
Model Checking: From Tools to Theory?

Rajeev Alur

University of Pennsylvania

Abstract. Model checking is often cited as a success story for transi-
tioning and engineering ideas rooted in logics and automata to practice.
In this paper, we discuss how the e�orts aimed at improving the scope
and e�ectiveness of model checking tools have revived the study of logics
and automata leading to unexpected theoretical advances whose impact
is not limited to model checking. In particular, we describe how our ef-
forts to add context-free speci�cations to software model checking led us
to the model of nested words as a representation of data with both a
linear ordering and a hierarchically nested matching of items. Such dual
structure occurs in diverse corners of computer science ranging from ex-
ecutions of structured programs where there is a well-nested matching of
entries to and exits from functions and procedures, to XML documents
with the hierarchical structure speci�ed by start-tags matched with end-
tags. Finite-state acceptors of nested words de�ne the class of regular
languages of nested words that has all the appealing theoretical prop-
erties that the class of regular word languages enjoys. We review the
emerging theory of nested words, its extension to nested trees, and its
potential applications.

1 Introduction

The abstract for the talk titled \The Birth of Model Checking" by Ed Clarke at
the 25 Years of Model Checking symposium begins as follows

The most important problem in model checking is the State Explosion

Problem. In particular, it is far more important than the logic or speci-
�cation formalism that is used { CTL, LTL, CTL*, B�uchi automata, or
the �-calculus.

Indeed, without the spectacular progress on combating the state explosion prob-
lem, it is not clear if model checking would have had any impact on indus-
trial practice at all. However, we would like to argue that theory, in particular,
speci�cation languages based on temporal logics, automata, and �xpoint logics,
have contributed signi�cantly to the success of model checking. First, theory
of regular languages of �nite and in�nite words and trees, gives a clear un-
derstanding of which properties are algorithmically checkable. Second, modern

? This research was partially supported by NSF grants CPA 0541149, CNS 0524059,
and CCR 0410662.

industrial-strength speci�cation languages such as PSL are rooted in the the-
ory of temporal logics [PSL05]. Such standardized speci�cation languages have
an important role beyond model checking, namely, in testing as well as simula-
tion. Third, since �xpoint logic has a strong computational
avor, logics have
suggested ways of implementing symbolic model checkers. Finally, the vigorous
debate on relative merits of di�erent speci�cation languages has contributed to
the intellectual health and growth of the �eld. It is also worth noting that one
key manner in which model checking di�ers from program analysis is the use
of speci�cation languages: model checking typically has focussed on eÆciently
checking generic classes of properties such as safety and liveness, while program
analysis has emphasized speci�c analysis questions such as pointer analysis and
bu�er over
ows.

The foundational work on monadic second order logics and !-automata over
words and trees dates back to research in 1960s. Particularly noteworthy results
include

1. B�uchi's Theorem: A language of in�nite words is de�nable using monadic
second order logic of linear order (S1S) i� it is accepted by a (�nite) B�uchi
automaton [B�uc62].

2. Kamp's Theorem: A property of in�nite words is expressible in �rst-order
theory of linear order i� it is expressible in linear temporal logic LTL [Kam68].

3. Rabin's Theorem: The monadic second order theory of binary trees (S2S) is
decidable [Rab69].

The automata-theoretic approach to veri�cation, advocated by Vardi and others,
connects model checking tools to the above results and their subsequent re�ne-
ments, and has been celebrated with numerous awards including the 2006 ACM
Kannellakis Theory in Practice Award [WVS83,VW94,KVW00,Tho90,Hol97,Kur94].
We wish to argue that, as the success of model checking tools brought intense
focus on expressiveness and ecidability boundary, and this led to fundamental
advances in theory. Since automata and logics have applications to other ar-
eas of computing, such as databases, document processing, and planning, model
checking continues to contribute to these areas. We list two such developments
for illustrative purposes.

Tree automata, �-calculus, and parity games: The use of branching-time
logics such as CTL [CE81] and �-calculus [Koz83] in symbolic model checking
tools such as SMV [McM93] led researchers revisit the theory of in�nite trees.
While classical theory of trees considers binary trees and their regular properties,
programs are best modeled by trees that are unordered and unranked, and we
want to focus on properties that do not distinguish among bisimilar systems
(the notion of bisimilarity was introduced in theory of concurrency [Mil89]). The
resulting body of research led to new notions of automata such as alternating tree
automata [EJ91,JW96,MS85,CDG+02]. We now know that, for a set L of in�nite,
unordered, unranked trees, the following are equivalent: (1) L is bisimulation-
closed and de�nable using monadic second order logic, (2) L is de�nable in
�-calculus, and (3) L is accepted by an alternating parity tree automaton. This

work also connects to deciding two-player games with parity winning condition,
and provides the basis for synthesis of correct controllers with respect to LTL
speci�cations and modular veri�cation of open systems [Tho02,KVW01,AHK02].

Timed automata: Traditional automata do not admit an explicit modeling of
time, and consequently, in order to extend model checking techniques to timed
circuits, timed automata [AD94] were introduced as a formal notation to model
the behavior of real-time systems. Timed automata accept timed languages con-
sisting of sequences of events tagged with their occurrence times. Many analysis
problems for timed automata are solvable, and this has led to tools such as
Uppaal for verifying �nite-state real-time systems [LPY97,DOTY96]. Theory of
regular timed languages has also been developed with an accompanying study
of real-time temporal logics [ACD93,AH94,AH93,HRS98]. Timed automata are
now used as a formal model of real-time computation in contexts beyond model
checking (see, for instance, textbooks on Signals and systems [LV02] and con-
trol theory [CL99]). The main technique for analysis of timed automata relies
on constructing a �nite quotient of the in�nite space of real-valued state vec-
tors [AD94], and this has led to many abstraction techniques for dynamical and
hybrid systems [AHLP00,PS02].

