
Compositional Synthesis of Reactive Controllers
for Multi-Agent Systems?

Rajeev Alur, Salar Moarref, and Ufuk Topcu

alur@seas.upenn.edu, moarref@seas.upenn.edu, utopcu@utexas.edu

Abstract. In this paper we consider the controller synthesis problem
for multi-agent systems that consist of a set of controlled and uncon-
trolled agents. Controlled agents may need to cooperate with each other
and react to the actions of uncontrolled agents in order to fulfill their
objectives. Besides, the controlled agents may be imperfect, i.e., only
partially observe their environment, for example due to the limitations
in their sensors. We propose a framework for controller synthesis based
on compositional reactive synthesis. We implement the algorithms sym-
bolically and apply them to a robot motion planning case study where
multiple robots are placed on a grid-world with static obstacles and other
dynamic, uncontrolled and potentially adversarial robots. We consider
different objectives such as collision avoidance, keeping a formation and
bounded reachability. We show that by taking advantage of the struc-
ture of the system, compositional synthesis algorithm can significantly
outperform centralized synthesis approach, both from time and mem-
ory perspective, and can solve problems where the centralized algorithm
is infeasible. Our findings show the potential of symbolic and composi-
tional reactive synthesis methods as planning algorithms in the presence
of dynamically changing and possibly adversarial environment.

1 Introduction

Complex systems often consist of multiple agents (or components) interacting
with each other and their environment to achieve certain objectives. For exam-
ple, teams of robots are employed to perform tasks such as monitoring, surveil-
lance, and disaster response in different domains including search and rescue [1],
object transportation [2], and formation control [3]. With growing complexity
of autonomous systems and their safety-critical nature, the need for automated
and reliable design and analysis methods and tools is increasing. To this end,
an ambitious goal in system design and control is to automatically synthesize
controllers for controllable parts of the system that guarantee the satisfaction
of the specified objectives. Given a model of the system describing the interac-
tion of a controllable plant with its environment and an objective in a formal
language such as linear temporal logic (LTL), controller synthesis problem seeks

? This research was partially supported by awards NSF Expeditions in Computing
CCF 1138996, AFRL FA8650-15-C-2546, ONR N000141310778, ARO W911NF -
15-1-0592, NSF 1550212 and DARPA W911NF -16-1-0001.

to construct a finite-state controller that ensures that the system satisfies the
objective, regardless of how its environment behaves. In this paper we consider
the controller synthesis problem for multi-agent systems.

One of the main challenges in automated synthesis of systems is the scal-
ability problem. This issue becomes more evident for multi-agent systems, as
adding each agent can often increase the size of the state space exponentially.
The pioneering work by Pnueli et. al [4] showed that reactive synthesis from LTL
specifications is intractable which prohibited the practitioners from utilizing syn-
thesis algorithms in practice. Distributed reactive synthesis [5] and multi-player
games of incomplete information [6] are undecidable in general. Despite these
discouraging results, recent advances in this growing research area have enabled
automatic synthesis of interesting real-world systems [7], indicating the potential
of the synthesis algorithms for solving realistic problems. The key insight is to
consider more restricted yet practically useful subclasses of the general problem,
and in this paper we take a step toward this direction.

The main motivation for our work is the growing interest in robotic motion
planning from rich high-level specifications, e.g., LTL [8,9,10]. In most of these
works, all agents are controlled and operate in static and fully-observable en-
vironments, and the applications of synthesis algorithms are restricted to very
small examples due to the well-known state explosion problem. Since the reactive
synthesis from LTL specifications is intractable, no algorithm will be efficient for
all problems. Nevertheless, one can observe that in many application domains
such as robot motion planning, the systems are structured, a fact that can be
exploited to achieve better scalability.

In this paper, we consider a special class of multi-agent systems that are re-
ferred to as decoupled and are inspired by robot motion planning, decentralized
control [11,12], and swarm robotics [13,14] literature. Intuitively, in a decoupled
multi-agent system the transition relations (or dynamics) of the agents are de-
coupled, i.e., at any time-step, agents can make decisions on what action to take
based on their own local state. For example, an autonomous vehicle can decide
to slow down or speed up based on its position, velocity, etc. However, decoupled
agents are coupled through objectives, i.e., an agent may need to cooperate with
other agents or react to their actions to fulfill a given objective (e.g., it would
not be a wise decision for an autonomous vehicle to speed up when the front
vehicle pushes the break if collision avoidance is an objective.) In our frame-
work, multi-agent systems consist of a set of controlled and uncontrolled agents.
Controlled agents may need to cooperate with each other and react to the ac-
tions of uncontrolled agents in order to fulfill their objectives. Besides, controlled
agents may be imperfect in the sense that they can only partially observe their
environment, for example due to the limitations in their sensors. The goal is
to synthesize controllers for each controlled agent such that the objectives are
enforced in the resulting system.

To solve the controller synthesis problem for multi-agent systems one can
directly construct the model of the system by composing those of the agents,
and solve the problem centrally for the given objectives. However, the centralized

method lack flexibility, since any change in one of the components requires the
repetition of the synthesis process for the whole system. Besides the resulting
system might be exponentially larger than the individual parts, making this
approach infeasible in practice. Compositional reactive synthesis aims to exploit
the structure of the system by breaking the problem into smaller and more
manageable pieces and solving them separately. Then solutions to sub-problems
are merged and analyzed to find a solution for the whole problem. The existing
structure in multi-agent systems makes them a potential application area for
compositional synthesis techniques.

To this end, we propose a compositional framework for decoupled multi-agent
systems based on automatic decomposition of objectives and compositional re-
active synthesis using maximally permissive strategies [15]. We assume that the
objective of the system is given in conjunctive form. We make an observation
that in many cases, each conjunct of the global objective only refers to a small
subset of agents in the system. We take advantage of this structure to decom-
pose the synthesis problem: for each conjunct of the global objective, we only
consider the agents that are involved, and compute the maximally permissive
strategies for those agents with respect to the considered conjunct. We then inter-
sect the strategies to remove potential conflicts between them, and project back
the constraints to subproblems, solving them again with updated constraints,
and repeating this process until the strategies become fixed.

