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Abstract. Compositional reasoning aims to improve scalability of veri-
fication tools by reducing the original verification task into subproblems.
The simplification is typically based on the assume-guarantee reason-
ing principles, and requires decomposing the system into components as
well as identifying adequate environment assumptions for components.
One recent approach to automatic derivation of adequate assumptions is
based on the L∗ algorithm for active learning of regular languages. In this
paper, we present a fully automatic approach to compositional reasoning
by automating the decomposition step using an algorithm for hypergraph
partitioning for balanced clustering of variables. We also propose heuris-
tic improvements to the assumption identification phase. We report on
an implementation based on NuSMV, and experiments that study the
effectiveness of automatic decomposition and the overall savings in the
computational requirements of symbolic model checking.

1 Introduction

To enhance the scalability of analysis tools, compositional verification suggests
a “divide and conquer” strategy to reduce the verification task into simpler sub-
tasks. The assume-guarantee based compositional reasoning to verify that a sys-
tem S satisfies a requirement ϕ typically consists of the following three steps: (1)
System Decomposition: decompose the system S into components M1, · · · , Mn,
(2) Assumption Discovery: find an environment assumption Ai for each com-
ponent Mi, and (3) Assumption Checking: verify that the assumptions Ai are
adequate for proving or disproving the satisfaction of ϕ by S . The last step in-
volves a number of verification subtasks, and while the exact nature of these
subtasks depends on the specific compositional rule used, each subtask involves
only one of the components Mi, and can be implemented using model checkers
as it can be computationally less demanding than the original verification task.

The success of compositional reasoning depends on discovering appropriate
assumptions for all the components so that the assumption checking phase will
succeed, and one promising approach for automating this step is based on learn-
ing [9, 5, 3, 11]. If a component Mi communicates with its environment via a
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set Xi of boolean variables, then the assumption Ai can be viewed as a lan-
guage over the alphabet 2Xi , and the assumption checking constraints impose a
lower and an upper bound on this language. The assumptions are constructed
by adopting the L∗ algorithm for learning a regular language using membership
and equivalence queries [4, 17]. The membership query (whether a trace belongs
to the desired assumption), and the equivalence query (whether the current as-
sumption is adequate for the assumption checking phase) are implemented by
invoking a model checker.

In this paper, we develop a fully automated framework for assume-guarantee
based compositional reasoning by automating the decomposition phase also.
While a modular description of a system can suggest a natural decomposition, an
automated approach may be necessary for a variety of reasons: the description of
a system, particularly when compiled from a high-level language to the input lan-
guage of a model checker, is often monolithic; the decomposition suggested by the
syntactic description need not be the one suitable for compositional reasoning,
either in terms of the number of components or the partitioning of functionality
among components. Our solution is based on an algorithm for partitioning of
hypergraphs [14, 13]. Given a system S consisting of a set X of variables, and
a desired number n of components, we partition the set X into n disjoint sub-
sets X1, · · · , Xn so that each set Xi contains approximately the same number
of variables while keeping the number of communication variables (i.e. variables
whose update depends on or affects a variable in another cluster) small. Each
such variable partition Xi corresponds to a component Mi that controls these
variables.

We describe an implementation of the automated compositional reasoning
using parts of the state-of-the-art symbolic model checker NuSMV [7]. In our
application, the alphabet size of the language being learnt itself grows expo-
nentially with the number of communication variables. Consequently, in [3] we
have developed a symbolic implementation of the L∗ algorithm where the data
structures for recording the membership information, and the assumption au-
tomaton, are maintained compactly using binary decision diagrams (BDDs) [6].
As described in Section 5, we have enhanced our implementation with several ad-
ditional heuristics, in particular, one aimed at early falsification, and one aimed
at deleting edges from the conjecture machine to force rapid convergence without
violating the correctness of the learning algorithm.

In Section 6, we report on some examples where the original model contains
around 100 variables, and the computational requirements of NuSMV are sig-
nificant. The experiments are aimed at understanding the following tradeoffs:
(1) how does our strategy for automatic decomposition compare with respect to
the experiments we had performed earlier with manually chosen decomposition?
(2) what is the impact of the number of components on the overall computa-
tional requirements? (3) how do the revised and more general assume-guarantee
rule, and the new heuristics impact the performance? and (4) how does the in-
tegrated tool, automatic symbolic compositional verifier (ASCV), compare with
NuSMV? It turns out the automatic decomposition strategy works pretty well,



and manual (or structure-directed) decomposition seems unnecessary. No con-
clusions can be drawn regarding whether small or large number of components
should be preferred in this approach. In terms of comparisons of the integrated
tool with NuSMV, excellent gains are observed in some cases either reducing
the required time or memory by two or three orders of magnitude, or converting
infeasible problems into feasible ones. However, in some cases the number of
states of the assumption is too large, and our learning-based strategy performs
poorly.

Related Work While program slicing [20] is a technique to extract, from an
original program, program statements relevant to a particular computation, com-
positional verification is to reduce a large verification problem into smaller sub-
problems. Compositional reasoning using assume-guarantee rules has a long his-
tory in formal verification literature (c.f. [19, 12, 1, 2, 16]). The use of learning
algorithms for automatic discovery of assumptions was first reported in [9, 5],
and has been further developed by many researchers: [18] considers the problem
of substituting one component with another and how to reuse the conjecture ma-
chines computed in the original version while checking properties of the revised
version; [8] reports several experiments to test whether assumptions with small
DFA (deterministic finite automaton) representations exist. Our work is based
on the symbolic implementation of learning-based compositional reasoning in
[3]. The contributions of this paper include an automatic decomposition strat-
egy, use of a more general assume-guarantee rule that is applicable to multiple
components, heuristic improvements in computing the conjecture assumptions,
and experiments to study several tradeoffs.

