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Abstract. Well-defined memory consistency models are necessary for
writing correct parallel software. Developing and understanding formal
specifications of hardware memory models is a challenge due to the sub-
tle differences in allowed reorderings and different specification styles.
To facilitate exploration of memory model specifications, we have devel-
oped a technique for systematically comparing hardware memory models
specified using both operational and axiomatic styles. Given two spec-
ifications, our approach generates all possible multi-threaded programs
up to a specified bound, and for each such program, checks if one of
the models can lead to an observable behavior not possible in the other
model. When the models differs, the tool finds a minimal “litmus test”
program that demonstrates the difference. A number of optimizations
reduce the number of programs that need to be examined. Our pro-
totype implementation has successfully compared both axiomatic and
operational specifications of six different hardware memory models. We
describe two case studies: (1) development of a non-store atomic vari-
ant of an existing memory model, which illustrates the use of the tool
while developing a new memory model, and (2) identification of a subtle
specification mistake in a recently published axiomatic specification of
TSO.

1 Introduction

Well-defined memory consistency models are necessary for writing correct and
efficient shared memory programs [1]. The emergence of mainstream multi-core
processors as well as recent developments in language-level memory models [3,
18], have stirred new interest in hardware-level memory models. The formal
specification of memory models is challenging due to the many subtle differences
between them. Examples of such differences include different allowed reorder-
ings, store atomicity, types of memory fences, load forwarding, control and data
dependencies, and different specification styles (operational and axiomatic). Ar-
chitecture manuals include litmus tests that can be used to differentiate between
memory models [15, 22], but these litmus tests are not complete, and coming up
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with new litmus tests requires identifying the subtle difference between memory
models this test is meant to detect.

Our goal is to aid the process of developing specifications for hardware-level
memory models by providing a technique for systematically comparing memory
model specifications. When there is a difference between the two memory models,
the technique generates a litmus test as a counter-example, including both a
program and an outcome allowed only in one of the models. Such a technique
can be used in several different scenarios. One case is comparing two presumably
equivalent models, for example comparing an axiomatic specification given as a
set of first order logic formulas to an operational specification that describes the
model as a state transition system. Alternatively, we may also want to check
whether one model is strictly weaker (or stronger) than the other.

Our approach is based on systematic generation of all possible programs
up to a specified size bound. For each program, we check if one of the models
can lead to an observable behavior that is not possible in the other model. To
produce the set of observable behaviors for a program under a given memory
model, we use two different search techniques depending on whether the model
specification is operational or axiomatic. When there is an observable behavior
in one memory model that is not allowed by the other model, the approach
outputs the program and the contrasting behavior. Because we explore starting
with the smallest programs, this is a minimal litmus test.

We employ several techniques to make this approach practical. A naive enu-
meration of all test programs up to the specified bound produces too many
programs, so we employ optimizations to reduce the number of programs that
need to be examined. We use symmetry reductions based on value, address
and thread symmetries. Furthermore, we identify and skip redundant programs
that will not expose any new differences by analyzing the conflict graph of the
program. We use partial order reduction techniques to optimize exploration of
operational models and an incremental SAT approach for axiomatic models.

We tested this approach by comparing the axiomatic and operational speci-
fications of six different memory models: Sequential Consistency (SC), SPARC’s
TSO, PSO and RMO [22] and non-store-atomic relaxations of TSO and PSO.
Our technique finds the known differences, but it also uncovered some errors in
two of our specifications, which we corrected. Finding differences takes less than
a second in most cases and only several minutes in the worst cases we encoun-
tered. We tested the scalability of this technique and found that we can explore
all programs up to six read and write operations plus any number of fences in
a few minutes. Our results indicate these bounds are adequate to detect subtle
differences.

We performed two case studies. We developed a specification of a non-store-
atomic variant of PSO, which illustrates that the tool quickly identifies subtle
specification mistakes. In another case study, we contrasted SOBER’s axiomatic
specification of TSO [5] with an operational specification of TSO and showed
our technique detects a recently discovered specification error [7].