We implement the algorithms symbolically using binary decision diagrams
(BDDs) and apply them to a robot motion planning case study where multiple
robots are placed on a grid-world with static obstacles and other dynamic, uncon-
trolled and potentially adversarial robots. We consider different objectives such
as collision avoidance, keeping a formation and bounded reachability. We show
that by taking advantage of the structure of the system, the proposed composi-
tional synthesis algorithm can significantly outperform the centralized synthesis
approach, both from time and memory perspective, and can solve problems
where the centralized algorithm is infeasible. Furthermore, using compositional
algorithms we managed to solve synthesis problems for systems with multiple
agents, more complex objectives and for grid-worlds of sizes that are much larger
than the cases considered in similar works. Our findings show the potential of
symbolic and compositional reactive synthesis methods as planning algorithms
in presence of dynamically changing and possibly adversarial environment.

Contributions. The main contributions of the paper are as follow. We pro-
pose a framework for modular specification and compositional controller synthe-
sis for multi-agent systems with imperfect controlled agents. We implement the
methods symbolically using BDDs and apply them to a robot motion planning
case study. We report on our experimental results and show that the composi-
tional algorithm can significantly outperform the centralized approach.

Related Work. Compositional reactive synthesis has been considered in
some recent works. Kupferman et al. [16] propose a compositional algorithm for
LTL realizability and synthesis based on a Safraless approach that transforms
the synthesis problem into a Büchi game. Baier et al. [17] give a compositional

framework for treating multiple linear-time objectives inductively. Sohail et al.
[18] propose an algorithm to compositionally construct a parity game from con-
junctive LTL specifications. Alur et al. [19] show how local specifications of
components can be refined compositionally to ensure satisfaction of a global
specification. Lustig et al. [20] study the problem of LTL synthesis from libraries
of reusable components. Alur et al. [21] propose a framework for compositional
synthesis from a library of parametric and reactive controllers. Filiot et al. [15]
reduce the LTL realizability problem to solving safety games. They show that,
for LTL specifications written as conjunction of smaller LTL formulas, the prob-
lem can be solved compositionally by first computing winning strategies for each
conjunct. Moreover, they show that compositional algorithms can handle fairly
large LTL specifications. To the best of our knowledge, algorithms in [15] seems
to be the most successful application of compositional synthesis in practice.

Two-player games of imperfect information are studied in [22,23,24,25], and it
is shown that they are often more complicated than games of perfect information.
The algorithmic difference is exponential, due to a subset construction that turns
a game of imperfect information into an equivalent game of perfect information.
In this paper, we build on the results of [15,25] and extend and adapt their
methods to treat multi-agent systems with imperfect agents. To the best of
our knowledge, compositional reactive synthesis is not studied in the context of
multi-agent systems and robot motion planning.

The controller synthesis problem for systems with multiple controllable agents
from a high-level temporal logic specification is also considered in many recent
works (e.g., [8,26,27]). A common theme is based on first computing a discrete
controller satisfying the LTL specification over a discrete abstraction of the sys-
tem, which is then used to synthesize continues controllers guaranteed to fulfill
the high-level specification. In many of these works (e.g., [28,29]) the agents’
models are composed (either from the beginning or incrementally) to obtain a
central model. The product of the central model with the specification automaton
is then constructed and analyzed to compute a strategy. In [9], authors present
a compositional motion planning framework for multi-robot systems based on a
reduction to satisfiability modulo theories. However, their model cannot handle
uncertain or dynamic environment. In [8,30] it is proposed that systems with
multiple components can be treated in a decentralized manner by considering
one component as a part of the environment of another component. However,
these approaches cannot address the need for joint decision making and coopera-
tive objectives. In this paper we consider compositional and symbolic algorithms
for solving games in presence of a dynamic and possibly adversarial environment.

2 Preliminaries

Linear temporal logic (LTL). We use LTL to specify system objectives. LTL
is a formal specification language with two types of operators: logical connectives
(e.g., ¬ (negation) and ∧ (conjunction)) and temporal operators (e.g.,© (next),
U (until), 3 (eventually), and 2 (always)). Let V be a finite set of Boolean vari-

ables. A formula with no temporal operator is a Boolean formula or a predicate.
Given a predicate φ over variables V, we say s ∈ 2V satisfies φ, denoted by s |= φ,
if the formula obtained from φ by replacing all variables in s by true and all
other variables by false is valid. We call the set of all possible assignments to
variables V states and denote them by ΣV , i.e., ΣV = 2V . An LTL formula over
variables V is interpreted over infinite words w ∈ (ΣV)

ω
. The language of an

LTL formula Φ, denoted by L(Φ), is the set of infinite words that satisfy Φ, i.e.,
L(Φ) = {w ∈ (ΣV)

ω | w |= Φ}. We assume some familiarity of the reader with
LTL. We often use predicates over V ∪ V ′ where V ′ is the set of primed versions
of the variables in V. Given a subset of variables X ⊆ V and a state s ∈ ΣV ,
we denote by s|X the projection of s to X . For a set Z ⊆ V, let Same(Z,Z ′)
be a predicate specifying that the value of the variables in Z stay unchanged
during a transition. Ordered binary decision diagrams (OBDDs) can be used for
obtaining concise representations of sets and relations over finite domains [31].
If R is an n-ary relation over {0, 1}, then R can be represented by the BDD for
its characteristic function: fR(x1, · · · , xn) = 1 if and only if R(x1, · · · , xn) = 1.
With a little bit abuse of notation and when it is clear from the context, we
treat sets and functions as their corresponding predicates.

Game structures. A game structure G of imperfect information is a tuple
G = (V, Λ, τ,OBS, γ) where V is a finite set of variables, Λ is a finite set of
actions, τ is a predicate over V ∪Λ∪V ′ defining G’s transition relation, OBS is a
finite set of observable variables, and γ : ΣOBS → 2ΣV\∅ maps each observation
to its corresponding set of states. We assume that the set {γ(o) | o ∈ ΣOBS}
partitions the state space ΣV (this assumption can be weakened to a covering of
the state space where observations can overlap [25,24].) A game structure G is
called perfect information if OBS = V and γ(s) = {s} for all s ∈ ΣV . We omit
(OBS, γ) in the description of games of perfect information.

In this paper, we consider two-player turn-based game structures where
player-1 and player-2 alternate in taking turns. Let t ∈ V be a special vari-
able with domain {1, 2} determining which player’s turn it is during the game.
Without loss of generality, we assume that player-1 always start the game. Let
Σi
V =

{
s ∈ ΣV | s|t = i

}
for i = 1, 2 denote player-i’s states in the game struc-

ture. At any state s ∈ Σi
V , the player-i chooses an action ` ∈ Λ such that there

exists a successor state s′ ∈ ΣV′ where (s, `, s′) |= τ . Intuitively, at a player-i
state, she chooses an available action according to the transition relation τ and
the next state of the system is chosen from the possible successor states. For ev-
ery state s ∈ ΣV , we define Γ (s) = {` ∈ Λ | ∃s′ ∈ ΣV′ . (s, `, s′) |= τ} to be the
set of available actions at that state. A run in G from an initial state sinit ∈ ΣV
is a sequence of states π = s0s1s2 · · · such that s0 = sinit and for all i > 0, there
is an action `i ∈ Λ with (si−1, `i, s

′
i) |= τ , where s′i is obtained by replacing the

variables in si by their primed copies. A run π is maximal if either it is infinite
or it ends in a state s ∈ ΣV where Γ (s) = ∅. The observation sequence of π is the
unique sequence Obs(π) = o0o1o2 · · · such that for all i ≥ 0, we have si ∈ γ(oi).