2 Preliminaries

We formalize the notions of a symbolic transition system and decomposition into
its modules, and explain the assume-guarantee rule we use in this paper.

2.1 Symbolic transition systems

In the following, for any set of boolean variables X , we will denote the set of
primed variables of X as X ′ = {x′ | x ∈ X}. For a valuation q for X , q′ denotes
the valuation for X ′ such that q′(x′) = q(x) for every x′ ∈ X ′. A predicate ϕ(X)
is a boolean formula over X , and for a valuation q of variables in X , we write
ϕ(q) to mean that q satisfies the formula ϕ. We denote, given a predicate ϕ, a
set of unprimed variables appearing in ϕ as Var(ϕ).

A symbolic transition system, shortly a transition system, is a tuple S (X, Init ,
T ) with the following components:

– X is a finite set of boolean variables,
– Init(X) =

∧
x∈X Initx(X) is an initial predicate over X , where Initx(X) is

an initial predicate for the variable x,



– T (X, X ′) =
∧

x∈X Tx(X, X ′) is a transition predicate over X ∪ X ′ (X ′ rep-
resents a set of variables encoding the successor states), where Tx(X, X ′) is
a transition predicate for the variable x.

A state q of S is a valuation of the variables in X ; i.e. q : X → {true, false}.
Let Q denote the set of all states q of S . For a state q over a set X of variables,
let q[Y ], where Y ⊆ X denote the valuation over Y obtained by restricting q to
Y . The semantics of a transition system is defined in terms of the set of runs it
exhibits. A run of S (X, Init , T ) is a sequence q0q1 · · · where every qi ∈ Q, such
that Init(q0) holds, and for every i ≥ 0, T (qi, q

′
i+1) holds. A safety property for

a transition system S (X, Init , T ) is a predicate over X . For a transition system
S (X, Init , T ) and a safety property ϕ(X), we define S |= ϕ if, for each run q0q1 · · ·
of S , ϕ(qi) holds for each i ≥ 0. Finally, given a transition system S (X, Init , T )
and a safety property ϕ(X), an invariant checking problem is to check S |= ϕ.

2.2 Decomposition into modules

A module is a tuple M (XM , IM ,OM , InitM , TM ) with the following components:

– XM is a finite set of boolean variables controlled by the module M ,
– IM is a finite set of boolean input variables that the module reads from its

environment; IM is disjoint from XM ,
– OM ⊆ XM is a finite set of boolean output variables that are observable to

the environment of M ; let IOM denote IM ∪ OM ,
– InitM (XM , IM ) is an initial predicate over XM ∪ IM ,
– TM (XM , IM , X ′

M ) is a transition predicate over XM ∪ IM ∪ X ′
M .

Given modules M1, · · · ,Mn, where each Mi = (XMi
, IMi

,OMi
, InitMi

, TMi
),

we can compose them if for every i, XMi
is disjoint from XMj

(j 6= i). We
denote this composition as M1‖ · · · ‖Mn, and a set of all input variables and
output variables as IO (i.e. IO =

⋃
i IOMi

). As a symbolic transition system, the
semantics for M1‖ · · · ‖Mn is defined in terms of the set of runs it exhibits. A run
of M1‖ · · · ‖Mn is a sequence q0q1 · · ·, where each qi is a state over XM1

∪· · ·∪XMn
,

such that for every 1 ≤ j ≤ n, InitMj
(q0[XMj

], q0[IMj
]) holds and for every

i ≥ 0 and 1 ≤ j ≤ n, TMj
(qi[XMj

], qi[IMj
], q′i+1[X

′
Mj

]) holds. Again, given a

composition of modules M1‖ · · · ‖Mn and a safety property ϕ over XM1
∪ · · · ∪

XMn
, we define M1‖ · · · ‖Mn |= ϕ if for every run q0q1 · · · of M1‖ · · · ‖Mn, ϕ(qi)

holds for every i ≥ 0.
Given a symbolic transition system S (X, Init , T ) and a set Y ⊆ X of vari-

ables, we define a module M [S, Y ], shortly M [Y ], as a tuple (XM [Y ], IM [Y ],OM [Y ],
InitM [Y ], TM [Y ]) as follows:

– XM [Y ] = Y ,
– InitM [Y ] =

∧
x∈Y Initx(X) where each Initx(X) is acquired from S ,

– TM [Y ] =
∧

x∈Y Tx(X, X ′) where each Tx(X, X ′) is also obtained from S ,
– IM [Y ] = {x ∈ X \ Y | x ∈ Var(InitM [Y ]) ∪ Var(TM [Y ])},
– OM [Y ] = {x ∈ Y | ∃y ∈ X \ Y. x ∈ Var(Inity) ∪ Var(Ty)}.



Now, we can decompose a transition system S (X, Init , T ) into modules M [X1],
· · · , M [Xn] by partitioning X into X1, · · · , Xn where X =

⋃
i Xi and every Xi

is disjoint from each other. In addition, we can denote this decomposition as

S
dec
= M [X1]‖ · · · ‖M [Xn] using the composition operator ‖, since every Xi is

disjoint from each other. For the sake of simplicity, we will use = instead of
dec
= .

