
Languages of Nested Trees ?

Rajeev Alur1, Swarat Chaudhuri1, and P. Madhusudan2

1 University of Pennsylvania, USA
2 University of Illinois at Urbana-Champaign, USA

Abstract. We study languages of nested trees—structures obtained by
augmenting trees with sets of nested jump-edges. These graphs can nat-
urally model branching behaviors of pushdown programs, so that the
problem of branching-time software model checking may be phrased as a
membership question for such languages. We define finite-state automata
accepting such languages—these automata can pass states along jump-
edges as well as tree edges. We find that the model-checking problem
for these automata on pushdown systems is EXPTIME-complete, and
that their alternating versions are expressively equivalent to NT-µ, a
recently proposed temporal logic for nested trees that can express a va-
riety of branching-time, “context-free” requirements. We also show that
monadic second order logic (MSO) cannot exploit the structure: MSO on
nested trees is too strong in the sense that it has an undecidable model
checking problem, and seems too weak to capture NT-µ.

1 Introduction

Regular languages of infinite trees, accepted by finite-state tree automata, have
been studied in detail and found many applications in the last thirty years.
Such languages are known to be closed under all interesting operations and
enjoy decidable membership and emptiness questions [10]. A cornucopia of other
results are known: parity tree automata are equivalent to monadic second-order
logic (MSO) on trees, their bisimulation-closed subclass is exactly captured by
the modal µ-calculus [13], parity games and their zero-memory determinacy
provide crucial steps that simplify the decidability proof, etc. [9, 13, 20, 8, 10].
Moreover, various decidability results for monadic logics on infinite graphs have
been obtained using interpretations on the binary tree [7, 10, 24].

Our interest in regular tree languages stems from the application of these
results to program verification. In its traditional phrasing, the branching-time
model-checking problem is to determine, given a program P and a regular tree
language S defining the specification, whether the execution tree of P is a mem-
ber of S. Here, S may be given as a tree automaton or a formula in a temporal
logic such as the µ-calculus [14]. In classical model checking, P is a finite state
program modeling, for instance, hardware or network protocols. Recently, in or-
der to analyze software, this problem was generalized to the case when P is a

? This research was partially supported by ARO URI award DAAD19-01-1-0473 and
NSF award CCR-0306382.

pushdown system. Such pushdown models can capture control flow in typical
imperative programming languages with recursive calls, have a decidable model-
checking problem against regular branching specifications, and are central to
interprocedural dataflow analysis [22] and a number of software model-checking
platforms [5, 11]. In this paper, we fix them as our program models.

Here, our focus is on specification formalisms. The motivating observation
is that regular tree languages are not expressive enough for many interesting
specifications. For example, the µ-calculus cannot argue about the “matching”
between calls and returns in a program, and, by implication, about pre/post-
conditions, interprocedural dataflow requirements, and many access control prop-
erties involving the stack. While context-free specifications are expressive enough
for these purposes, they are not closed under intersection or complement and
have an undecidable model-checking problem on pushdown systems.

In this paper, we identify an alternative phrasing of the branching-time
model-checking problem that is decidable but is capable of expressing “context-
free” specifications as above. Inspired by recent work on automata on nested
words [3, 4], we model a program unfolding not by a tree, but by a directed
acyclic graph known as a nested tree that is obtained by adding a set of properly
nested jump-edges to a tree (see Fig. 1; the jump-edges are dashed). Based on the
structure of jump-edges, we can classify nodes in a nested tree as calls (sources
of jumps), returns (their targets), and locals (the remaining nodes). In nested
trees generated from programs, calls and returns model call and return sites in
the program, and jump-edges correspond to summary edges. Now we investigate
finite-state automata and logics that define regular languages of such structures.
Then the model-checking problem is to determine if the nested tree generated
by a program belongs to a regular language of nested trees.

We begin our study by considering nondeterministic parity automata on in-
finite, ordered nested trees (NP-NTAs). An NP-NTA can send states along tree
edges and jump edges, so that its state while reading a node depends on the
states at its parent and the jump-predecessor (if one exists). Since there is an
explicit jump-edge from a call to its matching return in a nested tree, these au-
tomata are naturally capable of matching calls with returns. Pleasantly, they are
also closed under intersection. However, they are not closed under complement,
so that they are unlikely to have an attractive logical characterization. This mo-
tivates us to consider alternating parity automata on nested trees (AP-NTAs).
These automata, more naturally defined on unordered nested trees, are closed
under all Boolean operations (though not under projection). While they have
an undecidable emptiness problem, their model-checking problem is EXPTIME-
complete, matching that for alternating tree automata on pushdown systems.

Our candidate for a canonical temporal logic for nested trees is NT-µ, a fix-
point calculus introduced in our previous work [1] under the name VP-µ and
a different but equivalent interpretation. The logic NT-µ is evaluated over sub-
trees of a nested tree summarizing procedural contexts and can reason about
concatenation of such trees. Earlier, we established that it can express a variety
of interesting requirements not expressible by regular tree languages, that its

fixpoints naturally correspond to interprocedural summary computations, and
that its model-checking problem on pushdown systems is EXPTIME-complete
(and thus no more costly than that of weaker logics such as CTL). In this pa-
per, we demonstrate that it defines a robust class of languages by proving that
it has the same expressive power as AP-NTAs. Our proof1 offers polynomial
translations from AP-NTAs to NT-µ and vice versa, as well as insights about
the connection between runs of AP-NTAs and the notion of summaries in NT-µ.
This result is especially intriguing as the model-checking algorithms for NT-µ
and AP-NTAs are very different in flavor—while the latter reduces to pushdown
games, the former seems to have no connection to the various previously known
results about trees, context-free languages, and pushdown graphs.