Strategies. A strategy S in G for player-i, i ∈ {1, 2}, is a function S :
(ΣV)∗.Σi

V → Λ. A strategy S in G for player-2 is observation-based if for all pre-

fixes ρ1, ρ2 ∈ (ΣV)∗.Σ2
V , if Obs(ρ1) = Obs(ρ2), then S(ρ1) = S(ρ2). In this paper,

we are interested in the existence of observation-based strategies for player-2.
Given two strategies S1 and S2 for player-1 and player-2, the possible outcomes
ΩS1,S2(s) from a state s ∈ ΣV are runs: a run s0s1s2 · · · belongs to ΩS1,S2(s) if
and only if s0 = s and for all j ≥ 0 either sj has no successor, or sj ∈ Σi

V and
(sj , Si(s0 · · · sj), s′j+1) |= τ where sj ∈ Σi

V .

Winning condition. A game (G, φinit, Φ) consists of a game structure G, a
predicate φinit specifying an initial state sinit ∈ ΣV , and an LTL objective Φ for
player-2. A run π = s0s1 · · · is winning for player-2 if it is infinite and π ∈ L(Φ).
Let Π be the set of runs that are winning for player-2. A strategy S2 is winning
for player-2 if for all strategies S1 of player-1, we have ΩS1,S2(sinit) ⊆ Π, that is,
all possible outcomes are winning for player-2. Note that We assume the nonde-
terminism is always on player-1’s side. We say the game (G, φinit, Φ) is realizable
if and only if the system has a winning strategy in the game (G, φinit, Φ).

Constructing the knowledge game structure. For a game structure
G = (V, Λ, τ,OBS, γ) of imperfect information, a game structure GK of perfect
information can be obtained using a subset construction procedure such that
for any objective Φ, there exists a deterministic observation-based strategy for
player-2 in G with respect to Φ if and only if there exists a deterministic winning
strategy for player-2 in GK for Φ [22,25]. Intuitively, each state in GK is a set
of states of G that represents player-2’s knowledge about the possible states in
which the game can be after a sequence of observations. In the worst case, the
size of GK is exponentially larger than the size of G. We refer to GK as the
knowledge game structure corresponding to G. In the rest of this section, we
only consider game structures of perfect information.

Solving games. In this paper, we use the bounded synthesis approach
[32,15] to solve the synthesis problems from LTL specifications. In [15], it is
shown how LTL formulas can be reduced to safety games. Formally, a safety game
is a game (G, φinit, Φ) with a special safety objective Φ = 2(True). That is, any
infinite run in the game structure G starting from an initial state s |= φinit is win-
ning for player-2. We drop Φ from description of safety games as it is implicitly
defined. Intuitively, in a safety game, the goal of player-2 is to avoid the dead-end
states, i.e., states that there is no available action. We refer the readers to [15,33]
for details of reducing LTL formulas to safety games and solving them. Com-
position of two game structures G1 = (V1, Λ1, τ1),G2 = (V2, Λ2, τ2) of perfect
information, denoted by G⊗ = G1 ⊗ G2, is a game structure G⊗ = (V⊗, Λ⊗, τ⊗)
of perfect information where V⊗ = V1 ∪ V2, Λ⊗ = Λ1 ∪ Λ2, and τ⊗ = τ1 ∧ τ2.
To solve a game (G, φinit, Φ), we first obtain the game structure GΦ correspond-
ing to Φ using the methods proposed in [15], and then solve the safety game
(G ⊗ GΦ, φinit) to determine the winner of the game and compute a winning
strategy for player-2, if one exists.

Maximally permissive strategies. Safety games are memory-less deter-
mined, i.e., player-2 wins the game if and only if there exists a strategy S : Σ2

V →
Λ. Intuitively, a memory-less strategy only depends on the current state and is
independent from the history of the game. Let (G, φinit) be a safety game, where

G = (V , Λ, τ) is a perfect information game. Assume W ⊆ ΣV be the set of win-
ning states for player-2, i.e., from any state s ∈W there exists a strategy S2 such
that for any strategy S1 chosen by player-1, all possible outcomes π ∈ ΩS1,S2(s)
are winning. The maximally permissive strategy S : Σ2

V → 2Λ for player-2 is
defined as follows: for all s ∈ Σ2

V , S(s) = {` ∈ Λ | ∀r ∈ ΣV′ . (s, `, r) |= τs → r ∈
W}, i.e., the set of actions ` where all `-successors belong to the set of winning
states. It is well-known that S subsumes all winning strategies of player-2 in
the safety game (G, Φinit). Composition of two maximally permissive strategies
S1,S2 : Σ2

V → 2Λ, denoted by S = S1 ⊗ S2, is defined as S(s) = S1(s) ∩ S2(s)
for any s ∈ ΣV , i.e., the set of allowed actions by S at any state s ∈ ΣV is the
intersection of the allowed actions by S1 and S2. The restriction of the game
structure G with respect to its maximally permissive strategy S is the game
structure G[S] = (V, Λ, τ ∧φS) where φS is the predicate encoding S, i.e., for all
(s, `) ∈ Σ2

V × Λ, (s, `) |= φS if and only if ` ∈ S(s). Intuitively, G[S] is the same
as G but player-2’s actions are restricted according to S.