For a transition system S (X, Init , T ) decomposed into M [X1], · · · ,M [Xn]
where each M [Xi] = (XM [Xi], IM [Xi],OM [Xi], InitM [Xi], TM [Xi]), each run of S is
obviously a run of M [X1]‖ · · · ‖M [Xn] and each run of M [X1]‖ · · · ‖M [Xn] is also
a run of S , since X =

⋃
i Xi, and Init and T of S are equivalent to the conjunction

of every InitM [Xi] and TM [Xi], respectively. Finally, given S (X, Init , T ) and a
partition of X into disjoint subsets X1, · · · , Xn, M [X1]‖ · · · ‖M [Xn] |= ϕ iff S |=
ϕ.

2.3 Assume-guarantee rule

Given a module M (XM , IM ,OM , InitM , TM ), a run of M is, similarly with a run
of a transition system, a sequence q0q1 · · · where every qi is a state over XM ∪
IM such that Init(q0[XM ], q0[IM ]) holds and for every i ≥ 0, T (qi[XM ], qi[IM ],
q′i+1[X

′
M ]) holds. For a run q0q1 · · · of M , the trace is a sequence q0[IOM ]q1[IOM ]

· · ·. Let us denote the set of all the traces of M as L(M ), and the complement
of the set as LC(M ) (formally, LC(M ) = QIO

M

∗
\ L(M ) where QIO

M is a set of
all the states over IOM ). For a trace set L over a variable set IOM and a safety
property ϕ over IOM , we can extend the notion of |= to trace sets as following:
L |= ϕ if, for every trace q0q1 · · · ∈ L, ϕ(qi) holds for every i ≥ 0. In addition,
the composition operator ‖ can be extend to trace sets which have the same
alphabet (i.e. the same set of input/output variables) as following: for L1 and
L2 with the same I/O variable set, L1‖L2 = L1 ∩ L2.

Now, we use the following assume-guarantee rule to prove that a composition
of modules, M1‖ · · · ‖Mn satisfies a safety property ϕ over IO where for every
module Ai, IOAi

equals to IO of M1‖ · · · ‖Mn (IO =
⋃

i IOMi
).

M1‖A1 |= ϕ, · · · ,Mn‖An |= ϕ (Pr1)
LC(A1)‖ · · · ‖L

C(An) |= ϕ (Pr2)
M1‖ · · · ‖Mn |= ϕ

The rule above says that if there exist assumption modules A1, · · · , An such
that for each i, the composition of Mi and Ai is safe (i.e. satisfies the property ϕ)
and the composition of the complements of every Ai satisfies ϕ, then M1‖ · · · ‖Mn

satisfies ϕ. Intuitively, the first premise Pr1 makes every assumption strong
enough to keep each Mi safe, and the second premise Pr2 makes the assumptions
weak enough to cover all the traces which can violate ϕ (i.e., for every trace
violating ϕ, Pr2 requires at least one assumption to contain it). This rule is
sound and complete [5]. Our aim is to construct such assumptions A1, · · · , An

to show that M1‖ · · · ‖Mn satisfies ϕ, and the smaller assumptions can save the
more in terms of searching state space.



Given a symbolic transition system S (X, Init , T ), an integer n ≥ 2 and a
safety property ϕ, the model-checking problem we consider in this paper is, in-
stead of checking S |= ϕ, to partition X into disjoint subsets X1, · · · , Xn, and to
check M [X1]‖ · · · ‖M [Xn] |= ϕ using the above assume-guarantee rule. Note that
we are assuming that the safety property ϕ is a predicate over IO , but this is
not a restriction: to check a property that refers to private variables of a module,
we can simply declare them as output variables. Finally, the challenges of this
paper are (1) how to find a variable partition and (2) how to find assumptions
satisfying both of the above premises.

3 Automatic partitioning

Automatic partitioning is, given a transition system S (X, Init , T ) and an integer
n ≥ 2, to decompose X into disjoint subsets X1, · · · , Xn, and there exist about
n|X| possible partitions. Among them, we want a partition to minimize memory
usage for assumption construction and commitment in our assume-guarantee
reasoning. The memory usage, however, cannot be formulated. Therefore, we
roughly fix our goal to find a partition that has small number of variables required
in each step of the assume-guarantee reasoning because a state space for each
step is exponential in the number of variables. More precisely, the alternative
goal is to find a partition that minimizes max i(|Xi ∪ IOMi

|) where IOMi
is the

set of I/O variables of module M [Xi]. This partitioning problem is NP-complete.
We reduce our problem into a well-known partitioning problem called the

hypergraph partitioning problem which can be used for directed-graph partition-
ing. For the reduction, we relax our goal as following; given a transition system
S (X, Init , T ), and an integer n ≥ 2, our automatic partitioning is to find a
partition decomposing X into n disjoint subsets such that (1) the number of
variables in each module is in some bound (near even distribution) and (2) mod-
ules corresponding to each variable subset have as few input/output variables as
possible.

A hypergraph G(V, E) is defined as a set of vertices V and a set of hyperedges
E where each hyperedge is a set of arbitrary number of vertices in V . Thus,
an ordinary graph is a special case of hypergraphs such that every edge is a
pair of two vertices. Given a hypergraph G(V, E) and an overall load imbalance
tolerance c ≥ 1.0, the k-way hypergraph partitioning problem is to partition the
set V into k disjoint subsets, V1, · · · , Vk such that the number of vertices in each
set Vi is bounded by |V |/(c · k) ≤ |Vi| ≤ |V |(c/k), and the size of hyperedge-cut
of the partition is minimized where the hyperedge-cut is a set of hyperedges e
such that there exist v1 and v2 in e which belong to different partitions.