Given the appealing trinity of automata, µ-

PSfrag replacements

call returnlocal

Fig. 1. A nested tree

calculus, and MSO for regular tree languages,
we study MSO-logic over nested trees, which
extends standard MSO-logic over trees with a
predicate (x ↪→ y) that can check the existence
of a jump-edge between two nodes. We show
that MSO-logic is strictly more expressive than
NP-NTAs, and that the matching predicate is
too powerful leading to undecidable satisfiabil-
ity and model checking problems. The undecid-
ability proof shows that the difficulty lies with
combining second-order existential quantifica-
tion with the matching predicate. On the other

hand, there seems to be no way to encode sets of summaries in MSO-logic over
nested trees, and we conjecture that NT-µ cannot be translated to MSO-logic.

The paper is organized as follows. Sec. 2 defines nested trees and nested
pushdown trees (nested trees generated by pushdown systems). In Sec. 3, we
define and study NP-NTAs and AP-NTAs. Sec. 4 describes NT-µ and proves its
expressive equivalence with AP-NTAs. In Sec. 5, we introduce MSO-logic over
nested trees, prove it to be undecidable, and show that it cannot be captured by
NT-µ. Sec. 6 has some concluding remarks.

2 Nested trees

We now define nested trees, which are directed acyclic graphs obtained by aug-
menting a tree with a set of jump-edges representing non-trivial forward jumps.
Jump-edges do not cross, and can capture the nesting of calls and returns in pro-
grams. We also model the intuition that if a call does not return, then neither
does any of the calls pending up to it.

Formally, let T = (S, r,→) be an unordered infinite tree with node set S,

root r and edge relation → ⊆ S × S. Let
+−→ denote the transitive (but not

reflexive) closure of the edge relation, and let a path in T from node s1 be a
sequence π = s1s2 . . . sn . . . over S, where n ≥ 2 and si → si+1 for all 1 ≤ i. In
this paper, we only consider trees where all maximal paths are infinite.

1 In the current version, we only offer proof sketches for the more important theorems.
Full proofs are available in a technical report [2].

An unordered nested tree is a directed acyclic graph (T, ↪→), where ↪→⊆ T×T
is a set of jump-edges satisfying:

1. if s ↪→ t, then s
+−→ t, and we do not have s→ t;

2. if s ↪→ t and s ↪→ t′, then neither t
+−→ t′ nor t′

+−→ t;
3. if s ↪→ t and s′ ↪→ t, then s = s′;

4. if there is a path π such that for nodes s, t, s′, t′ lying on π we have s
+−→ s′,

s ↪→ t, and s′ ↪→ t′, then either t
+−→ s′ or t′

+−→ t;

5. if s
+−→ t

+−→ s′, s ↪→ s′, and t ↪→ t′ for some t′, then there is some t′′ such

that t ↪→ t′′ and t′′
+−→ s′.

We are also interested in ordered, binary nested trees (although, by default,
nested trees are assumed to be unordered). Let T = (S, r,→1,→2) be an ordered
binary tree, where S is a set of nodes, r is the root, and →1,→2⊆ S × S are
the left and right edge relations. Then (T, ↪→) is an ordered, binary nested tree
if ((S, r,→1 ∪→2), ↪→) is an unordered nested tree.

For an alphabet Σ, a Σ-labeled (ordered or unordered) nested tree is a struc-
ture T = (T, ↪→, λ), where (T, ↪→) is a nested tree with node set S, and λ : S → Σ
is a node-labeling function. All nested trees in this paper are Σ-labeled.

A node s in a nested tree such that s ↪→ t (t ↪→ s) for some t is a call (return)
node; the remaining nodes are said to be local. We note that the sets of call,
return and local nodes are disjoint. If s ↪→ t, then we call s the jump-predecessor
of t and t the jump-successor of s. Edges from a call node and to a return node
are known as call and return edges; the remaining edges are local. The fact that

an edge (s, t) exists and is a call, return or local edge is denoted by s
call−→ t,

s
ret−→ t, or s

loc−→ t. For an ordered or unordered nested tree T = (T, ↪→, λ)
with edge set E, the structured tree of T is the node and edge-labeled tree
Struct(T) = (T, λ, η : E → {call , ret , loc}), where η(s, t) = a iff s

a−→ t.
The bisimulation relation ∼ for nested trees is defined as: two (ordered, un-

ordered) nested trees T1 and T2 are bisimilar (we write T1 ∼ T2) if Struct(T1)
and Struct(T2) are bisimilar by the usual definition of bisimulation on trees.
The bisimulation closure of a set L of nested trees is the set L∼ = {T ′ : T ′ ∼
T for some T ∈ L}. We call L bisimulation-closed if L∼ = L.

A few observations: first, the sets of call, return and local edges define a

partition of the set of tree edges. Second, if s
ret−→ s1 and s

ret−→ s2 for distinct s1

and s2, then s1 and s2 have the same jump-predecessor. Third, the jump-edges in
a nested tree are completely captured by the edge labeling in the corresponding
structured tree, so that we can reconstruct a nested tree T from Struct(T).

