
Algorithmic Analysis of Array-Accessing
Programs ?

Rajeev Alur, Pavol Černý, and Scott Weinstein

University of Pennsylvania
{alur,cernyp,weinstein}@cis.upenn.edu

Abstract. For programs whose data variables range over boolean or
finite domains, program verification is decidable, and this forms the ba-
sis of recent tools for software model checking. In this paper, we con-
sider algorithmic verification of programs that use boolean variables,
and in addition, access a single read-only array whose length is po-
tentially unbounded, and whose elements range over a potentially un-
bounded data domain. We show that the reachability problem, while un-
decidable in general, is (1) Pspace-complete for programs in which the
array-accessing for-loops are not nested, (2) decidable for a restricted
class of programs with doubly-nested loops. The second result establishes
connections to automata and logics defining languages over data words.

1 Introduction

Verification questions concerning programs are undecidable in general. However,
for finite-state programs — programs whose data variables range over finite
types such as boolean, the number of bits needed to encode a program state is a
priori bounded, and verification questions such as reachability are decidable. This
result, coupled with progress on symbolic techniques for searching the state-space
of finite-state programs, and abstraction techniques for extracting boolean over-
approximations of general programs, forms the basis of recent tools for software
model checking [3, 16].

We focus on algorithmic verification of programs that access a single array.
The length of the input array is potentially unbounded. The elements of the
array range over Σ ×D, where Σ is a finite set, and D is a data domain that is
potentially unbounded and totally ordered. The array is thus modeled as a data
word, that is, a sequence of pairs in Σ ×D. For example an array that contains
employees’ names, and for each name a tag indicating whether the employee is
a programmer, a manager, or a director, can be modeled by setting D to be
the set of strings, and Σ to be a set with three elements. The program can
have Boolean variables, index variables ranging over array positions, and data
variables ranging over D. Programs can access Σ directly, but can only perform
equality and order tests on elements of D. The expressions in the program can

? This research was partially supported by NSF Cybertrust award CNS 0524059.

use constants in D, and equality tests and ordering over index and data variables.
The programs are built using assignments, conditionals, and for-loops over the
array. Even with these restrictions, one can perform interesting computational
tasks including searching for a specific value, finding the minimum data value,
checking that all values in the array are within specific bounds, or checking for
duplicate data values. For example, Java midlets designed to enhance features
of mobile devices include simple programs accessing the address books, and our
methods can lead to an automatic verification tool that certifies their correct-
ness before being downloaded. For programs that fall outside the restrictions
mentioned above, it is possible to use abstract interpretation techniques such
as predicate abstraction [13] to abstract some of the features of the program,
and analyze the property of interest on the abstract program. As the abstract
programs are nondeterministic, we will consider nondeterministic programs.

Our first result is that the reachability problem for programs in which there
are no nested loops is decidable. The construction is by mapping such a program
to a finite-state abstract transition system such that every finite path in the
abstract system is feasible in the original program for an appropriately chosen
array. We show that the reachability problem for programs with non-nested
loops is Pspace-complete, which is the same complexity as that for finite-state
programs with only boolean variables.

Our second result shows decidability of reachability for programs with doubly-
nested loops with some restrictions on the allowed expressions. The resulting
complexity is non-elementary, and the interest is mainly due to the theoretical
connections with the recently well-studied notions of automata and logics over
data words [6, 5, 17]. Among different kinds of automata over data words that
have been studied, data automata [6] emerged as a good candidate definition
for the notion of regularity for languages on data words. A data automaton first
rewrites the Σ-component to another finite alphabet Γ using a nondeterminis-
tic finite-state transducer, and then checks, for every data value d, whether the
projection obtained by deleting all the positions in which the data value is not
equal to d, belongs to a regular language over Γ . In order to show decidability of
the reachability problem for programs with doubly nested loops, we extend this
definition as follows: An extended data automaton first rewrites the data word
as in case of data automata. For every data value d, the corresponding projec-
tion contains more information than in case of data automata. It is obtained by
replacing each position with data value different from d by the special symbol 0.
The projection is required to be in a regular language over Γ∪{0}. We prove that
the reachability problem for extended data automata can be reduced to empti-
ness of multi-counter automata (or equivalently, to Petri nets reachability), and
is thus decidable. We then show that a program containing doubly-nested loops
can be simulated, under some restrictions, by an extended data automaton. Re-
laxing these restrictions leads to undecidability of the reachability problem for
programs with doubly-nested loops.

Analyzing reachability problem for programs brings a new dimension to in-
vestigations on logics and automata on data words. We establish some new

connections, in terms of expressiveness and decidability boundaries, between
programs, logics, and automata over data words. Bojańczyk et al. [6] consider
logics on data words that use two binary predicates on positions of the word: (1)
an equivalence relation ≈, such that i ≈ j if the data values at positions i and
j are equal, and (2) an order ≺ which gives access to order on data values, in
addition to standard successor (+1) and order < predicates over the positions.
They show that while the first order logic with two variables, FO2(≈, <,+1),
is decidable, introducing order on data values causes undecidability, that is,
FO2(≈,≺, <,+1) is undecidable. In this context, our result on programs with
non-nested loops is perhaps surprising, as we show that the undecidability does
not carry over to these programs, even though they access order on the data
domain and have an arbitrary number of index and data variables.