Now, our partitioning problem can be reduced to the k-way hypergraph par-
titioning problem. Given a transition system S (X, Init , T ), we construct a hy-
pergraph G(V, E) as follows. V = {vx | x ∈ X}. For each x ∈ X , we have a
hyperedge ex that immediately contains the corresponding vertex vx and also
vertices vy such that x ∈ Var(Inity)∪Var (Ty). Intuitively, ex represents the cor-
responding variable x and all the variables to read x. Finally, E is the set of all



ex. Then, after hypergraph partitioning, V1, · · · , Vk correspond with X1, · · · , Xn

in our problem. If we have a hyperedge ex in the hyperedge-cut (let us assume
that the corresponding vertex vx belongs to Vi), then there exist some vertex
vy ∈ ex which belongs to Vj(i 6= j). Since y is dependent on x but they are in
different partitions, x should be an input variable of M [Xj ] and also an output
variable of M [Xi]. For the overall load imbalance tolerance c, a large value for
c can reduce the number of I/O variables but it causes larger imbalance among
each module. On the other hand, a small value for c increases I/O variables.
Therefore, we perform partitioning with six different values (i.e. 1.0, 1.2, · · ·,
2.0) and pick the partition that has the minimum value as max i(|Xi ∪ IOMi

|).
Many researchers have studied this problem and developed tools, and among

them we use hMETIS [14]. hMETIS is one of the state-of-the-art hypergraph
partitioning tools which uses a multilevel k-way partitioning algorithm. The
multilevel partitioning algorithm has three phases; (1) it first reduces the size of
a given hypergraph by collapsing vertices and edges until the hypergraph is small
enough (coarsening phase), (2) the algorithm partitions it into k sub-hypergraphs
(initial partitioning phase), and (3) the algorithm uncoarsens them to construct
a partition for the original hypergraph (uncoarsening and refinement phase). Ex-
periments on a large number of hypergraphs arising in various domains including
VLSI, databases and data mining show that hMETIS produces partitions that
are consistently better than those produced by other widely used algorithms,
such as KL [15] and FM [10]. In addition, it is so fast as to produce high quality
bisections of hypergraphs with 100,000 vertices in 3 minutes [13].

4 Learning assumptions

In this section, we define the weakest safe assumption tuple which is a witness
for the truth of a given invariant, and briefly explain an algorithm for learning
regular languages, called L∗ algorithm. We then establish that our verification
algorithm based on the L∗ algorithm converges to the weakest safe assumption
tuple or, before that, concludes with a witness for the invariant.

4.1 Weakest safe assumptions

After partitioning, our aim is, given a set of modules M [X1], · · · , M [Xn] (ob-
tained from automatic partitioning) and a safety property ϕ(IO), to verify that
M [X1]‖ · · · ‖M [Xn] |= ϕ by finding assumption modules A1, · · · , An that satisfy
both premises of our assume-guarantee rule. A tuple (A1, · · · , An) of assumptions
is called a safe assumption tuple (ST) if the assumptions A1, · · · , An satisfy Pr1,
and a tuple (A1, · · · , An) of assumptions is called an appropriate assumption tu-
ple (AT) if the assumptions A1, · · · , An satisfy both of Pr1 and Pr2. For every
M [Xi], the weakest safe assumption Wi is a module such that M [Xi]‖Wi |= ϕ
and L(Wi) ⊇ L(Ai) for every Ai such that M [Xi]‖Ai |= ϕ. We denote such a
tuple (W1, · · · , Wn) as the weakest safe assumption tuple (WT). Now, we show
that the WT is a witness for the truth of M [X1]‖ · · · ‖M [Xn] |= ϕ.



Lemma 1. If M [X1]‖ · · · ‖M [Xn] |= ϕ, the WT (W1, · · · , Wn) is a witness of
M [X1]‖ · · · ‖M [Xn] |= ϕ.

Proof. If M [X1]‖ · · · ‖M [Xn] does indeed satisfy ϕ, then there exists an AT
(A1, · · · , An) since the composition rule is complete. By definition, (W1, · · · , Wn)
satisfies Pr1. For the above AT (A1, · · · , An), since for every i, LC(Wi) ⊆ LC(Ai)
and LC(A1)‖ · · · ‖L

C(An) |= ϕ, LC(W1)‖ · · · ‖L
C(Wn) |= ϕ (Pr2). Finally, the

WT (W1, · · · , Wn) is one of ATs and a witness of M [X1]‖ · · · ‖M [Xn] |= ϕ.

Lemma 2. If M [X1]‖ · · · ‖M [Xn] 6|= ϕ, the WT (W1, · · · , Wn) is a witness of
M [X1]‖ · · · ‖M [Xn] 6|= ϕ.

Proof. If M [X1]‖ · · · ‖M [Xn] does not satisfy ϕ, then there is no AT; i.e., if an as-
sumption tuple (A1, · · · , An) satisfies Pr1, there exists a trace τ ∈ LC(A1)‖ · · · ‖
LC(An) violating ϕ. Again, since (W1, · · · , Wn) satisfies Pr1 by definition, there
exists τ ∈ LC(W1)‖ · · · ‖L

C(Wn) violating ϕ. For every (A1, · · · , An) that sat-
isfies Pr1, since for every i, LC(Wi) ⊆ LC(Ai) and LC(W1)‖ · · · ‖L

C(Wn) ⊆
LC(A1)‖ · · · ‖L

C(An), the above trace τ violating ϕ also belongs to LC(A1)‖ · · · ‖
LC(An). Thus, the WT (W1, · · · , Wn) is a witness of M [X1]‖ · · · ‖M [Xn] 6|= ϕ.