Fig. 1 depicts part of a nested tree. The jump-edges are dashed, and call,
return, and local nodes are drawn in different styles.

Nested pushdown trees We are particularly interested in nested trees gener-
ated by pushdown systems (pushdown automata without accepting conditions),
or, equivalently, recursive state machines or Boolean programs.

Consider a pushdown system P with a set of states V , a stack alphabet
B, and initial state v0. Transitions are of the form v −→ v′ (local moves),

v
push(b)−→ v′ (pushes), and v

pop(b)−→ v′ (pops). We assume that if there is a push-
move (similarly, pop-move) from state v, then there are no local moves or pops
(similarly, pushes) from v. Let κ : V → Σ label states by an alphabet Σ.

A configuration of P is a pair (v, w), where v ∈ V is a state and w ∈ B∗

is the stack; let CP be the set of configurations of P. Let the configuration
c0 = (v0, ε) be the initial configuration. The configuration graph of P has these
configurations as vertices, and an edge relation 99K⊆ CP × CP that is the least
relation satisfying: (1) (v, w) 99K (v′, w), for w ∈ B∗, if v −→ v′ is a transition in

P, (2) (v, w) 99K (v′, b.w) if v
push(b)−→ v′, and (3) (v, b.w) 99K (v′, w) if v

pop(b)−→ v′.
We assume that there is an outgoing edge from every c ∈ CP . The configuration
tree of P is the unordered tree TP = (SP , c0,−→P), where SP ⊆ C∗P and −→P⊆
SP ⊆ SP are the least node set and edge relation constructed by the rules: (1)
c0 ∈ SP , and (2) if s.c ∈ SP and c 99K c′ for some s ∈ C∗P and c, c′ ∈ CP , then we
have s.c.c′ ∈ SP and s.c −→P s.c.c′. Also, let us define a map Stack : SP → B∗

such that if a node is of the form s = s′.(v, w) for s′ ∈ C∗P , then Stack(s) = w.
The nested pushdown tree generated by P is the structure CTree(P) =

(TP , ↪→⊆ SP ×SP , λ : SP → Σ), where λ is such that for any node s = s′.(u,w),
we have λ(s) = κ(u), and the jump-edge relation ↪→ is such that s ↪→ t

iff Stack(s) = Stack(t) and there no node t′ such that s
+−→ t′

+−→ t and
Stack(t′) = Stack(s). It is easily verified that CTree(P) is a nested tree. Intu-
itively, the call and return nodes model push and pop sites in the branching
behavior of the pushdown system, and the jump-edges model summary edges
relating pushes with matching pops.

While nested trees generated by programs are naturally unordered, we will
also consider the ordered, binary nested pushdown tree CTreeord (P) of P. This
tree may be obtained by ordering the moves of P, lifting this order to the
(bounded-degree) configuration tree of P, encoding this ordered tree by a bi-
nary tree, and adding jump-edges in the natural way. We skip the details.

3 Automata on nested trees

In this section, we study finite-state automata operating on nested trees. Recall
that for tree automata, the state while reading a (non-root) tree node depends
on its state at the node’s parent. The state of a nested tree automaton (NTA) at
a node in a nested tree depends on its states at the node’s parent and the node’s
jump-predecessor (if it exists). We define these automata in nondeterministic and
alternating flavors; the natural semantics of these are respectively over ordered
and unordered nested trees.

Formally, a (top-down) nondeterministic parity nested tree automaton (NP-
NTA) over Σ is a structure A = (Q, q0,∆,Ω) where Q is a finite set of states,
q0 ∈ Q is the initial state,∆ ⊆ Q×Σ×(TT×TT), where TT = Q∪(Q×Q)∪{⊥},
is a transition relation, and Ω : Q→ {0, 1, . . . , n}, for some n ∈ N, is the parity
accepting condition that assigns a priority to each automaton state.

A run of A on an ordered, binary nested tree T = ((S, r,→1,→2), ↪→, λ) is a
labeling ρ : S → Q of nodes of T by automaton states such that: (1) ρ(r) = q0,
and (2) if for some s we have ρ(s) = q and λ(s) = σ, and s1 and s2 are the
left and right children of s (set s1 or s2 to ⊥ if the left or right child does not
exist), then for some (q, σ, (τ1, τ2)) ∈ ∆, we have: (a) if si, for i ∈ {1, 2}, is a call
or local node, then τi = ρ(si), (b) if si is a return node, then τi = (ρ(t), ρ(si)),
where t ↪→ si, and (c) if si =⊥, then τi =⊥.

Let πi denote the i-th vertex in a path π in T . A run ρ of A on T is accepting
if for all infinite paths π in T , θ′ = max{θ : Ω(ρ(πi)) = θ for infinitely many i}
is even. An ordered, binary nested tree T is accepted if A has an accepting run
on it. The language L(A) of A is the set of nested trees it accepts.

Fig. 2 illustrates part of a run of an NP-NTA on

PSfrag replacements

q0

q1

q1

q2

q2

q2

call

return

local

Fig. 2. A nested tree

a nested tree (assume that the label of every node is
σ and that every node has a left child). Transitions
include (q1, σ, ((q0, q2),⊥)) and (q0, σ, (q1, q2)).

Note that we can define an equivalent semantics
of NP-NTAs by letting the automaton manipulate a
stack rather than consult a node’s jump-predecessor.
In this case, A pushes the current state while taking
a call edge, pops on a return edge, and leaves the
stack unchanged on a local edge. As jump-edges are
nested, the top of the automaton stack at a return
node stores the state at the node’s matching call.

