
Towards Privacy-Preserving Fault Detection

Antonis Papadimitriou
University of Pennsylvania

Mingchen Zhao
University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

ABSTRACT
In this paper, we discuss the problem of detecting general
faults in distributed systems that handle confidential infor-
mation. Detecting non-crash faults is difficult in this setting
because, to check the behavior of a given node, we need to
know its expected behavior – but that can depend on the
confidential information. Classical zero-knowledge proofs
are difficult to apply because they are designed to verify
functions with a fixed number of inputs, but in many dis-
tributed systems, both the size and the number of a node’s
“inputs” (the messages it has received from other nodes) are
not known.

We propose an approach that can efficiently provide zero-
knowledge fault detection for certain systems. Our approach
spreads the detection tasks across multiple nodes, leverag-
ing a node’s existing knowledge whenever possible. We use
epistemic reasoning to infer such knowledge, and we combine
classical zero-knowledge proofs with a special data structure
to handle inputs of unknown size. We show how our ap-
proach can be applied to a simple example system, and we
report some initial performance measurements.

1. INTRODUCTION
Recent work on accountability [13, 16] has provided a way
to detect a large class of non-crash faults in distributed sys-
tems. This seems useful: there are many faults – such as
attacks by a malicious adversary, but also many software
bugs, hardware malfunctions, or misconfigurations – that do
not necessarily manifest as crash faults.

However, the ability to detect this more general class of
faults comes at a price: systems like PeerReview [16] and
AVM [13] require nodes to audit each other, and these au-
dits reveal detailed information about each node’s actions,
including messages they have sent and received, and data
they have stored or processed. If the system handles pri-
vate or confidential data, this may not be acceptable: audi-
tors in other administrative domains may not be authorized
to see this data, and a compromised auditor could lever-
age the audit mechanism to extract information from other
nodes. NetReview [14] and PVR [31] mitigate this problem
in the context of BGP, but we are not aware of any protocol-
independent fault detection techniques that can both handle
non-crash faults and protect private data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotDep’13, November 3, 2013, Nemacolin Woodlands Resort, PA.
Copyright 2013 ACM 978-1-4503-2457-1 ...$15.00.

Accountability and privacy are not fundamentally incom-
patible; in principle, a node can use a zero-knowledge proof
(ZKP) [10] to convince its auditors that it has correctly per-
formed the functions it has been assigned. Recently there
has been enormous progress towards practical ZKP tech-
niques [9, 25]; however, direct application of ZKPs fails in
our setting because of an “impedance mismatch” with dis-
tributed protocols. ZKPs generally assume that what needs
to be verified is a logic circuit [30] – essentially a straight-line
program, with fixed-size inputs and outputs and without un-
bounded loops or recursion – whereas the latter often specify
each node as a state machine that sends and receives streams
of messages to and from other nodes. Using logic circuits to
verify the execution (or even the individual steps) of a state
machine is difficult, and seems impossible in some cases, due
to the problem of structural privacy [5]: if a node is invited
to participate in verifying some transaction, it can inspect
the circuit – its structure, the number and size of its inputs,
the other nodes that are verifiers, etc. – and thus learn more
about the transaction, even without seeing the actual data.

In this paper, we make a first step towards a practical,
privacy-preserving fault detection mechanism for distributed
systems. We do not propose a novel ZKP technique – rather,
we argue that it may be sufficient to combine existing, circuit-
based techniques with special-purpose data structures, such
as Merkle Hash Trees [23], and to distribute the proof across
multiple nodes to take advantage of the information the
nodes already have. Using a simple example protocol, we
demonstrate that it is possible to efficiently detect all ob-
servable faults (including non-crash faults) while maintain-
ing very strong privacy guarantees. We believe that our
approach can be extended to eventually cover a wide range
of distributed protocols.

2. OVERVIEW
We consider a distributed system that consists of nodesN1,N2,
N3, Each node Ni has been assigned an algorithm Ai it
should run – e.g., in the form of a state machine, whose in-
puts and outputs include user inputs, local outputs, and mes-
sages exchanged with other nodes. We say that Ni is correct
in an execution of this system if it followed its algorithm Ai;
otherwise we say that Ni is faulty. Faulty nodes are compu-
tationally bound (i.e., they cannot break cryptographic keys
or invert hash functions), but can they otherwise be fully
Byzantine [19], including collusion.