The WT (W1, · · · , Wn) can be represented by a tuple of DFAs with the
alphabet QIO (where QIO is a set of all states over IO) as each M [Xi] is finite.
Therefore, we can learn the WT which a witness for truth of M [X1]‖ · · · ‖M [Xn]
|= ϕ, using the L∗ algorithm for learning regular languages.

4.2 L
∗ algorithm

The L∗ algorithm learns an unknown regular language U (let Σ be its alphabet)
and generates a minimal DFA that accepts the regular language. This algorithm
was introduced by Angluin [4], but we use an improved version by Rivest and
Schapire [17]. The algorithm infers the structure of the DFA by asking a teacher,
who knows the unknown language, membership and equivalence queries. Mem-
bership queries ask whether a given string σ ∈ Σ∗ is in the language U , and
the answer for the queries is yes or no. Equivalence queries ask whether a given
conjecture DFA C represents the language U , and the answer is yes or no with
a counter-example that is a symmetric difference between L(C) and U .

At any given time, the L∗ algorithm has, in order to construct a conjecture
machine, information about a finite collection of strings over Σ, classified either
as members or non-members of U based on membership queries. This informa-
tion is maintained in an observation table (Rs,Es ,Mp) which represents the
conjecture DFA; Rs is a set of representative strings for states in the DFA such
that each representative string rq ∈ Rs for a state q leads from the initial state
(uniquely) to the state q, and Es is a set of experiment suffix strings that are
used to distinguish states. Mp maps strings σ in (Rs ∪ Rs ·Σ) · Es to 1 if σ is
in U , and to 0 otherwise. Once a conjecture machine C is built, the algorithm
asks an equivalence query. Finally, if the answer is ‘yes’, it returns the current
conjecture DFA C; otherwise, a counter-example cex ∈ ((L(C) \U)∪ (U \L(C))



is provided by the teacher. In the latter case, the algorithm updates the current
conjecture using the counter-example cex .

If a teacher for two kinds of queries is provided, the L∗ algorithm is guaran-
teed to construct a minimal DFA for the unknown regular language using only
O(|Σ|n2 + n log m) membership queries and at most n − 1 equivalence queries,
where n is the number of states in the final DFA and m is the length of the
longest counter-example provided by the teacher for equivalence queries.

4.3 Automatic symbolic compositional verification

Now, we present our verification algorithm. Given a transition system S (X, Init ,
T ), an invariant property ϕ, and an integer n ≥ 2, our automatic symbolic com-
positional verification (ASCV) algorithm decomposes X into n disjoint subsets
X1, · · · , Xn and then checks M [X1]‖ · · · ‖M [Xn] |= ϕ by learning the WT (weak-
est safe assumption tuple), which is a witness for the truth of the invariant. For
learning the WT, the ASCV algorithm provides teachers who answer member-
ship and equivalence queries, which correspond with the WT (W1, · · · , Wn).

Given a string τ ∈ QIO∗
and a module M [Xi], a teacher for member-

ship queries answers whether there is an execution of M [Xi] consistent with
τ , which violates ϕ; that is, whether τ ∈ L(Wi). The ASCV algorithm con-
structs a conjecture assumption Ai for each module M [Xi], based on the re-
sults of membership queries, and after this phase, it asks an equivalence query.
The equivalence query consists of two sub-queries: checking Pr1 and Pr2 of
the assume-guarantee rule. If a given assumption tuple satisfies both premises,
we conclude S = M [X1]‖ · · · ‖M [Xn] |= ϕ; otherwise, the teacher produces a
counter-example. More precisely, the teacher checking Pr1 answers, given an
assumption Ai for a module M [Xi], whether M [Xi]‖Ai |= ϕ; if not, it returns
τ ∈ L(Ai) violating ϕ (i.e. τ ∈ L(Ai)\L(Wi)). The teacher for Pr2 checks, given
A1, · · · , An, whether LC(A1)‖ · · · ‖L

C(An) |= ϕ; if not, it returns τ ∈ LC(Ai) for
every i which violates ϕ. For Pr1 queries, τ is immediately used to update Ai,
but for Pr2 queries, we need an additional analysis. That is, when we execute
every M [Xi] corresponding to τ , if every M [Xi] reaches a state violating ϕ, then
τ is a counter-example of the original problem, S = M [X1]‖ · · · ‖M [Xn] |= ϕ;
otherwise, τ is used to update Ai such that M [Xi] correspondent with Ai does
not violate the invariant ϕ (i.e. τ ∈ L(Wi) \ L(Ai)).

In the ASCV algorithm, since all answers from teachers are always consistent
with the WT (for equivalence queries, counter-examples are checked with each
Wi), our ASCV algorithm will converge to the WT which a witness for the
truth of S |= ϕ, in the polynomial number of queries by the property of the L∗

algorithm. However, there can be early termination with a counter-example or
an AT satisfying both premises. In addition, the algorithm will not generate any
assumption Ai with more states than Wi.