Initially X = 0; Y = 0

T1 T2

Write X ← 1 Write Y ← 1
Read Y → r1 Read X → r2

Is the outcome r1 = 0; r2 = 0 allowed?

Fig. 1: Testing write-after-read reordering

2 Specifying memory models

A memory consistency model is a specification of the shared memory semantics
of a parallel system [1]. The simplest memory model is Sequential Consistency
(SC) [16]. An execution of a concurrent program is sequentially consistent if
all reads and writes appear to have occurred in a sequential order that is in
agreement with the individual program orders of each thread. In order to im-
prove system performance and allow common hardware optimization techniques
such as store buffers, many systems implement weaker memory models such as
SPARC’s TSO, PSO and RMO [22], Intel’s x86 [15], Intel’s Itanium [24], ARM
and PowerPC [2].

Consider for example the program in Fig. 1. Executing under SC, at least
one of the writes must occur before any of the reads, and therefore the outcome
r1 = 0; r2 = 0 is not allowed. A processor that has a store buffer, on the
other hand, can defer the writes to the main memory and effectively reorder
the writes after the reads, and thus reading zero for both registers is allowed.
SPARC’s TSO and x86 both allow this relaxation. Other memory models allow
further relaxations such as write after write and read after read (RMO, Itanium,
PowerPC). Some memory models such as SC are store atomic, in the sense that
all threads observe writes in the same order, but other memory models are non-
store-atomic and allow different threads to observe writes from other threads in
a different order (such as PowerPC).

2.1 Operational specification

The purpose of a memory model specification is to express precise constraints
on which values can be associated with reads in a given multi-threaded program.
One method of specifying a memory model is using an operational style, which
abstracts actual hardware structures such as a store buffer. This section describes
operational specifications for several memory models that we defined as a part
of this work.

For example, we have specified TSO using three different types of compo-
nents that run concurrently [17]. A processor component produces a sequence
of memory operations, a memory location component keeps track of the latest
value written to a specific memory location, and a write queue component im-
plements a FIFO buffer for write messages, and supports read forwarding. These
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Fig. 2: Component diagram of TSO (left), PSO (middle) and NPSO (right)

components are connected in the configuration described in Fig. 2 (left) to im-
plement TSO. Each processor is connected to a single write queue (WQ) that
releases writes from this processor to the main memory.

SPARC’s PSO (Partial Store Order [22]), a memory model that relaxes TSO
by allowing to reorder writes after writes to different addresses. It can be specified
in a similar manner, using the configuration illustrated in Fig. 2 (middle). Instead
of one queue per processor, there is a queue per address for each of the processors.
Writes to different addresses are stored at different queues, which can send the
writes in any order, thus enabling reordering writes after later writes.

The two previous models are store atomic (all threads observe writes from
other threads in the same order). In non-store-atomic memory models, different
threads do not have to agree on the order of writes from other threads. As
an example for a non-store-atomic memory model we present here NPSO, the
non-store-atomic version of PSO. The diagram in Fig. 2 (right) presents the
operational specification for NPSO. Because each thread may observe stores
from different threads in a different order, the NPSO specification does not use
one main memory as in the previous models. Instead, each thread has its own
local memory. To preserve coherence and ensure all writes to the same address
would be observed in a total order. The model maintains coherence by using an
additional layer of write queues.

We have defined operational specifications in this style for additional mem-
ory models [17] such as RMO and the non-store-atomic versions of each of the
store atomic models (NTSO and NPSO). To model these, we add additional
component types. The encoding for RMO, for example, requires the ability to
read future values to reorder reads after later writes.



2.2 Axiomatic specification

An alternative approach is the axiomatic style of specifications, given by a set
of axioms that define which execution traces are allowed by the model and in
particular which writes can be observed by each read. An execution trace is a
sequence of memory operations (Read, Write, Fence) produced by a program.
Each operation in the trace includes an identifier of the thread that produced
this operation, and the address and value of the operation for reads and writes.