3 Multi-Agent Systems

In this section we describe how we model multi-agent systems and formally
state the problem that is considered in the rest of the paper. Typically game
structures arise from description of open systems in a particular language [34]. In
our framework, we use agents to specify a system in a modular manner. An agent
a = (type, I,O, Λ, τ,OBS , γ) is a tuple where type ∈ {controlled,uncontrolled}
indicates whether the agent can be controlled or not, O (I) is a set of output
(input) variables that the agent can (cannot, respectively) control by assigning
values to them, Λ is a set of actions for the agent, and τ is a predicate over
I ∪ O ∪ Λ ∪ O′ that specifies the possible transitions of the agent where O′ is
the primed copies of the variables O, OBS is a set of observable variables, and
γ : ΣOBS → 2ΣI∪O is the observation function that maps agent’s observations to
its corresponding set of states. Intuitively, τ defines what actions an agent can
choose at any state s ∈ ΣI ×ΣO and what are the possible next valuations over
agent’s output variables for the chosen action. That is, (i, o, `, o′) |= τ for i ∈ ΣI ,
o ∈ ΣO, ` ∈ Λ, and o′ ∈ ΣO′ means that at any state s of the system with s|I = i
and s|O = o, the agent can take action `, and a state with component o′ is a
possible successor. A perfect agent is an agent with OBS = I∪O and γ(s) = {s}
for all s ∈ ΣI ×ΣO. We omit (OBS, γ) in the description of perfect agents. An
agent a is called local if and only if its transition relation τ is a predicate over
O ∪ Λ ∪ O′, i.e., it does not depend on any uncontrolled variable v ∈ I.

A multi-agent system M = {a1, a2, · · · , an} is defined as a set of agents
ai = (typei, Ii,Oi, Λi, τi,OBSi, γi) for 1 ≤ i ≤ n. Let V =

⋃n
i=1Oi be the set of

agents’ output variables. We assume that the set of output variables of agents are
pairwise disjoint, i.e., ∀1 ≤ i ≤ n. Oi ∩Oj = ∅, and the set of input variables Ii
for each agent ai ∈M is a subset of variables controlled by other agents, i.e., Ii ⊆
V\Oi. We further make some simplifying assumptions. First, we assume that all
uncontrolled agents are perfect, i.e., uncontrolled agent has perfect information

about the state of the system at any time-step. Second, we assume that all
controlled agents are cooperative while uncontrolled ones can play adversarially,
i.e., the controlled agents cooperate with each other and make joint decisions to
enforce the global objective. Finally, we assume that the observation variables
for controlled agents are pairwise disjoint, i.e., ∀1 ≤ i ≤ n. OBSi ∩ OBSj = ∅,
and that each controlled agent has perfect knowledge about other controlled
agents’ observations. That is, controlled agents share their observations with
each other. Intuitively, it is as if the communication between controlled agents
is instantaneous and error-free, i.e., they have perfect communication and tell
each other what they observe. This assumption helps us preserve the two-player
game setting and to stay in a decidable subclass of the more general problem
of multi-player games with partial information. Note that multiplayer games of
incomplete information are undecidable in general [6].

In this paper we focus on a special setting where all agents are local. A
multi-agent system M = {a1, a2, · · · , an} is dynamically decoupled (or decou-
pled in short) iff all agents a ∈ M are local. Intuitively, agents in a decoupled
multi-agent system can choose their action based on their own local state and
regardless of the local states of other agents in the system. That is, the avail-
ability of actions for each agent in any state of the system is only a function
of the agent’s local state. Such setting arises in many applications, e.g., robot
motion planning, where possible transitions of agents are independent from each
other. For example, how a robot moves around a room is usually based on its
own characteristics and motion primitives [9]. Note that this does not mean that
the controlled agents are completely decoupled, as the objectives might concern
different agents in the system, e.g., collision avoidance objective for a system con-
sisting of multiple controlled robots, which requires cooperation between agents.

In our framework, the user describes the agents and specifies the objective
as a conjunctive LTL formula. From description of the agents, a game structure
is obtained that encodes how the state of the system evolves. Formally, given
a decoupled multi-agent system M = Mu

⊎
Mc partitioned into a set Mu =

{u1, · · · , um} of uncontrolled agents and a set Mc = {c1, · · · , cn} of controlled
agents, the turn-based game structure GM induced by M is defined as GM =
(V , Λ, τ ,OBS , γ) where V = {t}∪

⋃
a∈MOa is the set of all variables inM with

t as a turn variable, Λ =
⋃

a∈M Λa is the set of actions, OBS =
⋃

c∈Mc OBSc is
the set of all observation variables of controlled agents (note that we assume all
uncontrolled agents are perfect,) and τ and γ are defined as follows:

τ = τe ∨ τs
τe = t = 1 ∧ t′ = 2 ∧

∧
u∈Mu

τu ∧
∧

c∈Mc

Same(Oc,O′c)

τs = t = 2 ∧ t′ = 1 ∧
∧

c∈Mc

τc ∧
∧

u∈Mu

Same(Ou,O′u)

γ =
∧

c∈Mc

γc

Fig. 1: Grid-world with static obstacles

Intuitively, at each step, uncontrolled agents take actions consistent with
their transition relations, and their variables get updated while the controlled
agents’ variables stay unchanged. Then the controlled agents react concurrently
and simultaneously by taking actions according to their transition relations,
and their corresponding variables get updated while the uncontrolled agents’
variables stay unchanged.

Example 1. Let R1 and R2 be two robots in an n× n grid-world similar to the
one shown in Figure 1. Assume R1 is an uncontrolled robot, whereas R2 can
be controlled. In the sequel, let i range over {1, 2}. At each time any robot
Ri can move to one of its neighboring cells by taking an action from the set
Λi = {upi, downi, righti, lefti}. Furthermore, assume that R2 has imperfect
sensors and can only observe R1 when R1 is in one of its adjacent cells. Let (xi, yi)
represent the position of robot Ri in the grid-world at any time1. We define
Oi = {xi, yi} and Ii = O3−i as the output and input variables, respectively.
Note that the controlled variables by one agent are the input variables of the
other agent. Transition relation τi =

∧
`∈Λi τ` is defined as conjunction of four

parts corresponding to robot’s action where

τupi = (yi > 1) ∧ upi ∧ (y′i ↔ yi − 1) ∧ Same(xi, x′i)
τdowni = (yi < n) ∧ downi ∧ (y′i ↔ yi + 1) ∧ Same(xi, x′i)
τlefti = (xi > 1) ∧ lefti ∧ (x′i ↔ xi − 1) ∧ Same(yi, y′i)

τrighti = (xi < n) ∧ righti ∧ (x′i ↔ xi − 1) ∧ Same(yi, y′i)

Intuitively, each τ` for ` ∈ Λi specifies whether the action is available in the
current state and what is its possible successors. For example, τupi indicates
that if Ri is not at the top row (yi > 1), then the action upi is available and if
applied, in the next state the value of yi is decremented by one and the value
of xi does not change. Next we define the observation function γ2 for R2. It
is easier and more intuitive to define γ−12 , and since observations partition the
state space γ2 = (γ−12)−1 is defined. Formally,

γ−12 (a, b, c, d) =

{
(a, b, c, d) if a− 1 ≤ c ≤ a+ 1 ∧ b− 1 ≤ d ≤ b+ 1

(⊥,⊥, c, d) otherwise

1 Note that variables xi and yi are defined over a bounded domain and can be encoded
by a set of Boolean variables. To keep the example simple, we use their bounded
integer representation here.