In the rest of this paper, we focus in detail on our current line of research.
We describe how our e�orts to understand limits of algorithmically checkable
properties of pushdown models led us to the model of nested words as a repre-
sentation of data with both a linear ordering and a hierarchically nested match-
ing of items. Such dual structure occus in diverse corners of computer science
ranging from executions of structured programs where there is a well-nested
matching of entries to and exits from functions and procedures, to XML doc-
uments with the well-nested structure given by start-tags matched with end-
tags. We review the emerging theory of nested words and its potential applica-
tions [AM04,AEM04,AKMV05,ACM06a,ACM06b,AM06,KMV06a,Alu07,AAB+07].

2 History of Veri�cation of Pushdown Systems

Pushdown automata naturally model the control
ow of sequential computation
in typical programming languages with nested, and potentially recursive, invo-
cations of program modules such as procedures and method calls. Consequently,
a variety of program analysis, compiler optimization, and model checking ques-
tions can be formulated as decision problems for pushdown automata.

When viewed as a generator of words, a pushdown model speci�es a context-
free language of words. Decidability of regular requirements of pushdown mod-
els, then, follows from classical results on pushdown automata: the product of
a pushdown automaton and a �nite-state automaton gives a pushdown au-
tomaton, and the emptiness of the language of a pushdown automaton can
be checked in polynomial-time (see any standard textbook on automata the-
ory, such as, [HU79]). The decision procedure for emptiness of pushdown au-
tomata, in fact, forms the basis for many inter-procedural data
ow analysis
problems [SP81,RHS95] (see [Rep98] for a survey).

In the context of model checking, a pushdown automaton can be interpreted
as a generator of a context-free language of in�nite words. Model checking of LTL
requirements against pushdown models is known to be decidable [BS92,BEM97]
(see, also, [ABE+05] for re�ned complexity bounds). Checking �-calculus re-
quirements of pushdown models, and similarly, solving games over pushdown
graphs with winning condition speci�ed in LTL, are also known to be decid-
able [Wal01]. The emergence of software model checking, as implemented in tools
such as SLAM and BLAST, brought pushdown veri�cation to forefront [BR01,HJM+02].
In these tools, a C program is mapped to a pushdown model (more speci�cally,
to Boolean programs that allow stack-based control
ow, but with only Boolean
data variables) using predicate abstraction, and then symbolic model checking
is used to analyze the resulting model.

The typical program analysis tools over control-
ow graphs and BDD-based
model checking tools such as Bebop, are based on the so-called summary com-
putation for pushdown models [BR00,Rep98]. Intuitively, the analysis algorithm
computes, for each procedure or a component, summaries of the form (x; y),
meaning that if the component is invoked with input x, it may return with out-
put y. The number of such summaries is �nite, and can be computed by an
inductive �xpoint computation. An alternative view is based on the so-called
regular model checking [BEM97]. In a pushdown model, the state is completely
described by the control state and a �nite word over the alphabet of stack sym-
bols describing the contents of the stack. It turns out that the set of reachable
states of a model is regular and can be represented by a �nite-state automaton.
Model checking can be viewed as computation of the edges of this automaton,
and the model checker Moped is based on this approach [EHRS00]. Finally, there
exist interesting decidability results for logics interpreted over pushdown graphs,
typically using interpretation over trees [Cau03,KPV02].

While many analysis problems can be captured as regular requirements,
and hence, speci�able in LTL or �-calculus, many others require inspection of
the stack or matching of calls and returns, and are context-free. Even though
the general problem of checking context-free properties of pushdown automata
is undecidable, algorithmic solutions have been proposed for checking many
di�erent kinds of non-regular properties. For example, access control require-
ments such as \a module A should be invoked only if the module B belongs to
the call-stack," and bounds on stack size such as \the number of interrupt-
handlers in the call-stack should never exceed 5," require inspection of the
stack, and decision procedures for certain classes of stack properties already
exist [JMT99,CW02,EKS03,CMM+04]. Our own e�orts to add expressiveness
to LTL, while maintaining decidability of model checking with respect to push-
down models, led to the de�nition of temporal logicCaRet that allows matching
of calls and returns. CaRet can express the classical correctness requirements
of program modules with pre and post conditions, such as \if p holds when a
module is invoked, the module must return, and q holds upon return" [AEM04].

This suggests that the answer to the question \which class of properties are
algorithmically checkable against pushdown models?" should be more general

than \regular." The key feature of checkable requirements, such as stack inspec-
tion and matching calls and returns, is that the stacks in the model and the
property are correlated: while the stacks are not identical, the two synchronize
on when to push and when to pop, and are always of the same depth. We �rst
formalized this intuition by de�ning visibly pushdown automata (VPA). Such an
automaton operates over words over an alphabet that is partitioned into three
disjoint sets of calls, returns, and internal symbols. While reading a call symbol,
the automaton must push, while reading a return symbol, it must pop (if the
stack is non-empty), and while reading an internal symbol, it can only update
its control state. A language over a partitioned alphabet is a visibly pushdown

language if there is such an automaton that accepts it. This class has desirable
closure properties, tractable decision problems, multiple equivalent characteri-
zations, and adequate for formulating program analysis questions.

We now believe that a better way of exposing the matching call-return struc-
ture of the input word is by explicitly adding nesting edges [AM06]. Nested words
integrate trees and words as the underlying signature has both a linear order and
a hierarchical nesting relation. Finite-state acceptors of nested words de�ne the
class of regular languages of nested words that has all the appealing theoretical
properties that the class of classical regular word languages enjoys. As we will
describe, this allows us to view programs as �nite-state generators of regular
languages of nested words, as opposed to (in�nite-state) pushdown generators of
(restricted classes of) context-free languages of words, thereby allowing model
checking of stronger requirements.

3 Nested Words

A nested word consists of a sequence of linearly ordered positions, augmented
with nesting edges connecting calls to returns (or open-tags to close-tags). The
edges create a properly nested hierarchical structure, while allowing some of the
edges to be pending. We will present de�nitions for �nite nested words, but the
theory extends to in�nite words.