Details of proofs are available in the companion report [1].

2 Programs

In this section, we define the syntax and semantics of programs that we will
consider. We start by defining arrays. Let D be an infinite set of data values. We
will consider domains D equipped with equality (D,=), or with both equality
and linear order (D,=, <). Let Σ be a finite set of symbols. An array is a data
word w ∈ (Σ×D)∗. The program can access the elements of the array via indices
into the array.

Syntax. The programs have one array variable A. Variables b, b1, b2, . . . are
boolean. Variables p, p1, p2, . . . range over N, and are called index variables.
Variables i, j, i1, i2, . . . range over N and are called loop variables. Variables v,
v1, v2, . . . range over D and are called data variables. Constants c, c1, c2, . . . are
in D, and constants s, s1, s2, . . . are in Σ. We make a distinction between loop
and index variables because loop variables cannot be modified outside of the
loop header. Index expressions IE are defined by the following grammar IE ::=
p | i. Data expressions DE are of the form DE :: = v | c | A[IE].d, where
A[IE].d accesses the data part of the array. Σ-expressions SE are of the form SE
:: = s | A[IE].s, where A[IE].s accesses the Σ part of the array. Boolean
expressions are defined by the following grammar: B :: = true | false | b |
B and B | not B | IE = IE | IE < IE | DE = DE | DE < DE | SE = SE.
The programs are defined by the grammar:
P :: = skip | { P } | b:=B | p:=IE | v:=DE

| if B then P else P | if * then P else P
| for i:=1 to length(A) do P | P;P

The commands include a nondeterministic conditional. We consider nondeter-
ministic programs in this paper, in order to enable modeling of abstracted pro-
grams. Software model checking approaches [13, 3, 16] often rely on predicate
abstraction. For example, if the original program contains an assignment of the
form b := E, where E is a complicated expression that falls out of scope of the in-
tended analysis, the assignment is abstracted into a nondeterministic assignment
to b. This is modeled as if * then b:=true else b:=false in the language
presented here.

Semantics. A global state of the program is a valuation of its boolean, loop,
index and data variables, as well as of the array variable. We denote global states
by g, g1, and the set of global states by G. For a boolean, index, loop or data
variable v, we denote the value of v by g[v]. The value of the array variable A is a
word w ∈ (Σ×D)∗. It is denoted by g[A]. The length of the array at global state
g is denoted by l(g[A]) and evaluates to the length of w. Note that the length
and the contents of the array do not change over the course of the computation.

Semantics of boolean, index, data and Σ expressions is a partial function:
[[B]] : G → B, [[IE]] : G → N, [[DE]] : G → D and [[SE]] : G → Σ. It is not

defined only in cases when there is an array access out of bounds. For example,
in a state g where g[A] is a word of length 10 and g[p] is 20, the semantics of
the expression A[p].d is undefined. The semantics of commands is defined as a
relation on G, [[P]] ⊆ G×G. The definition is presented in detail in [1].

Given a program, a global state is initial if either i) the array variable con-
tains a nonempty word, all boolean variables are set to false, all index and loop
variables are set to 1, and all data variables are set to the same value as the first
element of the array; or ii) the array variable contains an empty word, all boolean
variables are set to false, all index and loop variables are set to 1, and all data
variables are set to constant cD ∈ D. The intention is that the only unspecified
part of the initial state, the part that models input of the program, is the array.
A boolean state is a valuation of all the boolean variables of a program. For a
given global state g, we denote the corresponding boolean state by bool(g). For
any boolean variable b of the program, we have that bool(g)[b] = g[b]. We denote
boolean states by m,m1 and the set of boolean states by M .

Restricted fragments. We classify programs using the nesting depth of
loops. We denote programs with only non-nested loops by ND1, programs with
nesting depth at most 2 by ND2, etc. Restricted-ND2 programs are programs with
nesting depth at most 2, that do not use index or data variables, and do not refer
to order on data or indices. Furthermore, a key restriction, such that if it is lifted,
the reachability problem becomes undecidable, is a restriction on the syntax of
the code inside the inner loop. Let P1 be the code inside an inner loop, and let
i be the loop variable of the outer loop and let j be the loop variable for the
inner loop. P1 must be of the following form: if A[i].d=A[j].d then P2 else
P3. Furthermore, P3 cannot refer to A[j], i.e. it does not contain occurrences of
A[j].d or A[j].s.

Examples. We present three examples illustrating these classes of programs.