As we shall see, NP-NTAs do not have robust closure properties, so that
defining alternating nested tree automata will be worthwhile. It is more natural
to interpret these automata on unordered nested trees. Also, their semantics are
defined more easily if we let them manipulate stacks of states.

Formally, for a finite set Q, define the set TT (Q) of transition terms whose
members f are of the form f := tt | ff | f ∨ f | f ∧ f | 〈loc〉q | [loc]q | 〈call〉q |
[call]q | 〈ret , q′〉q | [ret , q′]q, where q, q′ ∈ Q. An alternating parity nested tree
automaton (AP-NTA) over Σ is a structure A = (Q, q0,∆,Ω, qf), where Q is a
finite set of states, q0 ∈ Q is the initial state, ∆ : Q×Σ → TT (Q) is a transition
function, and Ω : Q→ {0, 1, . . . , n} is the parity accepting condition.

We define the semantics of an AP-NTA A = (Q, q0,∆,Ω) via a parity game.
The acceptance game G(A, T) of a Σ-labeled nested tree T = (T, ↪→, λ) by A
is played by two players A and E. The vertex set of the game graph is V =
T ×Q×Q∗ × TT , and the set of moves ⇒⊆ V × V is the least set such that:

– for all v ∈ V of the form (s, q, α, f1 ∨ f2) or (s, q, α, f1 ∧ f2) for some v′ ∈
V ∪ {ε}, we have v ⇒ (s, q, α, f1) and v ⇒ (s, q, α, f2);

– for all v ∈ V of the form (s, q, α, 〈loc〉q′)) or (s, q, α, [loc]q′)), and for all s′

such that s
loc−→ s′, we have v ⇒ (s′, q′, α, f), where f = ∆(q′, λ(s′));

– for all v ∈ V of the form (s, q, α, 〈call〉q′) or (s, q, α, [call]q′), and for all s′

such that s
call−→ s′, we have v ⇒ (s′, q′, q.α, f), where f = ∆(q′, λ(s′));

– for all v ∈ V of the form (s, q, q′′.α, 〈ret , q′′〉q′) or (s, q, q′′.α, [ret , q′′]q′), and

for all s′ such that s
ret−→ s′, we have v ⇒ (s′, q′, α, f), where f = ∆(q′, λ(s′));

The vertex set V is partitioned into two sets VE and VA corresponding to the two
players. The set VA comprises vertices of the form (s, q, α, f), where s, q and α are
arbitrary and f has the form tt , [call]q, [loc]q, [ret , q′]q, or (f1∧f2). The remaining
vertices constitute VE. We also lift the priority map Ω to ΩV : V → {0, 1, . . . , n}
by defining ΩV(s, q, α, f) = Ω(q) for all s, q, α, and f .

The two players A and E play on the graph starting from the initial position
vin = (s0, q0, ε,∆(q0, λ(s0))) by moving a token along edges of the game graph.
Whenever the token is in a position v, the player who owns the vertex must
move the token. Formally, a play of G is a non-empty, finite or infinite sequence
α = v1v2 . . . that is a path in the game graph, where v1 = vin . A finite play is
winning for player A if the last position is a player E vertex from which there
is no move; analogously, we define winning finite plays for player E. An infinite
play α is winning for player E if θ′ = max{θ : ΩV(vi) = θ for infinitely many i}
is even; otherwise A wins the play. A strategy for player E (or A) is a subset of
edges Str ⊆ ⇒ such that all these edges originate in a vertex in VE (or VA)2. A
play is according to a strategy Str if all edges in the play are in Str . A strategy
is winning if all maximal plays according to the strategy are winning.

An AP-NTAA accepts a nested tree T if E has a winning strategy in G(A, T).
The language L(A) of A is the set of nested trees accepted by A.

We also consider automata that accept by the weaker final-state condition.
For nondeterministic versions of such automata, a nested tree is accepted if a
special final state qf is seen along every path in some run on it. In alternating
versions, all infinite plays are won by A, and if a play reaches a game vertex
(s, qf , α, f) for some s, α, and f , then the game terminates and E is the winner.

Closure properties Easy constructions show that AP-NTAs are closed under
union and intersection and that NP-NTAs are closed under union. A product
construction suffices to show that NP-NTAs are also closed under intersection.
Also, AP-NTAs are closed under complement since one can take the dual of the
transition functions and add 1 to each priority, making the odd priorities even
and vice versa. This automaton will accept the complement since parity games
are determined (if a nested tree is not accepted by an AP-NTA, then player
A has a winning strategy in the acceptance game that translates to a winning
strategy for E in the dual game). Hence:

Theorem 1. AP-NTAs are closed under union, intersection, and complement.
NP-NTAs are closed under union and intersection.

Observe that by our definition, languages accepted by AP-NTAs are closed
under bisimulation, while those accepted by NP-NTAs are not in general. To
compare the expressiveness of an AP-NTA and an NP-NTA meaningfully, we
need to consider the language obtained by starting with the language L of the
NP-NTA, stripping the order between tree edges off nested trees in L, and closing

2 Strategies are often defined in a more general way that refer to the history of the play.
This definition suffices as parity games always admit zero-memory strategies [10].