We use edges starting at �1 and edges ending at +1 to model \pend-
ing" edges. A nesting relation of length ` is a subset of f�1; 1; 2; : : : `g �
f1; 2; : : : `;+1g such that if i j then i < j; if i j and i j0 and i 6= �1
then j = j0, if i j and i0 j and j 6= +1 then i = i0, and if i j and
i0 j0 then it is not the case that i < i0 � j < j0. The de�nition ensures that
nesting edges go only forward, do not cross, and every position is involved in
at most one nesting edge. Source positions for nesting edges are call positions,
target positions for nesting edges are return positions, and a position that is
neither a call or a return is called internal. A nested word n over an alphabet �
is a pair (a1 : : : a`;), such that ai, for each 1 � i � `, is a symbol in �, and
 is a nesting relation of length `.

This nesting structure can be uniquely represented by a sequence specifying
the types of positions (calls, returns, and internals). In particular, we assume that
h and i are special symbols that do not appear in the alphabet �. Then, de�ne

a b a a b a b a a b a a

a a a b b a

a

a b

a a b a a a a

n1

n2

n3

<a <b a a> <b a b> a> <a b a a>

a a> <b a a> <a <a

<a <a a> <b b> a> a(a(),b())

Fig. 1. Sample nested words

the tagged alphabet �̂ to be the set that contains the symbols ha, a, and ai for
each a 2 �. Given a nested word over�, we can map it to a word over �̂: at every
call position labeled a, output ha; at every return position labeled a, output ai;
and at every internal position labeled a, output a. This correspondence between
nested words and words over tagged symbols is a bijection. Figure 1 shows some
nested words over the alphabet fa; bg along with their linear encodings.

Finite-state acceptors over nested words can process both linear and hierar-
chical structure. A nested word automaton (NWA) A over an alphabet � consists
of a �nite set Q of states, an initial state q0 2 Q, a set of �nal states F � Q,
a call-transition function Æc : Q � � 7! Q � Q, an internal-transition function
Æi : Q � � 7! Q, and a return-transition function Ær : Q � Q � � 7! Q. The
automaton A starts in the initial state, and reads the nested word from left to
right. The state is propagated along the linear edges as in case of a standard
word automaton. However, at a call, the nested word automaton can propa-
gate a state along the outgoing nesting edge also. At a return, the new state is
determined based on the states propagated along the linear as well as the nest-
ing incoming edges. Formally, a run r of the automaton A over a nested word
n = (a1 : : : a`;) is a linear sequence q0; : : : ; q` of states and a nesting sequence
qij , for i j, of states such that for each position 1 � i � `, if i is a call with
i j, then Æc(qi�1; ai) = (qi; qij); if i is an internal, then Æi(qi�1; ai) = qi; and
if i is a return such that j i, then Ær(qi�1; qji; ai) = qi, where if j = �1
then qji = q0. For a given nested word n, the automaton has precisely one run
over n. The automaton A accepts the nested word n if in this run, q` 2 F .
The language L(A) of a nested-word automaton A is the set of nested words it
accepts. The resulting class of regular languages of nested words seems to have
all the appealing theoretical properties that the classes of classical regular word
and tree languages enjoy.

It is easy to see that if L is a regular language of nested words, then the
corresponding language of words over tagged symbols is a context-free language.
This is because a nested word automaton can be interpreted as a pushdown au-
tomaton over words: call transitions can be simulated by pushing the state along
nesting edge, and return transitions can access this state by popping the stack.
Languages of words with well-bracketed structure have been studied as Dyck
languages and parenthesis languages, and shown to have some special properties
compared to context-free languages (for example, decidable equivalence prob-
lem) [McN67,Knu67]. The new insight is that the matching among left and right
parantheses can be considered to be an explicit component of the input struc-
ture, and this leads to a robust notion of regular languages using �nite-state
acceptors.

There is an emerging and growing body of literature studying nested word
automata, and we review some of the results below.

Closure: The class of regular languages of nested words is (e�ectively) closed
under union, intersection, complementation, concatenation, and Kleene-�. If L is
a regular language of nested words then all the following languages are regular:
the set of all pre�xes of all the words in L; the set of all suÆxes of all the words
in L; the set of reversals of all the words in L. Regular languages are closed
under tree-like operations that use hierarchical structure.

Determinization: A nondeterministic NWA A has �nite set Q of states, a set
of initial states Q0 � Q, a set F � Q of �nal states, a call-transition relation
Æc � Q���Q�Q, an internal-transition relation Æi � Q���Q, and a return-
transition relation Ær � Q�Q���Q. The automaton now has a choice at every
step, and accepts a word if one of the possible runs accepts. Nondeterministic
nested word automata are no more expressive than the deterministic ones: given
a nondeterministic automaton A with s states, one can e�ectively construct a
deterministic NWA B with 2s

2

states such that L(B) = L(A). The construction
is a generalization of the classical subset construction for determinizing word
automata, and a state of B is set of pairs of states of A.

Logic based characterization: The classical correspondence between monadic
second order logic and �nite recognizability for words and trees continues to hold
for nested words. The monadic second-order logic of nested words (MSO) is given
by the syntax:

� := Qa(x) j x � y j x y j � _ � j :� j 9x:� j 9X:�;

where a 2 �, x; y are �rst-order variables, and X is a second order variable. The
semantics is de�ned over nested words in a natural way. A language L of nested
words over � is regular i� there is an MSO sentence � over � such that L is the
set of all nested words that satisfy �.

The correspondence between linear temporal logic and �rst-order logic con-
tinues to hold too. The logic Nested Word Temporal Logic (NWTL) has atomic
propositions, logical connectives, the linear next and previous operators, the hi-
erarchical next and previous operators (e.g., \hierarchical-next '" holds at a call

position i� ' holds at the matching return), and until and since operators that
are interpreted over the \summary" paths. The summary path between two posi-
tions i and j is the shortest path in the graph of the nested word: if the summary
path from i to j reaches a call position k such that i � k k0 � j, then it will
follow the nesting edge from k to k0. A language L of nested words is de�nable in
�rst-order logic of nested words (that is, the logic above without the second-order
variables X) i� it is expressible in the temporal logic NWTL [AAB+07].