Example 1. We consider a simple array accessing program Min that scans through
an array to find a minimal data value. It has one index variable, p, and it is an
ND1 program, as it does not contain nested loops:

for i:= 1 to length(A) do { if A[i].d < A[p].d then p := i }
Note that by definition of program semantics, p is initialized to 1. The cor-
rectness requirement for this program is that the index p points to a minimal
element, that is ∀ i: A[i].d ≥ A[p].d. Verifying the correctness of the pro-
gram can be reduced to checking reachability, as the requirement itself can be
expressed as a program, by appending to the program Min above the following:

b:=true;

for i:= 1 to length(A) do {
if A[i].d < v then b:=false

else skip;

v := A[i].d

}

Fig. 1. Example 2

b:=false;

for i:= 1 to length(A) do {
for j:= 1 to length(A) do

if (A[i].d = A[j].d) then {
if (not (i = j)) then b:=true

else skip

} else skip

}

Fig. 2. Example 3

b:=true;
for i:= 1 to length(A) do { if A[i].d < A[p].d then b:=false }
We can now ask a reachability question: Does the control reach the end of

the program in a state where b == false holds?
Example 2. Figure 1 shows an ND1 program that tests whether the array is
sorted. It uses one data variable called v (note that by definition of the semantics,
v is initialized to the same value as the first element of the array).

Example 3. The Restricted-ND2 program in Figure 2 tests whether there is a
data value that appears twice in the array.

3 Reachability

Given a program P, a boolean state m is reachable if and only if there exists an
initial global state gI and a global state g such that (gI , g) ∈ [[P]] and bool(g) =
m. The reachability problem is to determine, for a given program P and a given
boolean state m, whether m is reachable. We will use a notion of a local state.
Given a program, a local state is a valuation of all its boolean, index, loop, and
data variables, as well as the values of array elements corresponding to index and
loop variables. For each index and loop variable v, local states have an additional
variable A v that stores the value of the array element at position given by v.
The main difference between local and global states of a program P is that local
states do not contain valuation of the array, they store instead at most a fixed
finite number kP of values from the unbounded domain D, where kP is bounded
by the total number of index and loop variables occurring in P.

Theorem 1. Reachability for ND1 programs is decidable. The problem is Pspace-
complete.

The structure of the proof is as follows. We first characterize the semantics
of a program in terms of a transition system T whose states are (tuples of)
local states. Let us first consider the following simple program P: for i1:=1
to length(A) do P1. Here, and in the rest of the proof, we assume that the
length of the array is non-zero. (In the case the length of the array is zero,
the program effectively contains no loops, and reachability can be computed
in time polynomial in number of variables.) The program P can be seen as a
transition system whose states are local states of P and which processes an input

word in Σ × D, with each iteration consuming one symbol of the word. For
sequential composition of commands, a product construction (augmented with
some bookkeeping) is used.

Note that T is still an infinite-state system, as its states store values from
D. Therefore, we construct a finite state system Tα that abstracts the infinite
part of the local states, that is the values of index, loop and data variables. The
abstract state transition system Tα keeps only order and equality information on
the index, loop and data variables. Let IV be the set of index and loop variables
of P. Let DV be the set of data variables of P. An abstract state is a tuple
(m,SI ,SD), where m is a boolean state in M , SI is a total order on equivalence
classes on IV and SD is a total order on equivalence classes on DV ∪ IV . An
abstract state represents a set of local states. For example, if a program has an
index variable p1, a loop variable i1 and a data variable v1, a possible abstract
state is (m, p1 < i1, p1 = i1 < v1). This abstract state represents a set of
concrete states whose boolean state is m and, the value of p1 is less than the
value of i1, the value of the array at position p1 is the same as the value of the
array at position i1, which is less than the value of v1.

We show that reachability of a boolean state m can be decided on the abstract
system, in the sense that m is reachable in T if and only if it is reachable in
Tα. (A boolean state m is reachable in Tα iff there exist SI and SD such that
(m,SI ,SD) is reachable in Tα.) The main part of the proof shows that every
finite path in the abstract transition system is feasible in the concrete transition
system. The first idea for a proof might be to show that the abstraction defines
a bisimulation between abstract and concrete transition systems. However, this
is not the case. We present a simple counterexample. Let us consider a program
P and let us focus on two data variables v1 and v2. Let q1 be a local state such
that its boolean component is m, the value of v1 at q is 5 and the value of v2
at q is 6. The abstract state corresponding to r1, rα1 is thus (m,SI ,SD), where
SD , the order on data and index variables, includes v1 < v2. Furthermore, let
us suppose that the program is such that the abstract state rα1 can transition
(in a way that does not change the values of v1 and v2) to an abstract state rα2
that requires that another data variable v3 has a value greater than the value of
v1, but smaller than the value of v2. Note now that the concrete state r1 cannot
transition to any state that would correspond to the order on data variables
required by rα2 , because there is no value between 5 and 6.

In a key part of the proof, we show that if an abstract state rα2 is reachable
from rα1 , then there exists a state r1 (abstracted by rα1) and a state r2 (abstracted
by rα2) such that r2 is reachable from r1. The main idea for proof by induction
is that we can choose r1 in such a way that the gaps between values are large
enough. More precisely, if (1) rα1 requires that e.g. v1 > v2 for two data variables
v1 and v2 and (2) rα2 is reachable from rα1 in k steps, then it is sufficient to choose
r1 such that v1− v2 > 2k.