(b)(a)

PSfrag replacements

a1 a2 an $

bm1 bm2 bmn

b21 b22

b11

b1n

b2n

b12

cim ci2 ci1 w1 w2 w3 w4 w5 wn

∗

∗∗

∗
∗

∗ ∗$

$

$

$

$

$

$

ui1 = w1

ui2 = w2w3w4

vi1 = w1w2w3

vi2 = w4w5

Legend:
call

return

local

Fig. 3. (a) Expressiveness of AP-NTAs and NP-NTAs (b) Gadget for undecidability

it under bisimulation.3 Formally, for a language L of ordered nested trees, we
define Unord(L) as the bisimulation closure of the set of nested trees ((S, r,→
), ↪→, λ) such that →=→1 ∪→2 for some ((S, r,→1,→2), ↪→, λ) ∈ L.

Now consider ordered nested trees of the form in Fig. 3-a, where Σ = {0, 1, $},
and ai, bij ∈ Σ for all i, j (while the structure in the figure is not binary, it can
be encoded as such; also, the jump-edges, omitted to keep the figure clean, can
be reconstructed). Let Lgap be the language of such structures where for all
i ≤ n, there is some k ≤ m such that an−i+1 = bki. First, we note that Lgap

cannot be recognized by an NP-NTA AN with N states. To see why, take a
structure as above where n = m > N , and for each 1 ≤ i ≤ n, there is a distinct
branch k such that an−i+1 = bki. In any run, AN must enter two branches in
the same state; also, the sequence of states at calls unmatched till these points
are the same. We can replace one of these branches with the other to get an
accepting run on a structure not in Lgap . Note that Unord(Lgap) is recognized
by AP-NTA. Hence:

Theorem 2. There is a language L of ordered, binary nested trees s.t. (1) there
is no NP-NTA accepting L, and (2) there is an AP-NTA accepting Unord(L).

We note that the complement of the language Lgap is accepted by an NP-
NTA A′N , which guesses the i such that ai cannot be matched along any of
the branches, and sends a state to each branch to check this is true. Hence:

Theorem 3. NP-NTAs are not closed under complementation.

The projection over Σ1 of a language L of (ordered, unordered) nested trees
over Σ1 × Σ2 is the language obtained by replacing every label (a, b) in every
nested tree T ∈ L by a. For NP-NTAs, closure under projection is easy; an
NP-NTA can guess the second component of each label and mimic the moves.
However, we can show that AP-NTAs are not closed under projection:

Theorem 4. NP-NTAs are closed under projection, but AP-NTAs are not.

3 Alternatively, we could define AP-NTAs on ordered nested trees. Under this defini-
tion as well, AP-NTAs are strictly more powerful than NP-NTAs.

Decision problems The model-checking problem for AP-NTAs on pushdown
systems is the problem of deciding, given an AP-NTA A and a pushdown system
P, whether CTree(P) ∈ L(A). An EXPTIME-hardness result for this problem
follows from the known hardness of the model-checking problem for alternating
tree automata on pushdown systems [23].

We get an EXPTIME procedure for this problem via a reduction to a push-
down parity game. A two-player pushdown parity game is a parity game played
on the configuration graph of a pushdown system. It is known that pushdown
parity games are solvable in EXPTIME [23]. Now, given an AP-NTA A and
P, CTree(P) ∈ L(A) iff player E wins the acceptance game of A. Now recall
that call-edges (or return-edges) in CTree(P) encode push-moves (pops) of P—
however, these edges are also where the stack of states in the semantics of A is
pushed (popped). Thus, the stack of P is “synchronized” with the implicit stack
of A, so that the graph of the acceptance game of CTree(P) by A happens to be
the configuration graph of a pushdown system that is roughly the “synchronized
product” of P and A. Using this, we get:

Theorem 5. The model-checking problem for AP-NTAs on pushdown systems
is EXPTIME-complete.

While model-checking for alternating NTAs is decidable, emptiness is not4.
This is proved by a reduction from the Post’s Correspondence Problem (PCP) [12].
Consider a tuple ((u1, . . . , uk), (v1, . . . , vk)), where the ui’s and vi’s are finite
words over an alphabet A; the PCP is to determine if there is a sequence
i1, . . . , im, where ij ≤ k, such that ui1ui2 . . . uim = vi1vi2 . . . vim = w. Now
consider nested trees of the form in Fig. 3-b (again, jump-edges are omitted)
such that the initial call-chain is of length m and is labeled by symbols from the
alphabet {1, . . . , k}, and the symbols wi on the “stem” of local nodes succeeding
this chain form the string w. Now suppose the sequence of input symbols on the
call chain is cim . . . ci1 . There are two kinds of return chains hanging from the
stem—the ones marked with the symbol ∗ (similarly $) are exactly at the points
where w may be possibly factored into ui1 , ui2 , . . . , uim (similarly vi1 , . . . , vim).
Also, the i-th return chain (counting from left) of either type is of length i. Then
such a nested tree is a witness for an instance of PCP being positive. We can,
however, show that there is an alternating NTA accepting by final state that
accepts the set of nested trees bisimilar to such witnesses. In fact, we can show
that there is a nondeterministic final-state NTA that accepts any nested tree not
of the above form (under some ordering of edges). Hence:

Theorem 6. Universality for nondeterministic NTAs and emptiness for alter-
nating NTAs are undecidable problems, even for acceptance by final state.

However, we can prove the emptiness problem of NP-NTAs to be solvable in
EXPTIME by reducing it to that for pushdown tree automata [15].