LetOBS2 = {xo1, yo1, xo2, yo2} where xo1, y
o
1 ∈ {⊥, 1, 2, · · · , n} and xo2, y

o
2 ∈ {1, · · · , n}.

Intuitively, R2 observes its own local state perfectly. Furthermore, if R1 is in one
of its adjacent cells, its position is observed perfectly, otherwise, R1 is away and
its location cannot be observed. γ2 can be symbolically encoded as

∨
o∈ΣOBS (o∧

φγ(o)) where φγ(o) is the predicate specifying the set γ(o). Finally, we let R1 =
(uncontrolled, I1,O1, Λ1, τ1) and R2 = (controlled, I2,O2, Λ2,OBS2, γ2). Note
that R1 (R2) is modeled as a perfect (imperfect, respectively) local agent.

The game structure GM of imperfect information corresponding to multi-
agent system M = {R1, R2} is a tuple GM = (V , Λ, τ ,OBS , γ) where V =
{t}∪O1 ∪O2, Λ = Λ1 ∪Λ2, τ = τe ∨ τs, τe = t = 1∧ t′ = 2∧ τ1 ∧Same(O2,O′2),
τs = t = 2 ∧ t′ = 1 ∧ τ2 ∧ Same(O1,O′1), OBS = OBS2, and γ = γ2. ut

We now formally define the problem we consider in this paper.

Problem 1. Given a decoupled multi-agent system M = Mu
⊎
Mc partitioned

into uncontrolledMu = {u1, · · · , um} and controlled agentsMc = {c1, · · · , cn},
a predicate φinit specifying an initial state, and an objective Φ = Φ1 ∧ · · · ∧ Φk
as conjunction of k ≥ 1 LTL formulas Φi, compute strategies S1, · · · , Sn for
controlled agents such that the strategy S = S1⊗· · ·⊗Sn defined as composition
of the strategies is winning for the game (GM, φinit, Φ), where GM is the game
structure induced by M.

4 Compositional Controller Synthesis

We now explain our solution approach for Problem 1 stated in Section 3. Al-
gorithm 1 summarizes the steps for compositional synthesis of strategies for
controlled agents in a multi-agent system. It has three main parts. First the
synthesis problem is automatically decomposed into subproblems by taking ad-
vantage of the structure in the multi-agent system and given objective. Then the
subproblems are solved separately and their solutions are composed. The com-
position may restrict the possible actions that are available for agents at some
states. The composition is then projected back to each subproblem and the sub-
problems are solved again with new restrictions. This process is repeated until
either a subgame becomes unrealizable, or computed solutions for subproblems
reach a fixed point. Finally, a set of strategies, one for each controlled agent, is
extracted by decomposing the strategy obtained in the previous step. Next, we
explain Algorithm 1 in more detail.

4.1 Decomposition of the Synthesis Problem

The synthesis problem is decomposed into subproblems in lines 2−9 of Algorithm
1. The main idea behind decomposition is that in many cases, each conjunct Φi
of the objective Φ only refers to a small subset of agents. This observation is
utilized to obtain a game structure from description of those agents that are
involved in Φi, i.e., only agents are considered to form and solve a game with
respect to Φi that are relevant. In other words, each subproblem corresponds to

Algorithm 1: Compositional Controller Synthesis

Input: A decoupled multi-agent system M = {u1, · · · , um, c1, · · · , cn}, φinit

specifying initial state, and an objective Φ = Φ1 ∧ · · · ∧ Φk

Output: A set of strategies (S1, · · · ,Sn) one for each controlled agent, if one
exists

1 /* Decompose the problem based on agents’ involvement in conjuncts*/
2 for all Φi, 1 ≤ i ≤ k do
3 INVi := Involved(Φi);
4 Gi := CreateGameStructure(INVi);
5 Xi :=

⋃
a∈INVi Oa; /* the set of variables controlled by involved agents */

6 φi
init := Project(φinit,Xi);

7 GKi := CreateKnowledgeGameStructure(Gi);
8 (Gdi , φi

init) := ToSafetyGame(GKi , φi
init, Φi);

9 /*Compositional synthesis*/
10 while true do
11 for i = 1 · · · k do

12 Sd
i := SolveSafetyGame(Gdi , φi

init);

13 S :=
⊗m

i=1 S
d
i ; /* compose the strategies */

14 for i = 1 · · · k do

15 Let Yi = Vd
i ∪ Λd

i be the set of variables and actions in Gdi ;
16 Ci := Project(S,Yi); /* project the strategies */

17 if ∀1 ≤ i ≤ k,Sd
i = Ci then

18 break; /* a fixed point is reached over strategies */
19 for i = 1 · · · k do

20 Gdi := Gdi [Ci]; /* Restrict the subgames for the next iteration */

21 (S1, · · · , Sn) :=Extract(S);
22 return (S1, · · · , Sn);

a conjunct Φi of the global objective Φ and the game structure obtained from
agents involved in Φi.

For each conjunct Φi, 1 ≤ i ≤ k, Algorithm 1 first obtains the set INVi
of involved agents using the procedure Involved. Formally, let VΦi ⊆ V be
the set of variables appearing in Φi’s formula. The set of involved agents are
those agents whose controlled variables appear in the conjunt’s formula, i.e.,
Involved(Φi) = {a ∈M | Oa ∩ VΦi 6= ∅}.

A game structure Gi is then obtained from the description of the agents
INVi using the procedure CreateGameStructure as explained in Section 3.
The projection φiinit of the predicate φinit with respect to the involved agents
is computed next. The procedure Project takes a predicate φ over variables
Vφ and a subset X ⊆ Vφ of variables as input, and projects the predicate with
respect to the given subset. Formally, Project(φ,X) =

{
s|X | s ∈ ΣVφ

}
.

The knowledge game structure GKi corresponding to Gi is obtained at line
7. Note that this step is not required if the system only includes perfect agents
that can observe the state of the game perfectly at any time-step. Finally, the
objective Φi is transformed into a game structure using the algorithms in [15,33]

and composed with GKi to obtain a safety game (Gdi , φiinit). The result of de-
composition phase is k safety games

{
(Gd1 , φ1init), · · · , (Gdk , φkinit)

}
that form the

subproblems for the compositional synthesis phase.