Figure 1 illustrates our ASCV algorithm. Given a transition system S , a
safety property ϕ, and an integer n, the ASCV algorithm first decomposes S
into n modules and assigns them to an array M [ ] (line 1), and it constructs
the initial conjecture machines according to the rule of the L∗ algorithm (line



Boolean ASCV(S , ϕ, n)
1: M [ ] := AutomaticPartitioning(S , ϕ, n);
2: A[ ] := InitializeAssumptions(M [1], · · · , M [n], ϕ);
3: repeat:

4: foreach(1 ≤ i ≤ n){
5: while((cex := SafeAssumption(M [i], A[i], ϕ)) 6= null){
6: UpdateAssumption(M [i], A[i], cex );
7: } }
8: if((cex := DischargeAssumptions(A[1], · · · , A[n], ϕ)) = null){
9: return true ;

10: } else {
11: IsRealCex := true ;
12: foreach(1 ≤ i ≤ n) {
13: if(SafeTrace(M [i], cex )) {
14: UpdateAssumption(M [i], A[i], cex );
15: IsRealCex := false;
16: } }
17: if(IsRealCex) return false;
18: }

Fig. 1. Automatic symbolic compositional verification algorithm

2). Then, we repeat asking two sub-queries for equivalence and updating the
current conjecture machines; if either of them returns a counter-example cex ,
the algorithm updates the conjecture machines using cex (lines 4–18). In more
detail, we check that for every i, the current A[i] is a safe assumption such that
M [i]‖A[i] |= ϕ by a function SafeAssumption(). If so, we have A[1], · · · , A[n]
satisfying Pr1; otherwise (i.e., for some i, we have a counter-example cex), we
update A[i] with respect to cex (line 6). Once we have A[1], · · · , A[n] satisfying
Pr1, the algorithm checks Pr2 by a function DischargeAssumptions(). If the
function returns null, then we conclude S |= ϕ since A[1], · · · , A[n] satisfy both
premises; otherwise, we are provided a counter-example cex . Lines 11–17 analyze
whether cex is a real counter-example for the invariant; if cex indeed violates
ϕ for every M [i], then we conclude S 6|= ϕ. Otherwise, it is a spurious counter-
example and we update A[i] that is the conjecture for M [i] not violating ϕ.

5 Symbolic implementation

The ASCV algorithm can be implemented explicitly as well as implicitly. How-
ever, as input/output variables increase, the number of the alphabet symbols of
the languages we want to learn also increases exponentially. In explicit implemen-
tations [9, 11], the large alphabet size poses crucial problems: (1) the constructed
assumption DFAs have too many edges when represented explicitly, (2) the size
of the observation tables for each assumption gets very large, and (3) the number
of membership queries needed to fill each entry in the observation tables also
increases. In [3] we introduced a symbolic implementation for learning-based
compositional verification and we, in this paper, extend the technique.



5.1 Data structures and functions

For symbolic implementation, we already defined a symbolic transition system
and decomposition to modules implicitly in Section 2. Here, we present the rest
of important symbolic data structures used in the ASCV algorithm.

– Each conjecture assumption Ai is also a module Ai(XAi
, IAi

,OAi
, InitAi

, TAi
)

that can be constructed using BDDs. Each Ai represents a conjecture DFA
in the L∗ algorithm: XAi

encodes a set of states, IOAi
represents its alpha-

bet, and InitAi
and TAi

encode an initial state and a transition function,
respectively.

– Observation table (Rs,Es ,Mp) for each conjecture assumption Ai is main-
tained using BDDs. Each representative string r ∈ Rs is encoded by a BDD
representing a set of states of M [Xi] reachable by r (i.e. PostImage(InitM [Xi],
r)). Every experiment string e ∈ Es is also represented by a BDD encoding
a set of states of M [Xi] from which some state violating ϕ is reachable by e
(i.e. PreImage(¬ϕ, e)). Mp is maintained by a set of boolean arrays.

– A counter-example cex is a finite sequence of states over IO , and it is rep-
resented by a list of BDDs.

All functions in the ASCV algorithm are implemented using symbolic compu-
tation as following (where all the parameters are already represented by BDDs).

– SafeAssumption(M [Xi], Ai, ϕ) checks M [Xi]‖Ai |= ϕ. It can be achieved by
an ordinary symbolic reachability test.

– DischargeAssumptions(A1, · · · , An, ϕ) checks LC(A1)‖ · · · ‖L
C(An) |= ϕ.

For every Ai, we first construct a module encoding a complement DFA of
Ai. This complementing can be easily performed even in our symbolic im-
plementation. We then check that the composition of the complement DFAs
satisfies ϕ, which is also handled by the symbolic reachability test.

– UpdateAssumption(M [Xi], Ai, cex) reconstructs the conjecture assumption
Ai for the module M [Xi] to be used in the next iteration. It first finds a new
experiment string that is the longest suffix of cex which can demonstrate the
difference between the current conjecture and the goal language. We then
update the observation table for Ai by adding the new experiment string.
This addition introduces new states and edges. We identify a set of edges
between states by BDD computation.

– SafeTrace(M [Xi], cex) checks, by the reachability test, that there exists any
trace of M [Xi] corresponding with cex , which violates ϕ.