4 This result was obtained independently by Löding [16].

4 A fixpoint calculus for nested trees

Now we study a fixpoint calculus for nested trees, presented in our previous
work [1] under the name VP-µ and a different but equivalent semantics as a
specification language for procedural programs. This logic, which we call NT-µ,
turns out to have the same expressive power as AP-NTAs.

Formally, let AP be a finite set of atomic propositions, Var be a finite set of
variables, and R1, R2, . . . be a countable, ordered set of markers. For p ∈ AP ,
X ∈ Var , and m ≥ 0, formulas ϕ of NT-µ are defined by:

ϕ,ψi := p | ¬p | X | 〈ret〉(Ri) | [ret](Ri) | ϕ ∨ ϕ | ϕ ∧ ϕ | µX.ϕ | νX.ϕ |
〈call〉(ϕ){ψ1, ψ2, ..., ψm} | [call](ϕ){ψ1, ψ2, ..., ψm} | 〈loc〉 ϕ | [loc] ϕ.

The arity of a formula ϕ is the maximum m such that ϕ has a subformula
〈call〉ϕ′{ψ1, . . . , ψm} or [call]ϕ′{ψ1, . . . , ψm}. Also, we define the constants tt
and ff in the standard way.

Formulas are evaluated at structures known as summaries. Let T = (T, ↪→, λ)
be an unordered nested tree labeled by Σ = 2AP . A node t of T is said to be

a matching exit of a node s if there is an s′ such that s′
+−→ s and s′ ↪→ t, and

there are no s′′, t′′ such that s′
+−→ s′′

+−→ s
+−→ t′′, and s′′ ↪→ t′′. Intuitively,

a matching exit of s is the first “unmatched” return along some path from s.
The set of matching exits of s is denoted by ME (s). For a non-negative integer
k, a summary s in T is a tuple 〈s, U1, U2, . . . , Uk〉, where s ∈ T , k ≥ 0, and
U1, U2, . . . , Uk ⊆ ME (s). The set of summaries in a structured tree T is denoted
by SummS .

Let the free variables in a formula ϕ be denoted by Free(ϕ). Then ϕ is

interpreted in an environment E : Free(ϕ) → 2SummS that maps variables to
sets of summaries. Some of the clauses that define the truth of a formula ϕ at a
summary s = 〈s, U1, . . . , Uk〉 are:

– s, E |= p iff p ∈ λ(s); s, E |= X iff s ∈ E(X)
– s, E |= ϕ1 ∨ ϕ2 iff s, E |= ϕ1 or s, E |= ϕ2

– s, E |= 〈call〉(ϕ′){ψ1, ψ2, ..., ψm} iff there is a t ∈ S such that s
call−→ t, and

also a summary t = 〈t, V1, V2, . . . , Vm〉 satisfying (1) t, E |= ϕ′, and (2) for
all i and all s′ ∈ Vi, 〈s′, U1∩ME (s′), U2∩ME (s′), . . . , Uk ∩ME (s′)〉, E |= ψi.

– s, E |= 〈loc〉 ϕ′, iff there is a t ∈ S such that s
loc−→ t, and also a summary

t = 〈t, V1, V2, . . . , Vk〉 such that (1) Vi = ME (t) ∩ Ui, and (2) t, E |= ϕ′

– s, E |= 〈ret〉(Ri) iff there is a t ∈ S such that s
ret−→ t and t ∈ Ui

– s, E |= µX.ϕ′, iff s ∈ S for all S ⊆ SummS such that: for all t such that
t, E [X 7→ S] |= ϕ′, t ∈ S

Here E [X 7→ S] is the environment E ′ such that (1) E ′(X) = S, and (2)
E ′(Y) = E(Y) for all variables Y 6= X.

Consider the unique empty environment E⊥ : ∅ → SummS . A nested tree T
with initial node s0 satisfies a formula ϕ iff 〈s0, ∅, ..., ∅〉, E |= ϕ. The language of
ϕ, denoted by L(ϕ), is the set of nested trees satisfying ϕ.

Now consider the problem of model-checking NT-µ over nested pushdown
trees, i.e. determining, given a pushdown system P and an NT-µ formula ϕ,
whether CTree(P) satisfies ϕ. We previously gave an EXPTIME procedure for
this problem [1]. Interestingly, this procedure involves a fixpoint computation
over equivalence classes of summaries, mirroring symbolic model-checking algo-
rithms for the µ-calculus, and has no direct connection to pushdown games. We
also established that the satisfiability problem for NT-µ is undecidable.

Relation between NT-µ and NTAs We now establish our main theorems,
which show that AP-NTAs are exactly as expressive as NT-µ.

Theorem 7. Given any closed NT-µ formula ϕ, one can construct an AP-NTA
Aϕ such that for any nested tree T , T ∈ L(ϕ) iff T ∈ L(Aϕ). The size of Aϕ is
polynomial in the size of ϕ.

Proof. (Sketch) The AP-NTA Aϕ is over an input alphabet 2AP . For every
subformula ψ of ϕ, Aϕ has a state qψ. The initial state is qϕ.

For any variable X in ϕ, let Ψ(X) be the subformula of form µX.ϕ′ or νX.ϕ′

that binds X (we assume that each variable in ϕ is bound at most once). For
instance, if ϕ = 〈call〉(µX.(p∨X)){q}, then Ψ(X) = µX.(p∨X). For each bound
variable X in ϕ, the state qX is identified with the state qΨ(X).