Example 2. Let Ri for i = 1, · · · , 4 be four robots in an n× n grid-world, where
R4 is uncontrolled and other robots are controlled. For simplicity, assume that
all agents are perfect. At each time-step any robot Ri can move to one of its
neighboring cells by taking an action from the set {upi, downi, righti, lefti} with
their obvious meanings. Consider the following objective Φ = Φ1∧Φ2∧Φ3∧Φ12∧
Φ23 where Φi for i = 1, 2, 3 specifies that Ri must not collide with R4, and Φ12

(Φ23) specifies that R1 and R2 (R2 and R3, respectively) must avoid collision
with each other. Sub-formulas Φi, i = 1, 2, 3, only involve agents Ri and R4, i.e.,
INV(Φi) = {Ri, R4}. Therefore, the game structures Gi induced by agents Ri
and R4 are composed with the game structure computed for Φi to form a sub-
problem as a safety game. Similarly, we obtain safety games for objectives Φ12

and Φ23 with INV(Φ12) = {R1, R2} and INV(Φ23) = {R2, R3}, respectively. ut

Remark 1. The decomposition method used here is not the only way to decom-
pose the problem, neither it is necessarily optimal. More efficient decomposition
technique can be used to obtain quicker convergence in Algorithm 1 for example
by different grouping of conjuncts. Nevertheless, the decomposition technique
explained above is simple and it was effective in our experiments.

4.2 Compositional Synthesis

The safety games obtained in decomposition phase are compositionally solved in
lines 9− 21 of Algorithm 1. At each iteration of the main loop, the subproblems
(Gdi , φiinit) are solved, and a maximally permissive strategy Sdi is computed for
them, if one exists. Computed strategies are then composed in line 11 of Al-
gorithm 1 to obtain a strategy S for the whole system. The strategy S is then
projected back to sub-games, and it is compared if all the projected strategies are
equivalent to the strategies computed for the subproblems. If that is the case,
the main loop terminates, while S is winning for the game (Gd, φinit) where
(Gd, φinit) is the safety game associated with the multi-agent system M and
objective Φ. Otherwise, at least one of the subproblems needs to be restricted.
Each sub-game is restricted by the computed projection, and the process is re-
peated. The loop terminates either if at some iteration a subproblem becomes
unrealizable, or if permissive strategies S1, · · · ,Sk reach a fixed point. In the
latter case, a set of strategies, one for each controlled agent is extracted from S
as explained below.

4.3 Computing Strategies for the Agents

Let V⊗ =
⋃k
i=1 VGdi be the set of all variables used to encode the game structures

Gdi , and Λc = Λc1 × · · · × Λcn be the set of controlled agents’ actions. Once a
permissive strategy S : ΣV⊗ → 2Λ

c

is computed, a winning strategy Sd : ΣV⊗ →

Λc is obtained from S by restricting the non-deterministic action choices of
the controlled agents to a single action. The strategy Sd is then decomposed
into strategies S1 : ΣV⊗ → Λc1 , · · · , Sn : ΣV⊗ → Λcn for the agents simply
by projecting the actions over system transitions to their corresponding agents.
Formally, for any s ∈ ΣV⊗ such that S(s) is defined, let Sd(s) = σ ∈ S(s)
where σ = (σ1, · · · , σn) ∈ Λc is an arbitrary action chosen from possible actions
permitted by S in the state s. Agents’ strategies are defined as Si(s) = σi for
i = 1, · · · , n. Note that we assume each controlled agent has perfect knowledge
about other controlled agents’ observations. The following theorem establishes
the correctness of Algorithm 1.

Theorem 1. Algorithm 1 is sound2.

Proof. Note that Algorithm 1 always terminates, that is because either eventu-
ally a fixed point over strategies is reached, or a sub-game becomes unrealizable
which indicates that the objective cannot be enforced. Consider the permissive
strategies Sdi and their projections Ci. We have Ci(s) ⊆ Sdi (s) for any s ∈ ΣV ,
and as a result of composing and projecting intermediate strategies, we will ob-
tain more restricted sub-games. As the state space and available actions in any
state is finite, at some point, either a sub-game becomes unrealizable because the
system player becomes too restricted and cannot win the game, or all strategies
reach a fixed point. Therefore, the algorithm always terminates.

We now show that Algorithm 1 is sound, i.e., if it computes strategies (S1, · · · , Sn),
then the strategy S =

⊗n
i=1 Si is a winning strategy in the game (GM, φinit, Φ),

where GM is the game structure induced byM. Let S∗ =
⊗k

i=1 Sdi be the fixed
point reached over the strategies. First note that any run in Gdi [Sdi] starting from
a state s |= φiinit for 1 ≤ i ≤ k satisfies the conjunct Φi since Sdi is winning in
the corresponding safety game. That is, the restriction of the game structure
Gdi to the strategy Sdi satisfies Φi. Consider any run π = s0s1s2 · · · in the re-
stricted game structure Gd[S∗] starting from the initial state s0 |= φinit where

Gd =
⊗k

i=1 Gdi . Let πi = si0s
i
1s
i
2 · · · for 1 ≤ i ≤ k be the projection of π with

respect to variables Vdi of the game structure Gdi , i.e., sij = sj|Vd
i

for j ≥ 0. Since

si0 |= φiinit and Sdi is equivalent to the projection of S∗ with respect to variables
and actions in the game structure Gdi , it follows that πi is a winning run in the
safety game (Gdi [Sdi], Φi), i.e., πi |= Φi. As πi |= Φi for 1 ≤ i ≤ k, we have

π |= Φ =
∧k
i=1 Φi. It follows that S∗ is winning in the safety game (Gd, φinit).

Moreover, S∗ is also winning with respect to the original game as (Gd, φinit) is
the safety game associated with (GM, φinit, Φ) [15]. It is easy to see that the set
(S1, · · · , Sn) of strategies extracted from S∗ by Algorithm 1 is winning for the
game (GM, φinit, Φ). ut

2 In [15] it is shown that bounded synthesis is complete by proving the existence of a
sufficiently large bound. Following their result, it can be shown that Algorithm 1 is
also complete. However, in practice, the required bound is rather high and instead
an incremental approach is used for synthesis.

Remark 2. Algorithm 1 is different from compositional algorithm proposed in
[15] in two ways. First, it composes maximally permissive strategies in contrast
to composing game structures as proposed in [15]. The advantage is that strate-
gies usually have more compact symbolic representations compared to game
structures3. Second, in the compositional algorithm in [15], sub-games are com-
posed and a symbolic step, i.e., a post or pre-image computation, is performed
over the composite game. In our experiments, performing a symbolic step over
composite game resulted in a poor performance, often worse than the central-
ized algorithm. Algorithm 1 removes this bottleneck as it is not required in our
setting. This leads to a significant improvement in algorithm’s performance since
image and pre-image computations are typically the most expensive operations
performed by symbolic algorithms [35].