The above argument gives rise to a Pspace algorithm for deciding reacha-
bility of a boolean state m.

4 Programs, automata and logics on data words

In this section, we will examine the decidability boundary for array-accessing
programs, and compare the expressive power of these programs to that of logics
and automata on data words. We will show that the reachability problem for
Restricted-ND2 programs is decidable, and that it is undecidable for full ND2
programs. We start by reviewing the results on automata and logics on data
words, as these will be needed for the decidability proof. We will reduce the
reachability problem for Restricted-ND2 programs to the nonemptiness problem
of extended data automata, a new variation of data automata. The latter is a
definition intended to correspond to the notion of regular automata on finite
words.
4.1 Background
We briefly review the results on automata and logics on data words from [6].
Recall that a data word is a sequence of pairs Σ × D. A data language is a
set of data words. Let w be a data word (a1, d1)(a2, d2) . . . (an, dn). The string
str(w) = a1a2 . . . an is called the string projection of w. Given a data language
L, we write str(L) to denote the set {str(w) | w ∈ L}. A class is a maximal set
of positions in a data word with the same data value. Let S(w) be the set of all
classes of the data word w. For a class X in S(w) with positions i1 < . . . < ik,
the class string str(w,X) is ai1 . . . aik .

Data automata. A data automaton (DA) A = (G,C) consists of a trans-
ducer G and a class automaton C. The transducer G is a nondeterministic finite-
state letter-to-letter transducer from Σ to Γ and C is a finite-state automaton
on Γ . A data word w = (a1, d1)(a2, d2) . . . (an, dn) is accepted by a data automa-
ton A if there is an accepting run of G on the string projection of w, yielding an
output string b = b1 . . . bn, and for each class X in S(w′), the class automaton C
accepts str(w′, X), where w′ = w′1 . . . w

′
n is defined by w′i = (bi, di), for all i such

that 1 ≤ i ≤ n. Given a DA A, L(A) is the language of data words accepted
by A. The nonemptiness problem for data automata is decidable. The proof is
by reduction to a computationally complex problem, the reachability problem
in Petri nets.

Example 4. We present a data automaton A such that str(L(A)), the set of
string projections, is exactly the set of all words over {a, b, c} that contain the
same number of as, bs, and cs. The transducer of A computes the identity func-
tion, i.e. it accepts all words and its output string is the same as its input string.
The class automaton ensures, for each class, that the class contains exactly one
occurrence of a, one occurrence of b and one occurrence of c.

Logics on data words. We define logics whose models are data words.
Following [6], we consider two predicates on positions in a data word whose
definition also involves the data values at these positions. The predicate i ≈ j
is satisfied if both positions i and j have the same data value. The predicate
i ≺ j is satisfied if the data value at position i is smaller than the data value at
position j. Furthermore, standard successor and order predicates on positions in
a data word are used.

Let us first consider logics that use the ≈ predicate and not the ≺ predicate.
We first note that for a first order logic FO(≈, <,+1) satisfiability is undecidable,
even if we restrict the number of variables to three. If we restrict the number of
variables to two, the logic becomes decidable, and the proof is by reduction to
the nonemptiness problem of data automata. The decidability naturally extends
to existentially quantified second order monadic logic with two first order vari-
ables, denoted by EMSO2(≈,+1,⊕1). Moreover, EMSO2(≈,+1,⊕1) is precisely
equivalent in expressive power to data automata. The predicate ⊕1 denotes the
class successor, and i⊕1 = j is satisfied if i and j are two successive positions in
the same class of the data word. Furthermore, the logic EMSO2(≈, <,+ω,⊕1)
is included in EMSO2(≈,+1,⊕1). The symbol +ω represents all predicates of
the form +k, k ∈ N, i.e. the logic includes all predicates i+ 2 = j, i+ 3 = j, etc.

4.2 Extended data automata
Position-preserving class string Note that the class automaton does not
know the positions of symbols in the word w. The symbols from other classes
have simply been erased. However, let us consider a program with a doubly-
nested loop where i is the loop variable of the outer loop and j is the loop
variable of the inner loop, and let us suppose that the program inside the inner
loop is of the form: if (A[i].d=A[j].d) then P1 else P2. The inner loop of
the program scans the array from left to right and and modifies the state in two
different ways (given by P1 and P2), depending on whether (A[i].d=A[j].d)
holds or not. Simply erasing the positions from other classes seems therefore not
good enough. We thus define an extension of the notion of class string and a
corresponding extension of the class automaton.

Given a data word w ∈ (Σ×D)∗, a position-preserving class string pstr(w,X)
is a string over Σ ∪ {0}. (We assume that 0 /∈ Σ.) Let w = w1w2 . . . wn, let i be
a position in w, and let wi be (ai, di). The string v = pstr(w,X) has the same
length as w, and for vi we have that vi = ai iff i ∈ X, and vi = 0 otherwise.
That is, for each position i which does not belong to X, the symbol from Σ at
the position i is replaced by 0.