Let p ∈ AP , and σ ∈ 2AP . The transition relation ∆ of Aϕ is defined induc-
tively over the structure of ϕ:

∆(qp, σ) = tt if p ∈ σ, else ff
∆(qϕ1∧ϕ2

, σ) = ∆(qϕ1
, σ) ∧∆(qϕ2

, σ)
∆(qϕ1∨ϕ2

, σ) = ∆(qϕ1
, σ) ∨∆(qϕ2

, σ)
∆(qµX.ϕ′ , σ) = ∆(qϕ′ , σ)
∆(qνX.ϕ′ , σ) = ∆(qϕ′ , σ)
∆(q〈call〉(ϕ′){ψ1,...,ψk}, σ) = 〈call〉qϕ′
∆(q[call](ϕ′){ψ1,...,ψk}, σ) = [call]qϕ′
∆(q〈loc〉ϕ′ , σ) = 〈loc〉qϕ′
∆(q[loc]ϕ′ , σ) = [loc]qϕ′

∆(q〈ret〉Ri , σ) = ∨φ′,ψ1≤j≤k(〈ret , q〈call〉(φ′){ψ1,...,ψk}〉qψi ∨ 〈ret , q[call](φ′){ψ1,...,ψk}〉qψi)
∆(q[ret]Ri , σ) = ∨φ′,ψ1≤j≤k([ret , q〈call〉φ′{ψ1,...,ψk}]qψi ∨ [ret , q[call]φ′{ψ1,...,ψk}]qψi)

The proof is similar in spirit to a known translation from the µ-calculus to
alternating tree automata [9]. The main difference, of course, is in the call and
ret clauses. At a call in a nested tree, the state of Aϕ contains information about
the return conditions that ϕ asserts. When a matching return (jump-successor)
is reached, Aϕ consults this state and checks that the return assertions hold.

The priority of states of the form qµX.ϕ and qνX.ϕ are respectively odd and
even, and roughly equal to the alternation depth of ϕ. The priority for all other
states is 0. The correctness proof for parity acceptance is along the lines of [9].

Theorem 8. Given any AP-NTA A, one can construct an NT-µ formula ϕA
such that for any nested tree T , T ∈ L(ϕA) iff T ∈ L(A). The size of ϕA is
polynomial in the size of ϕ.

Proof. (Sketch) We skip the full proof and establish the above for alternating
nested tree automata A accepting by a final state qf . We write the formula ϕA
using a set of equations rather than in the standard form. Translation from this
equational form to the standard form is as for the modal µ-calculus [10].

Let Q = {q1, . . . , qn} and TT respectively be the sets of states and transition
conditions of A. For each q ∈ Q, we have a marker Rq; for each pair of states
q, q′ ∈ Q, we have a variable Xq,q′ . Intuitively, a summary 〈s, Uq1 , . . . , Uqn〉 is
collected in Xq,q′ iff A has a way to start at node s at state q, and end up at a
return s′ ∈ Uqj in state qj , having checked that q′ was the state of the automaton
in the current play at the jump-predecessor of s′. Now for each pair of states
q, q′ ∈ Q, we define a map Fq,q′ : TT → Φ, where Φ is the set of NT-µ formulas:

Fq,q′(tt) = tt Fq,q′(ff) = ff
Fq,q′(f1 ∧ f2) = Fq,q′(f1) ∧ Fq,q′(f2)
Fq,q′(f1 ∨ f2) = Fq,q′(f1) ∨ Fq,q′(f2)
Fq,q′(〈call〉q′′) = 〈call〉(Xq′′,q){Xq1,q′ , . . . , Xqn,q′}
Fq,q′([call]q′′) = [call](Xq′′,q){Xq1,q′ , . . . , Xqn,q′}
Fq,q′(〈loc〉q′′) = 〈loc〉Xq′′,q′ Fq,q′([loc]q′′) = [loc]Xq′′,q′

Fq,q′(〈ret , q〉q′′) = 〈ret〉(Rq′′) Fq,q′([ret , q]q′′) = [ret]Rq′′

Then the formula ϕA is the formula corresponding to Xq0,γ0
when taking the

least fixpoint of the following equations:

Xq,q′ =

{
tt if q = qf∨
σ⊆AP ((∧p∈σp) ∧ (∧p/∈σ¬p) ∧ Fq′,q(∆(q, σ) ∨∆r(q, σ))) otherwise.

5 Monadic second-order logic on nested trees

We now study monadic second-order (MSO) logic interpreted on ordered nested
trees. Formulas in MSO-logic are built over a set of first-order variables (x, y . . .)
and a set of second-order variables (X,Y, . . .), ranging over nodes and sets of
nodes in a nested tree T . For each σ ∈ Σ, the signature of MSO-logic has a
unary predicate Qσ, where Qσ(s) is true at a node s iff s is labeled by σ; we
also have a binary equality predicate x = y. There are also left and right edge
predicates x→1 y and x→2 y, and a jump-edge predicate x ↪→ y.

The syntax of MSO-logic is: ϕ := Qσ(x) | ¬ϕ | ϕ ∨ ϕ | x = y | x→1 y | x→1

y | x ↪→ y | ∃x.ϕ | ∃X.ϕ | X(x). The semantics is the natural one on ordered
nested trees. The language L(ϕ) of ϕ is the set of nested trees that satisfy it; ϕ is
said to be bisimulation-closed if L(ϕ) is bisimulation-closed. The model-checking
problem is: given ϕ and a pushdown system P, does CTreeord (P) satisfy ϕ?