Decision problems: Given a nested word automaton A and a nested word
n, the membership problem (is n in L(A)?) can be solved in linear time. The
space required is proportional to the depth of n since one needs to remember
the labeling of pending nesting edges at every position. If A is nondeterministic,
membership problem can be solved in time O(jAj3`) using dynamic programming
similar to the one used for membership for pushdown word automata.

The emptiness problem for nested word automata(is L(A) empty?) can be
solved in cubic time using techniques similar to the ones used for pushdown word
automata or tree automata.

Problems such as language inclusion and language equivalence are decidable.
These problems can be solved using constructions for complementation and lan-
guage intersection, and emptiness test. If one of the automata is nondetermin-
istic, then this would require determinization, and both language inclusion and
equivalence are Exptime-complete for nondeterministic NWAs.

4 Revised Formulation of Software Model Checking

Traditionally, execution of a program is modeled as a word over an alphabet �,
where the choice of � depends on the desired level of detail. As an example,
suppose we are interested in tracking read/write accesses to a program variable
x. Then, we can choose the following set of symbols: rd to denote a read access to
x, wr to denote a write access to x, en to denote beginning of a new scope (such
as a call to a function or a procedure), and ex to denote the ending of the current
scope, and sk to denote all other actions of the program. A program P generates,
then, a set L(P) of words over this alphabet. The speci�cation S is given as a set
of \desirable" words, and veri�cation corresponds to checking whether the inclu-
sion L(P) � S holds. Since typical programming languages are Turing complete,
the veri�cation problem is undecidable. The �rst step in algorithmic program
veri�cation is to approximate a program using data abstraction, where the data
in a program is abstracted using a �nite set of boolean variables that stand for
predicates on the data-space [SH97,BMMR01,HJM+02]. The resulting model P 0

hence has �nite data and stack-based control
ow (see Boolean programs [BR00]
and recursive state machines [ABE+05] as concrete instances of pushdown mod-
els of programs). The language L(P 0) is a context-free language of words. If the
speci�cation S is a regular language, then the veri�cation question L(P 0) � S

can be solved. Consider the requirement that every write access is followed by a
read access. This can be expressed by the LTL formula �(wr ! � rd), and is
indeed a regular property. However, if we want to express the requirement that

\if a procedure writes to x, it must read x," we must capture the scope of each
procedure by matching of en and ex symbols, and the requirement is not a regular
language, and thus, not expressible in the speci�cation languages supported by
existing software model checkers such as SLAM [BR00] and BLAST [HJM+02].
The speci�cation is a context-free language, but this is not useful for algorithmic
veri�cation since context-free languages are not closed under intersection, and
decision problems such as language inclusion and emptiness of intersection of
two languages are undecidable for context-free languages.

In the revised formulation, an execution is modeled as a nested word. In
addition to the linear sequence of symbols given by the program execution, from
each entry symbol en, there is a nesting edge to the matching exit symbol ex.
Following the nesting edge corresponds to skipping the called procedure, and a
path that uses only nesting and internal edges gives the part of the execution
that is local to a procedure. We can interpret the abstracted program P 0 as a
nested word automaton, and associate with it a regular language L0(P 0) of nested
words. It is worth noting that, in general, pushdown models can be interpreted
as nested word automata as syntactically the two de�nitions are same (in NWAs,
stack alphabet coincides with the set of states, acceptance is by �nal state, call
transitions are same as push transitions, and return transitions are same as pop
transitions). The di�erence is only in the semantics: pushdown automata de�ne
word languages while NWAs de�ne nested word languages.

The speci�cation, now, is given as a language S0 over nested words, and veri�-
cation reduces to the language-inclusion problem for nested words: L0(P 0) � S0.
The question is solvable as long as S0 is a regular language of nested words.
Clearly, every regular language of words is also a regular language of nested
words. The requirement that \if a procedure writes to x, it must read x" also
becomes regular now, and there is a natural two-state deterministic nested-word
automaton that speci�es it. The initial state is q0, and has no pending obli-
gations, and is the only �nal state. The state q1 denotes that along the local
path of the current scope, a write-access has been encountered, with no follow-
ing read access. The transitions are: for j = 0; 1, Æi(qj ; rd) = q0; Æi(qj ;wr) = q1;
Æi(qj ; sk) = qj ; Æc(qj ; en) = (q0; qj); and Ær(q0; qj ; ex) = qj . The automaton reini-
tializes the state to q0 upon entry, while processing internal read/write symbols,
it updates the state as in a �nite-state word automaton, and at a return, if the
current state is q0 (meaning the called context satis�es the desired requirement),
it restores the state of the calling context.

Further, we can design temporal logics for programs that exploit the nested
structure. An example of such a temporal logic is CaRet [AEM04], which ex-
tends linear temporal logic by local modalities such as
a�, which holds at a
call if the return-successor of the call satis�es �. The formula �(wr ! �a rd)
captures the speci�cation \if a procedure writes to x, it must read x." CaRet
can state many interesting properties of programs, including stack-inspection
properties, pre-post conditions of programs, local
ows in programs, etc. Anal-
ogous to the theorem that a linear temporal formula can be compiled into an
automaton that accepts its models [VW94], any CaRet formula can be com-

piled into a nested word automaton that accepts its models. Decidability of
inclusion then yields a decidable model-checking problem for program models
against CaRet [AM04,AEM04].