5.2 Early falsification

In the previous implementations of learning-based compositional verification [9,
11] including ours [3], we have found a possible optimization that allows us to
conclude earlier S 6|= ϕ with a counter-example. In Figure 1, if cex acquired
from DischargeAssumptions() reaches some state violating ϕ for every M [Xi],
then we conclude that the invariant is false (line 17). That is, in the case that
the invariant is indeed false, the algorithm cannot terminate until encountering



safe assumptions for each module and checking DischargeAssumptions(). On
the other hand, cex provided from SafeAssumption() is immediately used for
updating the current conjecture (line 6) even though it is a candidate of evidence
for S 6|= ϕ. In our new implementation, if cex obtained from SafeAssumption()

is a feasible trace for every other module M [Xj](j 6= i), then we declare cex as
a counter-example for S |= ϕ. Otherwise (cex violates ϕ in M [Xi], but it is in-
feasible for some other module), we update the current assumption for M [Xi] to
rule out cex as the original algorithm. We believe that the additional feasibility
checking adds a little effort in terms of time and memory, but sometimes this
function can falsify the invariant earlier. We will present examples where we can
conclude much earlier than experiments without early falsification in Section 6.
The function EarlyFalsify() is implemented as below:

EarlyFalsify(Trace τ , int MNum){
foreach (j 6= MNum)

if (¬ FeasibleTrace(M [j], τ)) return false;
return true;

}

Finally, we add the function EarlyFalsify() between line 5 and 6 in the ASCV
algorithm (see Figure 1).

5: while((cex := SafeAssumption(M [i], A[i], ϕ)) 6= null){
5′: if(EarlyFalsify(cex, i)) return false ;
6: UpdateAssumption(M [i], A[i], cex);

5.3 Edge deletion for safe assumptions

The ultimate goal of our model-checking problem is to quickly discover a small
AT (appropriate assumption tuple) or a counter-example for S |= ϕ. The ASCV
algorithm, however, only guarantees that we can eventually learn the WT (weak-
est safe assumption tuple) whose size is, in theory, exponential in the size of each
module in the worst case. That is, the ASCV algorithm based on the L∗ algo-
rithm may keep introducing new states for conjecture machines until converging
on a very large WT, even though there may exist smaller ATs than the WT.
We have experienced many cases where our algorithm needs many iterations to
converge on the WT (lines 5–6). The optimal solution for this problem is to learn
the smallest AT in terms of the number of states rather than the WT, but this
is a computationally hard problem.

Instead, we propose a simple heuristic called edge deletion for this problem
where we retry, without introducing new states, to check Pr1 and Pr2 after
eliminating some edges from the current assumption. More precisely, when we
are given a counter-example cex from SafeAssumption(M [Xi], Ai, ϕ), cex is a
list of BDDs encoding a set of counter-examples to reach some state violating ϕ.
Each counter-example is a sequence of states of M [Xi]‖Ai, and we can extract
the edge of Ai from the last transition of the sequence which immediately leads to
the state violating ϕ. By disallowing the edges from Ai, we can rule out cex from



the current conjecture machine Ai. Then, we check SafeAssumption() again; if
we get a safe assumption by the retrial, we proceed to the next step. If we can-
not conclude using this stronger assumption, then we replace it with the original
assumption and update the original one for the next iteration. This replace-
ment ensures the convergence to the WT. Intuitively, our heuristic edge deletion
searches, with the same number of states, more broadly in solution candidate
space, while the original L∗ algorithm keeps searching deeply by introducing new
states. We believe that sometimes this heuristic also can encounter a smaller AT
than the original algorithm. Section 6 shows evidence of this benefit.

6 Experiments

We have implemented our automatic symbolic compositional verification algo-
rithm with the BDD package in a symbolic model checker NuSMV. For experi-
ment, we have six sets of examples where five sets are collected from the NuSMV
package and one is artificial. For the artificial examples, we know that small
assumptions exist, and for examples from NuSMV package, we added some vari-
ables or scaled them up as tools finished fast with the original models. All exper-
iments have been performed on a Sun-Blade-1000 workstation using a 750MHz
UltraSPARC III processor, 1GB memory and SunOS 5.10. First, we compare
our automatic symbolic compositional verifier (ASCV) with our previous imple-
mentation in [3]. We then present effects of the number of partitions and new
features (early falsification and edge deletion in Section 5). Finally, we com-
pare our ASCV with the invariant checking (with early termination) of NuSMV
2.3.0. Each result table has the number of variables in total (tv), I/O variables,
max i(|Xi ∪ IOMi

|) (mx), execution time in seconds, the peak BDD size and the
number of states in the assumptions we learn (asm). The running time includes
time to perform partitioning as well. Entries denoted by ‘–’ mean that a tool did
not finish within 2 hours. In addition, columns denoted by ‘F/D’ mean that early
falsification or edge deletion contributes to concluding earlier, and ‘np’ means
the number of partitions.

ASCV vs. SCV Compared with the previous implementation SCV in [3],
ASCV has the following new features: automatic partitioning, a symmetric com-
positional rule, early falsification and edge deletion. Table 1 presents that ASCV
shows better performance in 10 over 14 examples. However, since the examples
in Table 1 were selected in [3] so as to explain that SCV worked well, they may
be favorable to SCV. Also, in all the examples, automatic partitioning is as good
as manual partitioning in terms of max i(|Xi ∪ IOMi

|), and in 5 cases it reduces
the numbers by 20–40%.