An extended data automaton (EDA) E = (G,C) consists of a transducer
G and a class automaton C. The transducer G is a finite-state letter-to-letter
transducer from Σ to Γ and C is a finite-state automaton over Γ ∪ {0}. A data
word w = w1 . . . wn is accepted by the EDA E if there is an accepting run of
G on the string projection of w, yielding an output string b = b1 . . . bn, and
for each class X in S(w′), the class automaton C accepts pstr(w′, X), where
w′ = w′1 . . . w

′
n is defined as follows: w′i = (bi, di), for all i such that 1 ≤ i ≤ n.

Given an EDA E , L(E) is the language of data words accepted by E .

Example 5. We consider L, a language of data words defined by the following
property: A data word w is in L iff for every class X in S(w), we have that
between every two successive positions in the class, there is exactly one position
from another class. We show that there exists an EDA E = (G,C) such that
L(E) = L. The transducer G computes the identity function. The class automa-

ton C is given by the following regular expression: 0∗(Σ0)∗0∗. It is easy to see
that E accepts L.

We first note that for each DA A, it is easy to find an EDA E such that L(E) =
L(A). We just modify the class automaton C, by adding the tuple (q, 0, q), for
each q, to the transition relation. This means that on reading 0 the state of the
class automaton does not change.

We will also show in this section that for each EDA E we can find an equiv-
alent DA A. This might not be obvious at a first glance, as class automata of
DAs do not get to see the distances between positions in a class. Indeed, we show
that the language from Example 5 cannot be captured by a deterministic DA.
However, we show that EMSO2(≈,+1,⊕1) and EDAs are expressively equiva-
lent, and since EMSO2(≈,+1,⊕1) and DAs are also expressively equivalent, we
conclude that for every EDA there exists a DA that accepts the same language.
Showing that for every EDA there exists an equivalent EMSO2(≈,+1,⊕1) for-
mula also establishes that non-emptiness is decidable for EDAs. However, the
proof of decidability of satisfiability of EMSO2(≈,+1,⊕1) formulas is rather in-
volved. We present a direct proof for decidability of emptiness for EDAs, as it
also gives an intuitive reason why emptiness is decidable fro EDAs.

Theorem 2. Given an EDA E, it is decidable whether L(E) = ∅.

Proof. Let E = (G,C) be an EDA, let G be defined by a tuple (QG, Σ, Γ, δG, qG0 ,
FG), and let C be defined by a tuple (QC , Γ, δC , qC0 , FC). We start by describing a
more operational view of EDAs. A run of an EDA on a data word w is a function
% from positions in w to tuples of the form (q, o, c), where q ∈ QG is a state of
the transducer G, o (a symbol from Γ) is the output of the transducer, and c
is a function from S(w) to QC , the set of states of C. Furthermore, we require
that % is consistent with δG and δC , the transition functions of G and C. We
define %(0) to be (qG0 , γ, λX.q

C
0), i.e. the transducer and all the copies of the class

automaton are in initial states. Furthermore, for each position i, %(i) is equal to
(q′, o′, c′) if and only if wi = (a, d), %(i− 1) = (q, o, c) and (i) (q′, o′) ∈ δG(q, a),
(ii) for the unique X such that i ∈ X we have c′(X) ∈ δC(c(X), o′), (iii) for X
such that i /∈ X we have c′(X) ∈ δC(c(X), 0).

A run is accepting iff %(n) = (q, o, c),
q1

q2

q3

q4

q5

q6

q7

q8

q9 q10

q11

0

0

0

00

0

0
0

0
0

0

Fig. 3. A connected component of a
graph C0 corresponding to an EDA E

q is a final state of G and for all X in
S(w), we have that c(X) is a final state
of C.

Let us consider the class automaton
C. Without loss of generality, we sup-
pose that C is a complete deterministic
automaton on Γ ∪ {0}. The transition
function δC defines a directed graph C0

with states of C as vertices and
0-transitions as edges, i.e. there is an
edge (p1, p2) in C0 if and only if δC(p1, 0) =
p2. Every vertex in C0 has exactly one outgoing edge (and might have multiple

incoming edges). Therefore, each connected component of C0 has exactly one
cycle. A vertex is called cyclic if it is part of a cycle, and it is called non-cyclic
otherwise. It is easy to see that each connected component is formed by the
cyclic vertices and their 0-ancestors. An example of a connected component is in
Figure 3. The vertex labeled q6 is cyclic, its ancestors q9, q10, q11 are non-cyclic.

The graph C0 consists of a number of connected components. We denote these
components by Cj0 , for j ∈ [1..k], where k is the number of the components. Let
W be the set of all non-cyclic vertices. For each non-cyclic vertex v, let D(v) be
defined as follows: D(v) = d for non-cyclic vertices connected to a cycle, where
d is the length of the unique path connecting v to the closest cyclic vertex. For
the graph C0, we define D(C0) to be maxv∈W D(v).

Let i be a position in a data word w. The data word w1w2 . . . wi is denoted by
prefix (w, i). Let us consider a position i in a data word w and the set of classes
S(w). Let Sact(w, i) be a set of active classes, i.e. classes X such that there is a
position in X to the left of the position i. More formally, a class X ∈ S(w) is in
Sact(w, i) if the string str(prefix (w, i), X) is not equal to 0i.