Axiomatic specifications usually refer to the program order, <p. For two
operations x and y, x <p y if both x and y belong to the same thread and x
precedes y in the execution trace. The program order, however, is not necessarily
the order in which memory operations are observed by the main memory. The
memory order, <m, is a total order that indicates the order in which memory
operations affect the main memory. A read observes the latest write to the same
address according to <m.

We define store atomic memory models using two types of axioms: a read-
values axiom and an ordering axiom. The read-values axiom states that each read
observes the latest write to the same location according to the memory order.
To support load forwarding, reads may observe local writes that precede them in
program order, even if such write is ordered after the read in the memory order.
We handle this forwarding in same style as in Burckhardt et al [4], by defining
a function sees(x, y, <), which is true if y is a write and y < x or y <p x. The
read-values axiom for store-atomic memory models is:

Read values Given a read x and a write y to the same address as x, then x
and y have the same value if sees(x, y, <m) and there is no other write z
such that sees(x, z,<m) and y <m z. If for a read x there is no write y such
that sees(x, y, <m) then the read value is 0.

All our store atomic memory model specifications use the same read-values
axiom, but differ in the definition of the ordering axiom, specifying which mem-
ory orders are allowed by the model. For example, TSO allows reordering only
writes after later reads, and therefore the TSO reordering axiom is:

TSO-reordering For every x and y, x <p y implies that x <m y, unless x is a
write and y is a read.

The ordering axiom for PSO relaxes TSP by allowing reordering writes with
other writes to a different location. The ordering axiom for PSO is:

PSO-reordering For every x and y, if x <p y then x <m y in the following
cases: 1. x is a read. 2. Either x or y is a fence. 3. Both x and y are writes
and they both have the same address.

In non-store-atomic models, threads may observe stores in different orders,
so we can no longer use one global memory order. Instead, we define an order <t

for each thread t, which we call the view of thread t. To ensure transitive causal
order between operations, the view includes all operations and not only writes.



As in the store-atomic case, loads see the latest stores to the same address
except in the case of forwarding, but the relevant order for loads in thread t is
view order <t. We modify the read-values and ordering axioms to observe the
latest write in the relevant view:

Non-store-atomic read-values Given a read x in thread t and a write y to
the same address as x, then x and y have the same value if y is the most
recent write according to sees(x, y, <t). If for a read x in thread t there is
no write y such that sees(x, y, <t), the read value is 0.

To define NPSO, the non-store atomic version of PSO maintains the same
order restrictions between operation from the same thread as in the case of PSO:

NPSO ordering For every x and y, if x <p y then for every t x <t y must
hold in the following cases: 1. x is a read. 2. Either x or y is a fence. 3. Both
x and y are writes and they both have the same address.

The non-store-atomic case requires adding another axiom for coherence, stat-
ing that there is a total order between writes to the same address:

NPSO coherence For every two write operations x and y that write to the
same address, and for every two threads, t and t′, if x <t y then x <′t y.

The above axioms represent our first attempt at specifying a model which is
a non-store atomic relaxation of PSO in an axiomatic style, but, as we describe
in Section 4, this specification is too weak. In Section 4.3, we use our technique
to develop the missing axioms for NPSO.

3 Comparing memory models

This section presents a technique for comparing memory models. Our goal is
to check the difference between two models, and when the two models are not
equivalent, to generate a litmus test that shows the difference between the two.
Two memory models M and M ′ are not equivalent if any program displays
different behaviors under M and M ′.

Based on a review of published litmus tests in the literature and our own ex-
perience, tests that detect differences between memory models tend to be small,
and hence an exhaustive search of test programs up to a given bound is a plau-
sible approach for debugging memory model specifications. Given upper bounds
for the total number of instructions in a program, the number of operations per
thread, the number of threads as well as the number of memory locations, the
technique exhaustively explores all programs within these bounds.