Software model checking tools such as SLAM and BLAST support an asser-
tion language for writing monitors checking for violations of safety properties.
The monitor M is observing the executions of P , and reaches an error state
if an undesirable execution is detected. The veri�cation question is to check if
the monitor can reach an error state. Given a C program P and a monitor M
written in the query language, the model checker �rst constructs an annotated C
program P 0 such that the veri�cation problem reduces to analysis of P 0. While
current assertion languages for monitors support automata over words, now we
can strengthen them to allow automata over nested words. The transformation
of P to the annotated program P 0, to account for M , can be done with equal
ease even for this more expressive language. The resulting program P 0 can be
subjected to di�erent analysis techniques such as testing, runtime monitoring,
static analysis, and model checking. Thus, the nested-word formulation can be
useful for any analysis technique. Even though we have emphasized pushdown
models in the theory of nested words, the proposed reformulation is useful even
if programs are not recursive as long as they are structured with stack-based
control
ow.

5 Fixpoints for Local and Global Program Flows

In the branching-time approach to program veri�cation, a program P is mod-
eled by an unranked unordered in�nite tree TP such that nodes in TP are la-
beled with program states, and paths in TP correspond to executions of P . The
branching-time speci�cation speci�es the set S of desirable trees, and model
checking corresponds to the membership test TP 2 S. The �-calculus [Koz83]
is a modal logic with �xpoints, and is an extensively studied branching-time
speci�cation formalism with applications to program analysis, computer-aided
veri�cation, and database query languages [Eme90,Sti91]. From a theoretical
perspective, its status as the canonical temporal logic for regular requirements
is due to the fact that its expressiveness exceeds all commonly used tempo-
ral logics such as LTL, CTL, and CTL�, and equals alternating parity tree

automata or the bisimulation-closed fragment of monadic second-order theory
over trees [EJ91,JW96]. From a practical standpoint, iterative computation of
�xpoints naturally suggests symbolic evaluation, and symbolic model checkers
such as SMV check CTL properties of �nite-state models by compiling them into
�-calculus formulas [BCD+92,McM93].

There are at least three reasons that motivated us to extend the theory of
nested words to the branching-time case. First, while algorithmic veri�cation
of �-calculus properties of pushdown models is possible [Wal01,BS99], classical
�-calculus cannot express pushdown speci�cations that require inspection of the
stack or matching of calls and returns. This raises the question about the right
theoretical extension of �-calculus that can capture CaRet and nested word

automata. Second, in the program analysis literature, it has been argued that
data
ow analysis, such as the computation of live variables and very busy ex-
pressions, can be viewed as evaluating �-calculus formulas over abstractions of
programs [Ste91,Sch98]. This correspondence does not hold when we need to
account for local data
ow paths. For instance, for an expression e that involves
a variable local to a procedure P , the set of control points within P at which e
is very busy (that is, e is guaranteed to be used before any of its variables get
modi�ed), cannot be speci�ed using a �-calculus formula even though interproce-
dural data
ow analysis can compute this information. Can we extend �-calculus
so that it can capture interprocedural data
ow analysis? Finally, the standard
reachability property \some p-state is reachable" is expressed by the �-calculus
formula ' = �X:(p _
X). The meaning of ' is the smallest set X such that if
a state satis�es p or has a successor in X then it is in X . While this formula cap-
tures reachability over all models, over �nite-state models, the speci�cation also
encodes the symbolic algorithm for computing the set of states satisfying ' by
successive approximations of the �xpoint: let X0 to be the set of states satisfying
p, and at each step i, compute Xi+1 from Xi by adding states that can reach Xi

in one step (termination is obtained when Xi = Xi+1). Over pushdown models,
such a computation may not terminate. The correct way to compute reacha-
bility, as implemented in data
ow analysis or tools such as SLAM, is based on
\summarization" of paths. The summarization algorithm can be viewed as a
�xpoint computation over pairs of states of the form (x; y) meaning that state
y is reachable if the current procedure is called with input state x. This raises
the question if there is a di�erent way of expressing reachability over pushdown
models.

A nested tree is a labeled tree T augmented with a nesting relation over
the vertices of T such that every path through the tree is a nested word (see
[ACM06a] for precise de�nition). In context of program veri�cation, the tree TP
corresponding to a program P , will be unranked, unordered, and in�nite, and
the nesting relation is obtained by adding edges from call nodes to matching
returns. Note that a call node can have multiple matching returns (and, no
matching returns along some paths corresponding to executions in which the
called procedure does not return). It turns out there is an appealing �xpoint
calculus NT� over nested trees that has the following properties:

1. The model-checking problem for NT� is e�ectively solvable against push-
down models with no more e�ort than that required for weaker logics such
as CTL (Exptime-complete).

2. Evaluating NT� formulas over pushdown models captures the standard summary-
based analysis algorithms, and thus, expressing a property in NT� amounts
to describing symbolic computation for evaluation.

3. The logic NT� encompasses all properties expressed by nested word au-
tomata as well as by the classical �-calculus. This makes NT� the most ex-
pressive known program logic for which algorithmic software model checking
is feasible. In fact, the decidability of most known program logics (�-calculus,
temporal logics LTL and CTL, CaRet, etc.) can be understood by their in-

terpretation in the monadic second-order logic over trees. This is not true
for the logic NT�, making it a new powerful tractable program logic.

4. The logic NT� can capture local as well as global program
ows, and thus,
interprocedural data
ow analysis problems can be stated in NT�.

5. Expressiveness of NT� coincides with alternating parity automata over nested
trees (APNTA). An APNTA is a �nite-state tree automaton such that (a)
its transition relation is alternating, so along an edge it can send multiple
copies, (b) its acceptance condition is de�ned using parity condition over
the in�nite run, and (c) like a nested word automaton, at a call node, the
automaton sends states to the immediate tree successor as well as to the
return successors along nesting edges, and at a return node, the state can
depend on the state at the immediate tree parent as well as the state along
the nesting edge from the matching call parent.

6. While the correspondence between alternating tree automata and �xpoint
calculus holds as in the classical tree case, the correspondence between
monadic second order logic and �xpoint calculus fails: the monadic second
order logic over nested trees and NT� seem to have incomparable expressive-
ness (though this is not proved formally yet). Both logics have undecidable
satis�ability problem [ACM06b].