Lemma 1. Let % be a run of E on w. Let i be a position in w. Let %(i) be
(q, o, c). The number N of classes X, such that X is in Sact(w, i) and c(X) is a
noncyclic vertex, is bounded by D(C0), i.e. N ≤ D(C0).

Proof. Let i be a position in a word w. If i ≤ D(C0), then the number of active
classes is at most D(C0), and we conclude immediately. Let us consider the
case i > D(C0). Let %(i) be (q, o, c) and let s be the string of length D(C0)
defined by s = wi−D(C0)+1 wi−D(C0)+2 . . . wi. There are two possible cases for
each class X in S(w). The first case is the case when pstr(s,X) = 0D(C0). Let
%(i−D(C0)) = (q′, o′, c′), and let c′(X) = v. We can easily prove that δ∗C(p, 0e)
is not in W , for all p and for all e ≥ D(p). By definition, D(C0) ≥ D(q′).
Therefore, we can conclude that c(X) 6∈ W . The second case is the case when
pstr(s,X) 6= 0D(C0). This is true for at most D(C0) classes, because, for all
positions x, there is exactly one class X, such that the symbol at the position x
of the class string pstr(s,X) is not 0. Thus we have that c(X) ∈W for at most
D(C0) classes.

We reduce emptiness of EDAs to emptiness of multicounter automata. Mul-
ticounter automata are equivalent to Petri nets [11], and thus the emptiness
of multicounter automata is decidable. We use the definition of multicounter
automata from [6]. A multicounter automaton is a finite, non-deterministic au-
tomaton extended by a number k of counters. It can be described as a tuple
(Q,Σ, k, δ, qI , F). The set of states Q, the input alphabet, the initial state qI ∈ Q
and final states F ⊆ Q are as in a usual finite automaton. The transition relation
is a subset of Q× (Σ ∪{ε})× {inc(i), dec(i)}×Q. The idea is that in each step,
the automaton can change its state and modify the counters, by incrementing
(inc(i) increments counter number i) or decrementing them, according to the
current state and the current letter on the input (which can be ε). Whenever
it tries to decrement a counter of value zero the computation stops and rejects.
The transition of a multicounter automaton does not depend on the value of

the counters in any other way. In particular, it cannot test whether a counter is
exactly zero. The automaton accepts when the state is final and all the counters
are empty.

Lemma 2. Let E be an EDA. A multicounter automaton V such that str(L(E)) =
L(V) can be computed from E.

Proof. We present the construction of a multicounter automaton V that simu-
lates E . The multicounter automaton V simulates the transducerG and a number
of copies of C. There is one copy per class in S(w), where w is the word the
automaton is reading. We say that a class automaton performs a 0-transition
if the input symbol it reads is 0, and it performs a Γ -transition if the input
symbol it reads is from Γ . Intuitively, at each step, the automaton V : (i) Sim-
ulates the transducer G using the finite state part (i.e. not the counters), and
(ii) It guesses to which class the current position belongs, and it executes the
Γ -transition of the automaton for that class with the symbol that is the output
of the transducer at this step. For all the other simulated automata, V executes
the 0-transition. (This is sufficient because each position belongs to exactly one
equivalence class.) The counters of the multicounter automaton V correspond
to the cyclic vertices in C0. (In what follows, we call a state of C (non-)cyclic if
it corresponds to a (non-)cyclic vertex in C0.) The value of the counter h corre-
sponds to the number of copies of C currently in the state h. The finite part of
the automaton state tracks the number of copies in each non-cyclic state. The
key idea of the proof is that the total number of copies in non-cyclic states is
finite and bounded (by D(C0)). This fact is implied by Lemma 1.

Furthermore, one copy e of the class automaton is used to keep track of all
the classes that are not active yet, i.e. not in Sact(w, i) at step i - thus when a
position-preserving class string contains a symbol in Γ for the first time, a new
copy of the automaton C is started from the state at which the copy e is.

Let γ ∈ Γ be the current input symbol. The automaton works as follows:
The first step consists of the automaton V nondeterministically guessing the
equivalence class X to which the current position belongs. The copy of the class
automaton for X is then set aside while the second step is performed. That is,
if the copy is in state s, then s is remembered in a separate part of the finite
state. In the second step, the automaton V simulates 0-transitions for all the
other copies (other than the copy that performed the Γ -transition). For copies
in non-cyclic states, this is done by a transition modifying the finite state of V .
The copies that transition from a non-cyclic to a cyclic state are dealt with by
modifying the finite state and increasing the corresponding counter. The copies
in cyclic states are tracked in the counters. Note that if we restrict the graph to
only cyclic states, each state has exactly one incoming and one outgoing 0-edge.
For all the copies in cyclic states, the 0-transition is accomplished by “relabeling”
the counters. This is done by remembering in the the finite state of V for each
loop for one particular state to which counter it corresponds. This is then shifted
in the direction of the 0-transition.