We start by defining the test program space for contrasting memory models.
We present reduction techniques for trimming down the number of programs to
a manageable size. Finally, we discuss techniques to efficiently compare the set
of possible outcomes for a given program both for operational and axiomatic
specification styles.



Test A
T1 T2
Write Y ← 1 Read X → r1
Read Y → r2 Fence
Write X ← 2 Read Y → r3

Test B
T1 T2
Write X ← 1 Read Y → r1
Read X → r2 Fence
Write Y ← 2 Read X → r3

Test C
T1 T2
Read Y → r1 Write X ← 1
Fence Read X → r2
Read X → r3 Write Y ← 2

Fig. 3: Address symmetry (A and B); Thread symmetry (B and C)

3.1 Test programs

A test program is a concurrent program consisting of n threads, t1, ...tn, where
each thread is a sequence of memory operations. A memory operation can be
one of:

– Read Addr → reg - a read from a constant address to a register
– Write Addr ← V al - a write of a constant value to a constant address
– Fence - a full memory ordering barrier (fence)

The above three instructions suffice to contrast the models we have considered
in this paper. Our methodology as well as the tool can be extended to include
other instructions and data dependencies.

3.2 Program enumeration

Even when considering small bounds on test size, the program space can be too
big to be explored in a reasonable time. Thus, we reduce the number of tested
programs to a smaller number of representatives that are still sufficient for finding
differences. First, because all writes are constants, registers in the program are
used only for defining the final outcome. Therefore, we assign a unique register
to each read. Likewise, the actual values read or written are inconsequential. We
are interested only in which stores each load instruction can read. So instead
of exploring all different combinations of write values, we assign a unique value
for each write. We also restrict the places where we add fences: fences at the
beginning or end of a thread have no effect, nor does a fence followed by another
fence, so we eliminate all fences that are not between two other instructions.

Next, we use the symmetry properties of the memory model to reduce the
number of programs. We use two symmetries: address symmetry and thread
symmetry. In Fig. 3, the two programs display address symmetry: we obtain
Test B from Test A by switching the Xs with the Y s. These two programs
display the same behaviors and therefore it is sufficient to test only one of them.
Similarly, Test C is the same as Test B with thread T1 switched with T2. By
transitivity, any combination of thread and address permutation are equivalent.
Hence, Test A and Test C are also symmetric.

We generate only one representative for each symmetry class by assigning
an order between elements in a permutation and sorting them, and then we
generate programs with sorted elements only. We sort the addresses according
to the order of their appearance in the program, starting from T1 and continuing
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Fig. 4: Redundant tests

to the next thread after the end of each thread: the first memory access in T1
is always to location 0, the next memory access could either be to 0 again or
to 1 and so on. When the highest address accessed so far is i, the next memory
operation involves any address between 0 to i + 1. Similarly, we perform thread
symmetry reduction by sorting threads according to some lexicographical order
between instructions. The order we use is Write < Read < Fence, where two
writes (or reads) are sorted according to their address. By generating programs so
that the threads are sorted according to this lexicographical order and addresses
by the order of their appearance, the enumeration algorithm avoids generating
symmetric tests.

3.3 Redundant test elimination

Some test programs are redundant in the sense that these tests are either not
going to detect any difference between memory models or are subsumed by
smaller programs that detect the same difference. First, we conclude that some
programs are redundant simply by looking at the program structure. Consider,
for example, Test D in Fig. 4. In this case, there are no shared variables between
the two threads, and any execution under any memory model would give the
same outcome. Similarly, in Test E both variables are shared, but even SC (the
strongest model we typically consider) allows all possible outcomes. In both tests,
there is no possible conflict in SC and therefore no cases that could be relaxed
under a weaker memory model. Furthermore, consider Test F in Fig 4. This test
can be decomposed into two separate tests: Test F1 includes T1 and the first



two instructions in T2, and test F2 includes the last two instructions in T2 and
T3. Test F is not going to exhibit any behaviors that can not be detected by F1
and F2, because the only relation between the two is the program order relation
between instruction 2 and 3 in T2.