The number of partitions Table 2 shows how the number of partitions affects
the performance. In two cases, increasing the number of partitions saves signifi-
cantly in terms of time and BDD usage by keeping generating small assumptions.
However, other two cases need more time and BDDs due to large assumptions.
Therefore, one has to experiment with the different number of partitions for
better results.



example tot SCV ASCV
name

spec
var mx IO time peak BDD np mx IO time peak BDD F/D

simple1 69 37 4 19.2 607,068 2 36 4 4.9 605,024 D
simple2 78 42 5 106 828,842 2 41 5 31.3 620,354 D
simple3

true
86 46 5 754 3,668,980 2 46 5 223 2,218,762 D

simple4 94 50 5 4601 12,450,004 2 50 5 1527 9,747,836 D
guidance1 false 135 118 23 124 686,784 2 89 18 – – –
guidance2 true 122 105 22 196 1,052,660 4 59 18 6.6 359,744 D
guidance3 true 122 93 46 357 619,332 2 76 15 – – –
barrel1 false 60 35 10 20.3 345,436 2 35 10 – – –
barrel2 true 60 35 10 23.4 472,164 2 35 10 – – –
msi1 45 37 25 2.1 289,226 2 37 19 0.3 50,078 D
msi2 true 57 49 25 37.0 619,332 2 49 22 1.8 524,286 D
msi3 70 62 26 1183 6,991,502 2 60 25 31.9 2,179,926 D

robot1 false 92 89 12 1271 4,169,760 2 52 5 283 1,905,008 F
robot2 true 92 75 12 1604 2,804,368 2 50 7 9.5 427,196 D

Table 1. Comparison between SCV and ASCV

simple4 guidance2np
spec tv mx IO time peak BDD asm spec tv mx IO time peak BDD asm

2 49 5 1526 9,747,836 2,2 82 18 1680 612,178 2,2
3 true 94 61 37 1.8 497,714 2,2,2 true 122 61 23 34 614,222 2,2,2
4 53 37 0.7 217,686 2,2,2,2 59 33 6.6 359,744 2,2,2,2

robot1 syncarb4np
spec tv mx IO time peak BDD asm spec tv mx IO time peak BDD asm

2 52 5 283 1,905,008 3,2 21 21 332 7,700,770 131,131
3 false 92 62 30 – – too many true 21 21 21 643 14,870,100 35,19,35
4 64 46 – – too many 21 21 4520 31,234,364 11,11,19,19

Table 2. Effect of the number of partitions

example tot IO Without F/D With F/D
name

spec
var

np mx
var time peak BDD asm time peak BDD asm F/D

simple1 69 2 36 4 10.3 605,024 2,3 4.9 605,024 2,2 D
simple2 true 78 2 41 5 58.3 624,442 2,3 31.3 620,354 2,2 D
simple3 86 2 45 5 441 2,997,526 3,2 223 1,849,462 2,2 D
simple4 94 2 49 5 3044 9,747,836 2,3 1526 9,747,836 2,2 D

guidance2 true 122 2 105 18 1634 1,066,968 2,37 1603 612,178 2,2 D
msi1 45 2 37 19 – – too many 0.3 49,056 2,2 D
msi2 true 57 2 49 22 – – too many 1.8 524,286 2,2 D
msi3 70 2 60 25 – – too many 31.9 2,179,926 2,2 D

robot1 false 92 2 52 5 529 2,275,994 3,58 283 1,905,008 3,2 F
robot2 true 92 2 50 7 10.4 529,396 2,3 9.5 427,196 2,2 D

syncarb1 false 18 2 18 18 28.2 1,384,810 67,67 125 1,536,066 67,67 –
syncarb2 true 18 2 18 18 30.4 1,274,434 67,67 86.6 1,280,566 67,67 –

Table 3. With/without Early falsification and edge deletion

Early falsification & edge deletion In Table 3, we present how our new
features help to conclude earlier. In case of that given invariants are true, our edge
deletion heuristic saves the number of states of assumptions in many examples.
In case of false, early falsification helps to save. In two examples (syncarb1 and
syncarb2), however, these features affect performance adversarially.

ASCV vs. NuSMV Finally, Table 4 presents the comparison between ASCV
(with the heuristics) and NuSMV. In 10 examples, ASCV is significantly bet-
ter than NuSMV where we have found small assumptions. In syncarb3 and
syncarb4, however, the assumptions we have learnt are relatively large (with
more than 100 states for each) and we believe that the large size of assumptions



example tot ASCV NuSMV
name

spec
var np mx IO time peak BDD time peak BDD

simple1 69 2 36 4 4.9 605,024 269 3,993,976
simple2 78 2 41 5 31.3 620,354 4032 32,934,972
simple3

true
86 4 50 37 1.0 330,106 – –

simple4 94 4 53 37 0.7 217,686 – –
guidance2 true 122 4 59 18 6.6 359,744 – –

msi1 45 2 37 19 0.3 50,078 157 1,554,462
msi2 true 57 2 49 22 1.8 524,286 3324 16,183,370
msi3 70 2 60 25 31.9 2,179,926 – –

robot1 false 92 2 52 5 283 1,905,008 654 2,729,762
robot2 true 92 2 50 7 9.5 427,196 1039 1,117,046

syncarb3 false 21 2 21 21 351 9,948,148 0.1 5,110
syncarb4 true 21 2 21 21 332 7,700,770 0.1 3,066
barrel1 false 60 – – – – – 1201 28,118,286
barrel2 true 60 – – – – – 4886 36,521,170

Table 4. Comparison between ASCV and NuSMV

is a main reason of negative results in these examples. Also, it can explain why
ASCV cannot complete in the timeout in barrel1 and barrel2. More details
about the examples are available at http://www.cis.upenn.edu/∼wnam/ASCV/.
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