The third step is to perform the Γ transition for the class X. For the copy
of the automaton corresponding to this class, a Γ -transition is performed. That

is, if it is in state q, and δ(q, γ) = q′, then there are four possibilities.: (i) if q, q′

are cyclic states, the counter corresponding to q is decreased and the counter
corresponding to q′ is increased; (ii) if q, q′ are non-cyclic state, a transition that
changes the state of V is made; (iii) if q is a cyclic state and q′ is a non-cyclic
state, the counter corresponding to q is decreased, and the finite state of V is
changed to reflect that the number of copies in q′ has increased; (iv) if q is a
noncyclic state and q′ is a cyclic state, the transition is simulated similarly.

This concludes the proof of Theorem 2.

4.3 Restricted doubly-nested loops
We will reduce the reachability problem of Restricted-ND2 programs to the empti-
ness problem of EDAs. The main idea of the proof is that the transducer G
guesses an accepting run of the outer loop, while the class automaton C checks
that the inner loop can be executed in a way that is consistent with the guess
of the transducer.

Theorem 3. Reachability for Restricted-ND2 programs is decidable.

The proof of Theorem 3 gives a decision procedure, but one whose running
time is non-elementary. The reason is that while the problem of reachability in
multicounter automata is decidable, no elementary upper bound is known.

However, the following proposition shows that the problem is at least as
hard as the reachability in multicounter automata, which makes it unlikely that
a more efficient algorithm exists. The best lower bound for the latter problem is
Expspace [19].

Proposition 4. The reachability problem for multicounter automata can be re-
duced to the reachability problem for Restricted-ND2 programs.

4.4 Undecidable extensions
We show that if we lift the restrictions we imposed on Restricted-ND2 programs,
the reachability problem becomes undecidable.

Theorem 5. The reachability problem for ND2 programs is undecidable.

The proof is by reduction from the reachability problem of two-counter au-
tomata [20]. We note that the proof also implies that the reachability problem
is undecidable even for ND2 programs that do not use order on the data domain
and do not use index or data variables.

We investigate the case of Restricted-ND2 programs with access to order on
the data domain and with data index variables. We show that if we add order
on the data domain and at least one data variable, the reachability problem
becomes undecidable. The proof is by reduction from the Post’s Correspondence
Problem, and is similar to the proof of Proposition 21 of [6].

Proposition 6. Reachability for Restricted-ND2 programs that use order on D
and at least one data variable is undecidable.

A natural question, which is now open, is whether it is possible to add only one of
these features (order on data domain or data (index) variables) to Restricted-ND2
programs without losing decidability of the reachability problem.

4.5 Expressiveness
In this section, we compare expressiveness of logics and automata on data words
and array-accessing programs. We make our comparisons in terms of languages
of data words these formalisms can define. Due to a lack of space, we present
only the results in this subsection.

Language of a program. In order to define the language of a program, we
extend the notion of a program by adding a final state. That is, in this section
we will assume that every program P has a final state mf , where m is a boolean
state of P. The language Lm(P) is the set of data words w, such that there
exist an initial state gI and a state g, such that gI [A] = w, bool(g) = m, and
(gI , g) ∈ [[P]]. We say that a program P accepts the language Lm(P), where m is
the final state.

The following proposition shows that EDAs and EMSO2(≈,+1,⊕1) are equally
expressive. This means that somewhat surprisingly, DAs and EDAs are expres-
sively equivalent.

Proposition 7. EDAs and EMSO2(≈,+1,⊕1) are equally expressive.

The following proposition sheds light on the difference between DAs and EDAs.
We saw that DAs and EDAs are expressively equivalent. However, one difference
between EDAs and DAs is that deterministic EDAs are more expressive than
deterministic DAs. It is the nondeterminism that then levels the difference.

Proposition 8. Deterministic EDAs are more expressive than deterministic
DAs.

We show that nondeterminism adds to the expressive power of EDAs, as there
exists a language accepted by a nondeterministic EDA, but no deterministic EDA
can accept it. This implies the following proposition.

Proposition 9. Deterministic EDAs are strictly less expressive than EDAs.

We will now compare the expressive power of array-accessing programs to log-
ics and automata on data words. Specifically, we will use the logic EMSO2(≈
,+1,⊕1) for comparison. Recall that this logic is expressively equivalent to data
automata. We first show that Restricted-ND2 programs are not as expressive as
EMSO2(≈,+1,⊕1). We also compare the expressive power of ND1 programs and
EMSO2(≈,+1,⊕1).

Proposition 10. Restricted-ND2 programs are strictly less expressive than
EMSO2(≈,+1,⊕1).

Proposition 11. There exists an EMSO2(≈,+1,⊕1) property that is not ex-
pressible by an ND1 program.

Note that ND1 programs allow order on the data domain, and thus can check a
property specifying that the elements in the input data word are in increasing
order. It is easy to see that this property is not specifiable in EMSO2(≈,+1,⊕1).
However, if we syntactically restrict ND1 programs not to use order onD, they can

be captured by EMSO2(≈,+1,⊕1) formulas. The reason is that ND1 programs
that do not refer to the order on D can be simulated by register automata
introduced in [17]. For every register automaton, there is an equivalent data
automaton [5]. Another natural question is whether there is an order-invariant
property that can be captured by ND1 programs (that have access to order), but
is not expressible in EMSO2(≈,+1,⊕1). We leave this question for future work.