We eliminate such redundant test programs by generating a conflict graph for
the test program. A conflict graph G is a directed graph where each operation
is a node and the edges represent potential conflicts between the operations. For
every two operations, X and Y, there is an edge in G from X to Y if either: (1)
X <p Y , or (2) either of X or Y are write operations and both access the same
address. A test is redundant if the conflict graph G for this test is not strongly
connected, i.e., there are operations X and Y in the graph such that there is no
path from X to Y . For example, in Test C, there is no path from instruction 3
to instruction 2 in T2, and therefore this test is redundant.

Given a program P whose conflict graph in not strongly connected, we parti-
tion the instructions in P into two partitions, P1 and P2, such that no variables
are shared between P1 and P2, and if x is an instruction in P1 and y is an
instruction in P2 and both x and y are in the same thread, then x <p y. We
expect that for such a program, no instruction in P1 would interfere with the
execution of P2 and vice versa, and hence the cross product of the outcomes of
the program in partition P1 and the outcomes of the program in partition P2 is
the set of outcomes of P. Therefore, if P detects a difference between two models,
either P1 or P2 should detect a difference as well.

3.4 Computing all outcomes of a test program

For each of the test programs we determine if the set of outcomes of P running
under a memory model M is the same as for P running on M ′. The approach
we take is to find all possible outcomes under both models independently and
then compare them.

Finding all outcomes for an operational memory model is done in a manner
similar to Park and Dill [21]. We use a model checker to find the reachable state
space of the model. We extract the outcomes from the set of reachable final states
found by the model checker. Our initial experiences in translating the operational
models into Promela and running Spin [14] resulted in an inefficient exploration
tool. Consequently, we implemented a custom explicit state enumeration model-
checker in C++ using sleep-set partial order reduction [12] and state caching.

For memory models specified axiomatically, the model is translated into a
propositional formula. The model is specified as a set of first order formulas.
In the context of finite programs all the variables have finite domains, so we
convert the specification into predicate calculus by unfolding the quantifiers. A
satisfying assignment is obtained by a SAT solver, which is one possible outcome
of the program. To find all possible outcomes, we add the clause representing
the negation of the outcome to the model and run the SAT solver again. As
long as there are additional possible outcomes, the SAT solver returns another
satisfying assignment. We repeat this process iteratively until the model becomes
unsatisfiable. As we only add constraints to the model, the SAT solver uses



Operational SC TSO PSO RMO NTSO NPSO
Axiomatic

SC - 1s/4/2 1s/4/2 1s/4/2 8s/4/2 1s/4/2
TSO 1s/4/2 - 1s/4/2 1s/4/2 130s/5/3 1s/4/2
PSO 1s/4/2 1s/4/2 - 1s/4/2 8s/4/2 16s/5/3

RMO 1s/4/2 1s/4/2 1s/4/2 - 8s/4/2 16s/5/3
NTSO 2s/4/2 39s/5/3 2s/4/2 2s/4/2 - 2s/4/2
NPSO 2s/4/2 2s/4/2 40s/5/3 2s/4/2 9s/4/2 -

Table 1: Contrasting axiomatic and operational models: time/instructions/threads

conflict clauses from previous runs to make subsequent iterations faster. For the
prototype, we used minisat [11] as the SAT solver.

4 Experiments

This section describes the experiments we performed to demonstrate the fea-
sibility and usefulness of our approach, including: (1) measuring the execution
time for contrasting the operational and axiomatic specifications of six mem-
ory models, (2) showing the effectiveness of the reductions targeted at reducing
the number of test programs considered, and (3) performing two case studies in
which the tool is used to debug memory model specifications.

4.1 Comparing different memory models

We tested our technique by comparing the operational and axiomatic specifica-
tions for various memory models: SC, the three SPARC memory models, and
the non-store-atomic extensions of TSO and PSO. As seen in Table 1, a counter
example is found for most cases within less than a second. The slowest times
occur when comparing models to their non-store-atomic extension, which takes
over two minutes for TSO versus NTSO. The litmus tests produced by the tool
as counter examples were mostly the litmus tests we expected. However, the
tool found subtle errors in our initial operational specification for RMO and for
NTSO, which we fixed.