We intuitively describe the logic NT� below. The variables of the calculus
evaluate not over sets of vertices, but rather over sets of subtrees that capture
summaries of computations in the \current" program block. The �xpoint oper-
ators in the logic then compute �xpoints of summaries. For a given vertex s of
a nested tree, consider the subtree rooted at s such that the leaves correspond
to the matching returns as speci�ed by the nesting relation (while modeling
program, such a subtree captures all the computations till the procedure that s
belongs to returns). In order to be able to relate paths in this subtree to the trees
rooted at the leaves, we allow marking of the leaves: a 1-ary summary is speci-
�ed by the root s and a subset U of the leaves of the subtree rooted at s. Each
formula of the logic is evaluated over such a summary. The central construct
of the logic corresponds to concatenation of call trees: the formula hcalli'f g
holds at a summary hs; Ui if the vertex s has a call-edge to a vertex t, and there
exists a summary ht; V i satisfying ' and for each leaf v that belongs to V , the
subtree hv; Ui satis�es .

This logic is best explained using the speci�cation of local reachability: let
us identify the set of all summaries hs; Ui such that there is a local path from s

to some node in U (i.e. all calls from the initial procedure must have returned
before reaching U). In our logic, this is written as the formula ' = �X:hretiR1_
hlociX _ hcalliXfXg. The above means that X is the smallest set of summaries
of the form hs; Ui such that (1) there is a return-edge from s to some node in
U , (2) there is an internal edge from s to t and there is a summary ht; Ui in X ,
or (3) there is a call-edge from s to t and a summary ht; V i in X such that from
each v 2 V , hv; Ui is a summary in X . Notice that the above formula identi�es
the summaries in the natural way it will be computed on a pushdown system:

compute the local summaries of each procedure, and update the reachability
relation using the call-to-return summaries found in the procedures called.

Using the above formula, we can state local reachability of a state satisfying
p as: �Y:(p _ hlociY _ hcalli'fY g) which intuitively states that Y is the set of
summaries (s; U) where there is a local path from s to U that goes through a
state satisfying p. The initial summary (involving the initial state of the program)
satis�es the formula only if a p-labeled state is reachable in the top-most context,
which cannot be stated in the standard �-calculus. This example also illustrates
how local
ows in the context of data
ow analysis can be captured using our
logic.

6 Modeling and Processing Linear-Hierarchical Data

While nested words were motivated by program veri�cation, they can poten-
tially be used to model data with the dual{linear and hierarchical, structure.
Such dual structure exists naturally in many contexts including XML docu-
ments, annotated linguistic data, and primary/secondary bonds in genomic se-
quences. Also, in some applications, even though the only logical structure on
data is hierarchical, linear sequencing is added either for storage or for stream
processing. Data with linear-hierarchical structure is traditionally modeled using
binary (or more generally, ordered) trees and queried using tree automata (see
[Nev02,Lib05,Sch04] for recent surveys on applications of tree automata and tree
logics to document processing).

Even though tree models and tree automata are extensively studied with
a well-developed theory with appealing properties (see [CDG+02]), they seem
ill suited to capture and query the linear structure. First, tree-based approach
implicitly assumes that the input linear document can be parsed into a tree,
and thus, one cannot represent and process data that may not parse correctly.
Word operations such as pre�xes, suÆxes, and concatenation, while natural for
document processing, do not have analogous tree operations. Second, tree au-
tomata do not generalize word automata. Finite-state word automata can be
exponentially more succinct than tree automata. For example, the query that
patterns p1; : : : pn appear in the document in that order (that is, the regular ex-
pression ��p1�

� : : : pn�
�) compiles into a deterministic word automaton with

n+1 states, but standard deterministic bottom-up tree automaton for this query
must be of size exponential in n. This de�ciency shows up more dramatically
if we consider pushdown acceptors: a query such as \the document contains an
equal number of occurrences of patterns p and q" is a context-free word language
but is not a context-free tree language.

In a nutshell, binary/ordered trees encode both linear and hierarchical struc-
ture, but not on an equal footing. Recently we have argued that the model of
nested words is a better integration of the two orderings, and can either simplify
or improve existing ways of document processing [KMV06b,Alu07]. We have al-
ready seen that words are nested words where all positions are internals. Ordered
trees can be interpreted as nested words using the following traversal: to process

an a-labeled node, �rst print an a-labeled call, process all children in order, and
print an a-labeled return. Binary trees, ranked trees, unranked trees, forests, and
documents that do not parse correctly, all can be represented with equal ease.
Figure 1 shows the ordered tree corresponding to the third nested word, the �rst
two do not correspond to trees.

Since XML documents already contain tags that specify the position type,
they can be interpreted as tagged encoding of nested words without any pre-
processing. As we have seen already, the class of regular languages of nested
words seems to have all the appealing theoretical properties that the classes
of classical regular word and tree languages enjoy, and decision problems such
as membership, emptiness, language inclusion, and language equivalence are all
decidable, typically with the same complexity as the corresponding problem for
tree automata.

In order to study the relationship of nested word automata to various kinds
of word and tree automata, let us consider restricted classes of nested word
automata and the impact of these restrictions on expressiveness and succinct-
ness [Alu07]. Flat automata do not propagate information along the nesting
edges at calls, and correspond exactly to classical word automata accepting the
weaker class of regular word languages. Bottom-up automata, on the other hand,
do not propagate information along the linear edges at calls. Over the sub-
class of nested words corresponding to ordered trees, these automata correspond
exactly to bottom-up tree automata for binary trees and stepwise bottom-up
tree automata [BKMW01] for unranked trees. However, there is an exponen-
tial price in terms of succinctness due to this restriction. The class of joinless
automata avoids a nontrivial join of information along the linear and nesting
edges at returns, and this concept is a generalization of the classical top-down
tree automata. While deterministic joinless automata are strictly less expressive,
nondeterministic ones can accept all regular languages of nested words. The suc-
cinctness gap between nested word automata and traditional tree automata holds
even if we restrict attention to paths (that is, unary trees): nested word automata
are exponentially more succinct than both bottom-up and top-down automata.
We have also studied pushdown nested word automata by adding a stack to the
�nite-state control of nondeterministic joinless automata. Both pushdown word
automata and pushdown tree automata are special cases, but pushdown nested
word automata are strictly more expressive than both. In terms of complexity
of analysis problems, they are similar to pushdown tree automata: membership
is Np-complete and emptiness is Exptime-complete.