5 Related work

Our results establish connections between verification of programs accessing ar-
rays and logics and automata on data words. Kaminski and Francez [17] ini-
tiated the study of finite-memory automata on infinite alphabets. They intro-
duced register automata, that is automata that in addition to finite state have
a fixed number of registers that can store data values. The results of Kamin-
ski and Francez were recently extended in [21, 6, 5, 4]. Data automata intro-
duced in this line of research were shown to be more expressive than register
automata. Furthermore, the logic EMSO2(≈,+1,⊕1) was introduced, and [6]
shows that EMSO2(≈,+1,⊕1) and data automata are equally expressive. The
reduction from EMSO2(≈,+1,⊕1) to data automata and the fact that empti-
ness is decidable for data automata imply that satisfiability is decidable for
EMSO2(≈,+1,⊕1). We show that Restricted-ND2 programs can be encoded in
EMSO2(≈,+1,⊕1). However, adding a third variable to the logic or allowing ac-
cess to order on data variable makes satisfiability undecidable for the resulting
logic, even for the first order fragment. We show, perhaps somewhat surprisingly,
that the undecidability does not translate into undecidability of reachability for
ND1 programs that access order on the data domain and have an arbitrary num-
ber of index and data variables. The results on automata and logics on data
words model were applied in the context of XML reasoning [21] and extended
temporal logics [9]. The connection to verification of programs with unbounded
data structures is the first to the best of our knowledge.

Deutsch et al. [10] consider a model of database-driven systems similar in
some aspects to our model of programs. The key difference is that they consider
a dense order. They specifically note that the model-checking problem they con-
sider is open for the case of a discrete order. It would be interesting to see if
our result on programs on structures with discrete order can be extended to the
setting of database-driven systems. Fragments of first order logic on arrays have
been shown decidable in [8, 15, 2, 7]. These fragments do not restrict the number
of variables (as was the case with EMSO2(≈,+1,⊕1)), but restrict the number
of quantifier alternations. These papers focus on theory of arrays, rather than on
analysis of array-accessing programs. Decidability of reachability for polymor-
phic systems with arrays (PSAs) was studied e.g. in [18]. PSAs use well-typed
λ-terms and do not allow iteration over arrays.

Static analysis of programs that access arrays is an active research area, with
recent results including [12, 14, 2]. The approach consists in finding inductive
invariants for loops using abstraction methods, such as abstract domains that can
represent universally quantified facts [14] and a predicate abstraction approach

to shape analysis [2]. In contrast, our results yield decision procedures for array-
accessing programs. However, the methods based on abstraction are applicable
to a richer class of programs. Note that the abstract domains used for examples
and applications also track equality and order on array elements.

References

1. R. Alur, P. Černý, and S. Weinstein. Algorithmic analysis of array-accessing pro-
grams. Technical Report MS-CIS-08-35, University of Pennsylvania, 2008.

2. I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. In
VMCAI, pages 164–180, 2005.

3. T. Ball and S. Rajamani. The SLAM project: debugging system software via static
analysis. In POPL, pages 1–3, 2002.

4. H. Björklund and M. Bojańczyk. Shuffle expressions and words with nested data.
In MFCS, pages 750–761, 2007.

5. H. Björklund and T. Schwentick. On notions of regularity for data languages. In
FCT, pages 88–99, 2007.

6. M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In LICS, pages 7–16, 2006.

7. A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting systems with
data. In FCT, pages 1–22, 2007.

8. A. Bradley, Z. Manna, and H. Sipma. What’s decidable about arrays? In VMCAI,
pages 427–442, 2006.

9. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. In
LICS, pages 17–26, 2006.

10. A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-
centric business processes. In ICDT, pages 252–267, 2009.

11. J. Gischer. Shuffle languages, Petri nets, and context-sensitive grammars. Com-
mun. ACM, 24(9):597–605, 1981.

12. D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array
operations. In POPL, pages 338–350, 2008.

13. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV,
pages 72–83, 1997.

14. S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified
logical domains. In POPL, pages 235–246, 2008.

15. P. Habermehl, R. Iosif, and T. Vojnař. What else is decidable about integer arrays?
In FoSSaCS, pages 474–489, 2008.

16. T. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. In CAV, pages 526–538, 2002.

17. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

18. R. Lazić. Decidability of reachability for polymorphic systems with arrays: A
complete classification. ENTCS, 138(3):3–19, 2005.

19. R. Lipton. The reachability problem requires exponential space. Technical Report
Dept. of Computer Science, Research report 62, Yale University, 1976.

20. M. Minski. Recursive unsolvability of Post’s problem of ’tag’ and other topics in
theory of Turing machines. Annals of Mathematics, 74:437–455, 1962.

21. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Logic, 5(3):403–435, 2004.