5 Case Study

We now demonstrate the techniques on a robot motion planning case study sim-
ilar to those that can be found in the related literature (e.g., [8,9,10].) Consider a
square grid-world with some static obstacles similar to the one depicted in Figure
1. We consider a multi-agent systemM = {u1, · · · , um, c1, · · · , cn} with uncon-
trolled robots Mu = {u1, · · · , um} and controlled ones Mc = {c1, · · · , cn}. At
any time-step, any controlled robot ci for 1 ≤ i ≤ n can move to one of its
neighboring cells by taking actions upi, downi, lefti, and righti, or it can stay
put by taking the action stop. Any uncontrolled robot uj for 1 ≤ j ≤ m stays
on the same row where they are initially positioned, and at any time-step can
move to their left or right neighboring cells by taking actions leftj and rightj ,
respectively. We consider the following objectives for the systems, (Φ1) colli-
sion avoidance, i.e., controlled robots must avoid collision with static obstacles
and other robots, (Φ2) formation maintenance, i.e., each controlled robot ci must
keep a linear formation (same horizontal or vertical coordinate) at all times with
the subsequent controlled robot ci+1 for 1 ≤ i < n, (Φ3) bounded reachability,
i.e., controlled robots must reach the bottom row in a pre-specified number of
steps. We consider two settings. First we assume all agents are perfect, i.e., all
agents have full-knowledge of the state of the system at any time-step. Then we
assume controlled agents are imperfect and can observe uncontrolled robots only
if they are nearby and occupying an adjacent cell, similar to Example 1.

We apply two different methods to synthesize strategies for the agents. In the
Centralized method, a game structure for the whole system is obtained first, and
then a winning strategy is computed with respect to the considered objective.
In the Compositional approach, the strategy is computed compositionally using
Algorithm 1. We implemented the algorithms in Java using the BDD package
JDD [36]. The experiments are performed on an Intel core i7 3.40 GHz machine
with 16GB memory. In our experiments, we vary the number of uncontrolled and

3 Strategies are mappings from states to actions while game structures include more
variables and typically have more complex BDD representation as they refer to
states, actions, and next states.

controlled agents, size of the grid-world, and the objective of the system as shown
in Tables 1 and 2. The columns show the number of uncontrolled and controlled
robots, considered objective, size of the grid-world, number of variables in the
system, and the time and memory usage for different approaches, respectively.
Furthermore, we define Φ12 = Φ1 ∧ Φ2, Φ13 = Φ1 ∧ Φ3, and Φ = Φ1 ∧ Φ2 ∧ Φ3.

Table 1: Experimental results for systems with perfect agents
Centralized Compositional

|Mu| |Mc| objective size |V| time mem (MB) time mem (MB)

1 1 Φ1 64× 64 52 72 ms 6.6 105 ms 6.6

1 1 Φ1 128× 128 60 93 ms 6.6 101 ms 6.6

1 2 Φ13 16× 16 79 14.9 min 365.5 4.2 s 19.3

1 2 Φ13 32× 32 95 mem out mem out 34.4 s 50.8

1 2 Φ 16× 16 79 400.3 s 239.7 5.1 s 19.4

1 2 Φ 32× 32 95 155.8 min 1209 33.1 s 38.3

1 3 Φ13 4× 4 66 22 s 50.8 0.8 s 6.8

1 3 Φ13 8× 8 88 mem out mem out 98.4 s 101.2

2 1 Φ 8× 8 51 106.4 s 322 33 ms 6.6

2 1 Φ 128× 128 107 mem out mem out 3.5s 6.7

2 2 Φ 4× 4 56 3.2 s 19.4 201 ms 6.6

2 2 Φ 8× 8 76 10.6 min 460 14.4 s 19.4

2 3 Φ13 4× 4 75 19.1 min 497.8 8.4 s 25.9

2 3 Φ13 8× 8 101 mem out mem out 30.2 min 800.2

2 3 Φ 8× 8 101 mem out mem out 12.7 min 302.6

Multi-agent systems with perfect agents. Table 1 shows some of our ex-
perimental results for the setting where all agents are perfect (more experimental
data is provided in the technical report.) Note that the compositional algorithm
does not always perform better than the centralized alternative. Indeed, if the
conjuncts of objectives involve a large subset of agents, compositional algorithm
comes closer to the centralized algorithm. Intuitively, if the agents are “strongly”
coupled, the overhead introduced by compositional algorithm is not helpful, and
the central algorithm performs better. For example, when the system consists
of a controlled robot and an uncontrolled one along with a single safety objec-
tive, compositional algorithm coincides with the centralized one, and centralized
algorithm performs slightly better. However, if the sub-problems are “loosely”
coupled, which is the case in many practical problems, the compositional algo-
rithm significantly outperforms the centralized one, both from time and memory
perspective, as we increase the number of agents and make the objectives more
complex, and it can solve problems where the centralized algorithm is infeasible.

Multi-agent systems with imperfect controlled agents. Not surpris-
ingly, scalability is a bigger issue when it comes to games with imperfect infor-
mation due to the subset construction procedure, which leads to yet another
reason for compositional algorithm to perform better than the centralized al-

Table 2: Experimental results for systems with imperfect agents
Centralized Compositional

|Mu| |Mc| objective size |V| time mem (MB) time mem (MB)