While MSO-logic over trees is decidable, MSO-logic over nested tree struc-
tures is not. To see why, note that the gadget S used to prove Theorem 6
(Fig. 3-b) may be embedded in the ordered nested pushdown tree T of a simple
pushdown system. Using existential set quantification, MSO-logic can select S
from T , so that there is a ϕ that holds on T iff gadgets as above exist. Hence:

Theorem 9. The model-checking problem for (even the bisimulation-closed frag-
ment of) MSO-logic on nested pushdown trees is undecidable.

The satisfiability problem for MSO on nested trees is also undecidable. Further:

Theorem 10. There is a bisimulation-closed MSO-logic formula ϕ such that
there is no AP-NTA A satisfying L(A) = Unord(L(ϕ)).

It is natural to ask if MSO-logic is more expressive than nested tree automata.
It indeed turns out that runs of any NP-NTA A can be encoded by an MSO-
logic formula ϕA. The latter uses existential quantification over sets to “guess”
a global labeling of the nodes of a nested tree by states of A, and uses the
predicates −→ and ↪→ to check the consistency of this guess. We can show that:

Theorem 11. For every NP-NTA A, there is an MSO-logic formula ϕA such
that L(A) = L(ϕ).

However, a “jump-edge” predicate seems too weak to capture the interplay of
recursion and Boolean closure in AP-NTAs; higher-order quantification seems
necessary. We conjecture that there is a language L recognized by an AP-NTA
such that there is no MSO formula ϕ that recognizes Lord , where Unord(Lord) =
L, making MSO neither less nor more expressive than AP-NTAs.

6 Conclusions

This paper introduces nested trees, a class of graphs that naturally abstract
branching behaviors of structured programs. Different ways to define languages
over nested trees are explored. Of these, alternating automata and the logic NT-
µ are found to have attractive closure and decidability properties. The central
result, the equivalence of NT-µ and AP-NTAs, is the analog of the the well-
known expressive equivalence between the µ-calculus and alternating parity tree
automata. On the other hand, nondeterministic automata and MSO-logic turn
out to be less robust here than in the classical setting.

It is interesting to contrast the benefits of modeling programs by nested
structures rather than word or tree structures for linear-time and branching-time
model-checking. In the linear-time case, model checking corresponds to language
inclusion, and the frontier of checkable specifications expands from regular word
languages to nested word languages [3, 4]. In the branching-time case, model
checking corresponds to membership, and the answer to this question changes
from regular tree languages to languages of nested trees. This is because in the
world of nested tree languages, alternation adds to the power of acceptors, and
interacts with the ability to “jump” to create a new decidability frontier.

Open theoretical questions include establishing that MSO-logic on nested
trees cannot capture the third-order fixpoints of NT-µ. Also, we believe that
nested trees are conceptually fundamental and merit further study. Applications
beyond program verification are possible: nested word structures are already
known to have connections with XML query languages, since XML documents
have a natural matching tag structure that can be modeled by jump-edges.

References

1. R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global
program flows. In Proc. of POPL ’06, pp. 153–165, 2006.

2. R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. University
of Pennsylvania Technical Report MS-CIS-06-10, 2006.

3. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. of STOC ’04,
pp. 202–211, 2004.

4. R. Alur and P. Madhusudan. Adding nesting structure to words. In Proc. of DLT
’06, LNCS 4036, pp. 1–13, 2006.

5. T. Ball and S. Rajamani. The SLAM project: debugging system software via static
analysis. In Proc. of POPL ’02, pp. 1–3, 2002.

6. O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite
sequential processes. Theoretical Computer Science, 221, pp.251–270, 1999.

7. D. Caucal. On infinite transition graphs having a decidable monadic theory. Theor.
Comput. Sci., 290(1), pp.79–115, 2003.

8. H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree
automata techniques and applications. Draft, 2003.

9. E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus, and determinacy. In
Proc. of FOCS ’91, pp. 368–377, 1991.

10. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, LNCS 2500, 2002.

11. T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. CAV ’02, LNCS 2404, pp. 526–538, 2002.

12. J.E. Hopcroft and J.D.Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley, 1979.

13. D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In Proc. of CONCUR ’96,
LNCS 1119, pp. 263–277, 1996.

14. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, 1983.

15. O. Kupferman, N. Piterman, and M.Y. Vardi. Pushdown specifications. In Proc.
of LPAR ’02, LNCS 2514, pages 262–277. Springer, 2002.

16. C. Löding. Private communication.
17. C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proc. of

FSTTCS ’04, LNCS 3328, pp. 408–420, 2004.
18. K.L. McMillan. Symbolic model checking: an approach to the state explosion prob-

lem. Kluwer Academic Publishers, 1993.
19. D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theor.

Comput. Sci., 54(2-3):267–276, 1987.
20. D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-

order logic. Theoretical Computer Science, 37:51–75, 1985.
21. M.O. Rabin. Decidability of second order theories and automata on infinite trees.

Transactions of the AMS, 141:1–35, 1969.
22. T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via

graph reachability. In Proc. of POPL ’95, pp. 49–61, 1995.
23. I. Walukiewicz. Pushdown processes: Games and model-checking. Information and

Computation, 164(2):234–263, 2001.
24. I. Walukiewicz. Monadic second-order logic on tree-like structures. Theor. Comput.

Sci., 275(1-2):311–346, 2002.