4.2 Test reductions and scalability

The graph in Fig. 5 shows the number of tests generated with up to three memory
locations, up to three instructions per thread, and a varying number of total
instructions. Fences are not counted towards the total number of instructions.
Symmetry reductions provide approximately a 10x reduction in the number of
tests, and redundant program elimination provides an additional 10x reduction,
resulting in an overall reduction by a factor of 100x in the number of generated
tests. The graph in Fig. 6 shows the average time per test for both operational
and axiomatic memory models. As seen in this graph, the average time per test
is no more than several seconds for programs with up to nine instructions, which
means a bound of six or seven instructions can be explored in a reasonable time.
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4.3 Debugging our axiomatic specification for NPSO

As a case study for using our technique for debugging a new memory model spec-
ification, we developed an axiomatic specification for NPSO, a non-store-atomic
relaxation of PSO. We used an existing operational specification for NPSO as a
reference model. We started with the axiomatic specification defined in Section
2.2, which is an extension of PSO that allows each thread to observe memory
operations in a different order with the addition of a coherence axiom. We then
ran the prototype with a bound of six instructions.

The prototype reported that Test G in Fig. 7 is allowed in the axiomatic
but not in the operational specification. This is a well-known litmus test, which
usually illustrates reorderings of reads after later writes. In this specification,
however, we explicitly disallow reordering reads after writes. This outcome oc-
curred because threads are not required to agree on the order of writes to different



Test G
T1 T2

Read X → r1 Read Y → r2
Write Y ← 1 Write X ← 2
Outcome: r1 = 2; r2 = 1
time to find: 2s

Test H
T1 T2 T3

Read X → r1 Read Y → r2 Read Z → r3
Write Y ← 1 Write Z ← 2 Write X ← 3
Outcome: r1 = 3; r2 = 1; r3 = 2
time to find: 824s

Test I
T1 T2

Write X ← 1 Write Y ← 2
Fence Fence
Read Y → r1 Read X → r2
Outcome: r1 = 0; r2 = 0
time to find: 22s

Test J
T1 T2 T3

Write X ← 1 Read Y → r2 Write Y ← 2
Fence Read X → r3
Write Y ← 2
Outcome: r1 = 0; r2 = 2; r3 = 0
time to find: 411s

Fig. 7: Litmus tests generated for buggy NPSO specifications

addresses. To correct the specification, we must rule out this kind of behavior
and enforce some notion of causal transitivity. Our first attempt to fix it required
that if a read sees a write to the same address in some thread, it can be ordered
only after this read in the local thread that issued the write. Running the tool
again after this modification generated Test H in Fig. 7. The proposed axiom
was sufficient to rule out cycles involving two threads, but not cycles involving
three threads and three addresses. We fixed this by using an alternative axiom,
stating that if a read precedes a write to any address according to the local
thread of this write, it will precede this write in any other thread.

After fixing the issue of causal transitivity, we ran the prototype again and
received Test I in Fig. 7. This outcome is allowed when fences affect only lo-
cal order and there is no total order among fences. We fixed it by adding an
axiom that requires a total order between fences. In the final iteration, we re-
ceived Test J in Fig. 7. In this case, the operational model drains both the local
and the global queues after a fence, which rules out the outcome listed under
Test J. A total order between fences is not sufficient to rule out this outcome.
We strengthen the total order axiom by requiring all threads to agree about the
order between fences and any other operations. After fixing this axiom, we found
no new mismatches between the models.