These results suggest that nested words and nested word automata may be
a more suitable way to model and process linear-hierarchical data. We need to
explore if compiling existing XML query languages into nested word automata
reduces query processing time in practice.

Acknowledgements: I would also like to thank Marcelo Arenas, Pablo Barcelo,
Swarat Chaudhuri, Kousha Etessami, Neil Immerman, Leonid Libkin, P. Mad-
husudan, Benjamin Pierce, and Mahesh Viswanathan, for past and ongoing re-
search collaboration on nested words.

References

[AAB+07] R. Alur, M. Arenas, P. Barcelo, K. Etessami, N. Immerman, and L. Libkin.
First-order and temporal logics for nested words. Unpublished manuscript,
2007.

[ABE+05] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yan-
nakakis. Analysis of recursive state machines. ACM Transactions on Pro-
gramming Languages and Systems, 27(4):786{818, 2005.

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2{34, 1993.

[ACM06a] R. Alur, S. Chaudhuri, and P. Madhusudan. A �xpoint calculus for local
and global program
ows. In Proceedings of the 33rd Annual ACM Sym-
posium on Principles of Programming Languages, pages 153{165, 2006.

[ACM06b] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees.
In Proc. 18th International Conference on Computer-Aided Veri�cation,
LNCS 4144, pages 329{342. Springer, 2006.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183{235, 1994.

[AEM04] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested
calls and returns. In TACAS'04: Tenth International Conference on Tools
and Algorithms for the Construction and Analysis of Software, LNCS 2988,
pages 467{481. Springer, 2004.

[AH93] R. Alur and T.A. Henzinger. Real-time logics: complexity and expressive-
ness. Information and Computation, 104(1):35{77, 1993.

[AH94] R. Alur and T.A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181{204, 1994.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49(5):1{42, 2002.

[AHLP00] R. Alur, T.A. Henzinger, G. La�erriere, and G. Pappas. Discrete abstrac-
tions of hybrid systems. Proceedings of the IEEE, 88(7):971{984, 2000.

[AKMV05] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for
visibly pushdown languages. In Automata, Languages and Programming:
Proceedings of the 32nd ICALP, LNCS 3580, pages 1102{1114. Springer,
2005.

[Alu07] R. Alur. Marrying words and trees. Unpublished manuscript, 2007.
[AM04] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings

of the 36th ACM Symposium on Theory of Computing, pages 202{211,
2004.

[AM06] R. Alur and P. Madhusudan. Adding nesting structure to words. In De-
velopments in Language Theory, LNCS 4036, pages 1{13, 2006.

[BCD+92] J.R. Burch, E.M. Clarke, D.L. Dill, L.J. Hwang, and K.L. McMillan. Sym-
bolic model checking: 1020 states and beyond. Information and Computa-
tion, 98(2):142{170, 1992.

[BEM97] A. Boujjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Applications to model checking. In CONCUR'97: Con-
currency Theory, Eighth International Conference, LNCS 1243, pages 135{
150. Springer, 1997.

[BKMW01] A. Br�uggemann-Klein, M. Murata, and D. Wood. Regular tree and regu-
lar hedge languages over unranked alphabets: Version 1. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technol-
ogy, 2001.

[BMMR01] T. Ball, R. Majumdar, T.D. Millstein, and S.K. Rajamani. Automatic
predicate abstraction of C programs. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 203{213, 2001.

[BR00] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean
programs. In SPIN 2000 Workshop on Model Checking of Software, LNCS
1885, pages 113{130. Springer, 2000.

[BR01] T. Ball and S. Rajamani. The SLAM toolkit. In Computer Aided Veri�-
cation, 13th International Conference, 2001.

[BS92] O. Burkart and B. Ste�en. Model checking for context-free processes.
In CONCUR'92: Concurrency Theory, Third International Conference,
LNCS 630, pages 123{137. Springer, 1992.

[BS99] O. Burkart and B. Ste�en. Model checking the full modal mu-calculus for
in�nite sequential processes. Theoretical Computer Science, 221:251{270,
1999.

[B�uc62] J.R. B�uchi. On a decision method in restricted second-order arithmetic.
In Proceedings of the International Congress on Logic, Methodology, and
Philosophy of Science 1960, pages 1{12. Stanford University Press, 1962.

[Cau03] D. Caucal. On in�nite transition graphs having a decidable monadic theory.
Theoretical Computer Science, 290(1):79{115, 2003.

[CDG+02] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tom-
masi. Tree automata techniques and applications. Draft, Available at
http://www.grappa.univ-lille3.fr/tata/, 2002.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proc. Workshop on Logic
of Programs, LNCS 131, pages 52{71. Springer-Verlag, 1981.

[CL99] C.G. Cassandras and S. Lafortune. Introduction to discrete event systems.
Kluwer Academic Publishers, 1999.

[CMM+04] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T.A. Henzinger, and J. Pals-
berg. Stack size analysis for interrupt driven programs. Information and
Computation, 194(2):144{174, 2004.

[CW02] H. Chen and D. Wagner. Mops: an infrastructure for examining security
properties of software. In Proceedings of ACM Conference on Computer
and Communications Security, pages 235{244, 2002.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In
Hybrid Systems III: Veri�cation and Control, LNCS 1066, pages 208{219.
Springer-Verlag, 1996.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. EÆcient algorithms
for model checking pushdown systems. In Computer Aided Veri�cation,
12th International Conference, LNCS 1855, pages 232{247. Springer, 2000.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus, and deter-
minacy. In Proceedings of the 32nd IEEE Symposium on Foundations of
Computer Science, pages 368{377, 1991.

