Germond. The SPARC Architec-
ture Manual Version 9. Prentice Hall PTR, 1994.

[16] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and
Konrad Slind. Nemos: A framework for axiomatic and
executable specifications of memory consistency models.
IPDPS, 1, 2004.

6