4.4 Debugging the axiomatic specification of TSO used in SOBER

The second case study for our technique was debugging the axiomatic specifica-
tion of TSO used by SOBER [5]. SOBER is a technique for detecting potential
SC violations in software. SOBER uses an axiomatically defined memory model
that is intended to be equivalent to SPARC’s TSO. The authors stated that their
axiomatic definition is equivalent to their operational specification of TSO [6].
However, Burnim et al [7] discovered that SOBER’s axiomatic specification and
TSO are, in fact, not equivalent. We used SOBER’s specification as a case study



Test K
T1 T2

Write X ← 1 Write Y ← 3
Write Y ← 2 Read Y → r2
Read Y → r1 Read X → r3
Outcome: r1 = 3; r2 = 3; r3 = 0
time to find: 111s

Test L
T1 T2

Write X ← 1 Write Y ← 2
Fence Read Y → r2
Read Y → r1 Read X → r3
Outcome: r1 = 0; r2 = 2; r3 = 0
time to find: 43s

Fig. 8: Litmus tests generated for SOBER

to see if our technique could detect the discrepancy between the two models
without any prior knowledge about the nature of this discrepancy.

We compared SOBER’s axiomatic specification with our operational spec-
ification for TSO. Our tool took less than two minutes to generate Test K in
Fig. 8, which is allowed by TSO but not by SOBER’s specification. Such a test is
often used to distinguish TSO from IBM 370 [1], which is essentially TSO with-
out forwarding. We then contrasted SOBER with IBM 370 and received Test L
in Fig. 8, demonstrating that SOBER allows behaviors that are not allowed by
IBM 370. We implemented a fix suggest by Burckhardt (personal communica-
tion), and we found no new mismatch between the fixed model our specification
of TSO.

5 Related work

Many studies describe tools for testing litmus tests on a formally specified mem-
ory model [10, 20, 21, 23, 24]. Given a parallel program and an expected outcome,
these tools report whether the specified outcome is feasible on a specified mem-
ory model. Most of these tools test for one outcome at a time [10, 20, 23, 24].
Park and Dill [21] presented a tool that enabled exploring all outcomes for a
given parallel program using an operational specification for RMO.

Another approach for debugging a memory model is the “test model-checking”
methodology [19]. In this approach, a memory model is verified against a state
machine that generates a non-deterministic sequence of writes and test for cer-
tain assertions. Each test-generating state machine is designed to detect a certain
architectural rule. This approach provides a stronger verification than testing
specific litmus tests.

A technique for validating that a system correctly implements a memory
model is dynamic testing, which is used by tools such as TSOtool [13] and
LCHECK [9]. These tools generate random tests, execute them on a certain
hardware, and verify that the execution adheres to a given memory model.

Few studies involve a direct comparison between two memory models. Chat-
terjee et al [8] shows the equivalence of an operational specification of the Alpha
memory model to an implementation of the same model. This work finds a refine-
ment map between the two models via model-checking and uses an intermediate



abstraction that exploit structural similarities between the two models to facil-
itate the proof. Other studies [10, 20] use theorem proving to prove equivalence
between an operational and axiomatic specification of the same model.

6 Conclusions

We presented a technique for contrasting memory models and implemented a
prototype based on this technique. Our experiments showed that this approach
can detect differences between memory models within seconds or minutes, and
the case studies showed that by contrasting memory models we can detect sub-
tle differences between memory models that might have gone undetected using
a predetermined set of litmus tests. Several key features make this technique a
viable tool for debugging memory model specifications: it provides feedback in
reasonable time, it generates a minimal-length litmus test as a counter exam-
ple, which are easy to analyze and understand, it is fully automatic, and it is
flexible and general in the sense that it can support different memory models,
specification styles, and exploration techniques.

One limitation of our approach is that it does not provide a complete verifi-
cation for the equivalence of two models. We test programs only up to a certain
bound, and we cannot guarantee that there is no longer test that differentiates
between the two specifications. Furthermore, redundant program elimination re-
ductions may not be safe when comparing some models. We plan to extend this
work to equivalence verification by finding sufficient bounds for a rich but re-
stricted domain of memory models and prove that the reductions we use are safe
for this domain of models.
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