[EKS03] J. Esparza, A. Kucera, and S. S. Schwoon. Model-checking LTL with
regular valuations for pushdown systems. Information and Computation,
186(2):355{376, 2003.

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 995{1072.
Elsevier Science Publishers, 1990.

[HJM+02] T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and
W. Weimer. Temporal-safety proofs for systems code. In CAV 02: Proc.

of 14th Conf. on Computer Aided Veri�cation, LNCS 2404, pages 526{538.
Springer, 2002.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279{295, 1997.

[HRS98] T.A. Henzinger, J.-F. Raskin, and P. Schobbens. The regular real-time
languages. In ICALP'98: Automata, Languages, and Programming, LNCS
1443, pages 580{593. Springer, 1998.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[JMT99] T. Jensen, D. Le Metayer, and T. Thorn. Veri�cation of control
ow based
security properties. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 89{103, 1999.

[JW96] D. Janin and I. Walukiewicz. On the expressive completeness of the propo-
sitional mu-calculus with respect to monadic second order logic. In CON-
CUR'96: Seventh International Conference on Concurrency Theory, LNCS
1119, pages 263{277. Springer-Verlag, 1996.

[Kam68] J. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California, Los Angeles, 1968.

[KMV06a] V. Kumar, P. Madhusudan, and M. Viswanathan. Minimization, learning,
and conformance testing of Boolean programs. In CONCUR'06: 17th Inter-
national Conference on Concurrency Theory, LNCS 4137, pages 203{217.
Springer, 2006.

[KMV06b] V. Kumar, P. Madhusudan, and M. Viswanathan. Visibly pushdown lan-
guages for XML. Technical Report UIUCDCS-R-2006-2704, UIUC, 2006.

[Knu67] D.E. Knuth. A characterization of parenthesis languages. Information and
Control, 11(3):269{289, 1967.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333{354, 1983.

[KPV02] O. Kupferman, N. Piterman, and M.Y. Vardi. Model checking linear prop-
erties of pre�x-recognizable systems. In CAV 02: Proc. of 14th Conf. on
Computer Aided Veri�cation, LNCS 2404, pages 371{385. Springer, 2002.

[Kur94] R.P. Kurshan. Computer-aided Veri�cation of Coordinating Processes: the
automata-theoretic approach. Princeton University Press, 1994.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic ap-
proach to branching-time model checking. Journal of the ACM, 47(2):312{
360, 2000.

[KVW01] O. Kupferman, M.Y. Vardi, and P. Wolper. Module checking. Information
and Computation, 164(2):322{344, 2001.

[Lib05] L. Libkin. Logics for unranked trees: An overview. In Automata, Lan-
guages and Programming, 32nd International Colloquium, Proceedings,
LNCS 3580, pages 35{50. Springer, 2005.

[LPY97] K. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Springer
International Journal of Software Tools for Technology Transfer, 1, 1997.

[LV02] E.A. Lee and P. Varaiya. Structure and interpretation of signals and sys-
tems. Addison Wesley, 2002.

[McM93] K.L. McMillan. Symbolic model checking: an approach to the state explosion
problem. Kluwer Academic Publishers, 1993.

[McN67] R. McNaughton. Parenthesis grammars. Journal of the ACM, 14(3):490{
500, 1967.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MS85] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata,
and second-order logic. Theoretical Computer Science, 37:51{75, 1985.

[Nev02] F. Neven. Automata, logic, and XML. In Proceedings of the 11th Annual
Conference of the European Association for Computer Science Logic, CSL
2002, pages 2{26. Springer, 2002.

[PS02] G.J. Pappas and S. Simic. Consistent abstractions of aÆne control systems.
IEEE Transactions on Automatic Control, 47(5):745{756, 2002.

[PSL05] IEEE 1850 standard for property speci�cation language (PSL). 2005.
[Rab69] M.O. Rabin. Decidability of second order theories and automata on in�nite

trees. Transactions of the AMS, 141:1{35, 1969.
[Rep98] T. Reps. Program analysis via graph reachability. Information and Soft-

ware Technology, 40(11-12):701{726, 1998.
[RHS95] T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural data
ow analysis

via graph reachability. In Proceedings of the ACM Symposium on Principles
of Programming Languages, pages 49{61, 1995.

[Sch98] D.A. Schmidt. Data
ow analysis is model checking of abstract interpre-
tations. In Proceedings of the 25th Annual ACM Symposium on Principles
of Programming Languages, pages 68{78, 1998.

[Sch04] T. Schwentick. Automata for XML { a survey. Technical report, University
of Dortmund, 2004.

[SH97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS.
In Proc. 9th International Conference on Computer Aided Veri�cation
(CAV'97), volume 1254, pages 72{83. Springer Verlag, 1997.

[SP81] M. Sharir and A. Pnueli. Two approaches to inter-procedural data-
ow
analysis. In Program
ow analysis: Theory and applications. Prentice Hall,
1981.

[Ste91] B. Ste�en. Data
ow analysis as model checking. In Theoretical Aspects
of Computer Software: TACS'91, LNCS 526, pages 346{365, 1991.

[Sti91] C.S. Stirling. Modal and temporal logic. In Handbook of Logic in Computer
Science, pages 477{563. Oxford University Press, 1991.

[Tho90] W. Thomas. Automata on in�nite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 133{191. El-
sevier Science Publishers, 1990.

[Tho02] W. Thomas. In�nite games and veri�cation. In Proceedings of the Inter-
national Conference on Computer Aided Veri�cation CAV'02, LNCS 2404,
pages 58{64. Springer, 2002.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about in�nite computations. Infor-
mation and Computation, 115(1):1{37, 1994.

[Wal01] I. Walukiewicz. Pushdown processes: Games and model-checking. Infor-
mation and Computation, 164(2):234{263, 2001.

[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about in�nite compu-
tation paths. In Proceedings of the 24th IEEE Symposium on Foundations
of Computer Science, pages 185{194, 1983.