1 2 Φ12 4× 4 127 1.7 s 6.7 0.6 s 6.7

1 2 Φ12 6× 6 235 28.6 s 31.9 10.2 s 19.3

1 2 Φ12 8× 8 235 229.7 s 126.6 95 s 57.1

1 2 Φ12 9× 9 375 time out time out 306 s 94.9

1 2 Φ12 10× 10 375 time out time out 9.7 min 176.7

1 2 Φ13 4× 4 143 1.4 s 6.7 303 ms 6.7

1 2 Φ13 6× 6 255 38.2 s 57.1 5 s 13

1 2 Φ13 8× 8 255 8.9 min 252.2 38.3 s 51

1 2 Φ13 9× 9 395 time out time out 114.9 s 88.6

1 2 Φ13 10× 10 395 time out time out 279.9 s 157.8

1 2 Φ 4× 4 143 2.3 s 6.7 0.7 s 6.7

1 2 Φ 6× 6 255 46.2 s 50.8 10 s 19.3

1 2 Φ 8× 8 255 344.5 s 202.1 129.9 s 57.1

1 2 Φ 9× 9 395 time out time out 309.9 s 101.2

1 2 Φ 10× 10 395 time out time out 9.6 min 176.7

1 3 Φ1 4× 4 186 144.3 s 69.7 0.9 s 6.7

1 3 Φ1 6× 6 346 time out time out 17.7 s 38.2

1 3 Φ1 8× 8 346 time out time out 190.9 s 176.7

1 3 Φ1 10× 10 554 time out time out 24.6 min 730.6

1 3 Φ13 4× 4 210 265.8 s 214.5 0.9 s 6.7

1 3 Φ13 6× 6 376 time out time out 49.2 s 57.1

1 3 Φ13 8× 8 376 time out time out 483.9 s 214.5

1 3 Φ13 9× 9 584 time out time out 31.7 min 441.1

1 3 Φ 6× 6 376 time out time out 36 s 50.8

1 3 Φ 8× 8 376 time out time out 343.4 s 201.9

1 3 Φ 10× 10 584 time out time out 39.6 min 774.7

ternative. Table 2 shows some of our experimental results for the setting where
controlled agents are imperfect. While the centralized approach fails to compute
the knowledge game structure due to the state explosion problem, the composi-
tional algorithm performs significantly better by decomposing the problem and
performing subset construction on smaller and more manageable game structures
of imperfect information.

6 Conclusions and Future Work

We proposed a framework for controller synthesis for multi-agent systems. We
showed that by taking advantage of the structure in the system to composition-
ally synthesize the controllers, and by representing and exploring the state space
symbolically, we can achieve better scalability and solve more realistic problems.
Our preliminary results shows the potential of reactive synthesis as planning al-
gorithms in the presence of dynamically changing and adversarial environment.

In our implementation, we performed the subset construction procedure sym-
bolically and we only constructed the part of it that is reachable from the initial
state. One of our observations was that by considering more structured obser-
vation functions for game structures of imperfect information, such as the ones
considered in our case study where the robots show a “local” observation be-
havior, the worst case exponential blow-up in the constructed knowledge game
structure does not occur in practice. In future, we plan to investigate how consid-
ering more restricted yet practical observation functions can enable us to handle
systems with imperfect agents of larger size.

References

1. Jennings, J.S., Whelan, G., Evans, W.F.: Cooperative search and rescue with a
team of mobile robots. In: 8th International Conference on Advanced Robotics,
IEEE (1997)

2. Rus, D., Donald, B., Jennings, J.: Moving furniture with teams of autonomous
robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE (1995)

3. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams.
IEEE Transactions on Robotics and Automation (1998)

4. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ACM (1989)

5. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
31st Annual Symposium on Foundations of Computer Science, IEEE (1990)

6. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer noncooperative
games of incomplete information. Computers & Mathematics with Applications
(2001)

7. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive
(1) designs. Journal of Computer and System Sciences (2012)

8. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Transactions on Robotics (2009)

9. Saha, I., Ramaithitima, R., Kumar, V., Pappas, G.J., Seshia, S.A.: Automated
composition of motion primitives for multi-robot systems from safe ltl specifica-
tions. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE (2014)

10. Ayanian, N., Kallem, V., Kumar, V.: Synthesis of feedback controllers for multiple
aerial robots with geometric constraints. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems, IEEE (2011)

11. Keviczky, T., Borrelli, F., Balas, G.J.: Decentralized receding horizon control for
large scale dynamically decoupled systems. Automatica (2006)

12. Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-
vehicle formation stabilization. Automatica (2006)

13. Sahin, E., Girgin, S., Bayindir, L., Turgut, A.E.: Swarm robotics. Swarm Intelli-
gence (2008)

14. Shi, Z., Tu, J., Zhang, Q., Liu, L., Wei, J.: A survey of swarm robotics system. In:
Advances in Swarm Intelligence. Springer (2012)

15. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for ltl
synthesis. Formal Methods in System Design (2011)

16. Kupferman, O., Piterman, N., Vardi, M.: Safraless compositional synthesis. In:
Computer Aided Verification, Springer (2006)

17. Baier, C., Klein, J., Klüppelholz, S.: A compositional framework for controller
synthesis. In: Concurrency Theory. Springer (2011)

18. Sohail, S., Somenzi, F.: Safety first: A two-stage algorithm for ltl games. In: Formal
Methods in Computer-Aided Design, IEEE (2009)

19. Alur, R., Moarref, S., Topcu, U.: Pattern-based refinement of assume-guarantee
specifications in reactive synthesis. 21st International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (2015)

20. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. International Journal
on Software Tools for Technology Transfer (2013)

21. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis with parametric reac-
tive controllers. In: Proceedings of the 19th International Conference on Hybrid
Systems: Computation and Control, ACM (2016)

22. Reif, J.H.: The complexity of two-player games of incomplete information. Journal
of computer and system sciences (1984)

23. Chatterjee, K., Henzinger, T.A.: Semiperfect-information games. In: Foundations
of Software Technology and Theoretical Computer Science. Springer (2005)

24. De Wulf, M., Doyen, L., Raskin, J.F.: A lattice theory for solving games of imper-
fect information. In: Hybrid Systems: Computation and Control. Springer (2006)

25. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Algorithms for omega-
regular games with imperfect information. In: Computer Science Logic, Springer
(2006)

26. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic
planning. IEEE Transactions on Automatic Control (2012)

27. Kress-gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive robot control
from abstraction and temporal logic specifications

28. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental syn-
thesis of control policies for heterogeneous multi-agent systems with linear tem-
poral logic specifications. In: IEEE International Conference on Robotics and
Automation, IEEE (2013)

29. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from
temporal logic motion specifications. IEEE Transactions on Robotics (2010)

30. Ozay, N., Topcu, U., Murray, R.M.: Distributed power allocation for vehicle man-
agement systems. In: 50th IEEE Conference on Decision and Control and European
Control Conference, IEEE (2011)

31. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT press (1999)
32. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Automated Technology for

Verification and Analysis. Springer (2007)
33. Ehlers, R.: Symbolic bounded synthesis. Formal Methods in System Design (2012)
34. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-

nal of the ACM (2002)
35. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-

ponent analysis in n log n symbolic steps. In: Formal Methods in Computer-Aided
Design, Springer (2000)

36. Vahidi, A.: Jdd. http://javaddlib.sourceforge.net/jdd/index.html

	Compositional Synthesis of Reactive Controllers for Multi-Agent Systems