2.1 Goals
Our goal is to build a protocol that enables the correct nodes
to identify faulty nodes. It is known [15] that not all faults
are detectable in this setting; for instance, if a node corrupts
its internal state but keeps sending the same messages as it

1

r1 joinReqD(@S,client,group) :- joinReq(@client, group), S=’server’.
r2 channelMember(@S,client,group,’YES’) :- joinReqD(@S, client, group),

authorized(@S, group, client), S=’server’.
r3 channelMember(@S,client,group,’NO’) :- joinReqD(@S, client, group),

!authorized(@S, group, client), S=’server’.
r4 joinResponse(@client,group,status) :- channelMember(@S,client,group,status).
r5 allMsgs(@S,group,client,tstamp,msg) :- message(@client, group, msg), tstamp = now(),

channelMember(@S, client, group, ’YES’).
r6 msgRcvd(@client,group,sender,ts,msg) :- allMsgs(@S, group, sender, ts, msg),

channelMember(@S, client, group, ’YES’).

Figure 1: NDlog code for our running example – a simple chat server.

would have if it were correct, the other nodes cannot detect
the fault. Hence, we can at most hope to detect observable
faults; these are faults that (directly or transitively) affect
at least one correct node.

We will make the simplifying assumption that the exe-
cution is finite, i.e., that the system has a execution phase,
during which the original algorithm runs to completion, and
a separate detection phase, during which the detection pro-
tocol runs. At the end of the detection phase, each node
may report a set of other nodes on which it has detected a
fault. The detection protocol should have the following three
properties:

• Completeness: If a node Ni was observably faulty
during the execution phase, at least one correct node
Nj will report a fault on Ni.

• Accuracy: If node Ni was correct during the execu-
tion, no correct node will report a fault on Ni.

• Privacy: No node Ni can learn anything about a cor-
rect node Nj 6= Ni during the detection phase that it
could not already have learned during the execution
phase, other than that Nj is correct.

We emphasize that faulty nodes are free to collude or mis-
behave during the detection phase if they wish, but that we
do not require such faults to be reported.

2.2 Running example: Chat
For ease of exposition, we will explain our approach using
a simple example protocol: a small chat server, whose code
is shown in Figure 1. The code is written in Network Dat-
alog [22], a declarative language. This is purely for ease of
exposition; other languages, including imperative ones, could
be used as well. We chose chat because it has the properties
we discussed earlier: the number of groups, group members,
and messages are all unbounded.

NDlog represents the state of a node a set of tables, which
contain individual tuples; an NDlog program is basically a
set of rules that describe how tuples can be derived from
other tuples. For instance, the rule X(@A,b,c) :- Y(@A,b,5),

Z(@A,c) says that a (b,c) tuple should be inserted into the
X-table on node A whenever there is a (b,5) tuple in the Y-
table and a (c) tuple in the Z-table. Rules may include tuples
on different nodes; for instance, W(@B,b,c) :- X(@A,b,c),b>5

says that A should send a message to B whenever a (b,c)

tuple with b > 5 is inserted into its X-table, so that B can
insert a (b,c) tuple into its W-table. b and c are variables
that must be instantiated with concrete values when the rule
is applied.

The chat server S has an authorized table that says which
clients are allowed to join which groups, a channelMember ta-
ble that says which clients are currently members of which
groups, and an allMsgs table that contains all the posted
messages. When a client C wants to join a group G, it in-
serts a joinReq(@C,G) tuple. This is sent to the server (r1),
which must decide whether C is authorized to join G (r2+r3),
update its channelMember table, and then send a joinResponse

tuple back to C (r4). Once a member of G, C may post mes-
sages M by inserting a message(@C,G,M) tuple, which is sent
to the server (r5) and forwarded to all the other members of
the group (r6).

2.3 Minimum observer sets
In general, we can detect an observable fault on some node
N as follows [15]: we collect a number of observations from
correct nodes (messages these nodes did or did not send or
receive), and we then establish that there is no execution of
the system that is a) consistent with all observations, and in
which b) N is correct.

For instance, suppose a client C1 joins a group G, and
another client C2 then posts a message M to G. If the
server S fails to forward M to C1, S is clearly faulty – and
this fault can be detected based on the observations of C1

and C2. The observations of these two nodes are sufficient
(we do not need to ask any other nodes), and they are both
necessary: if we know only that C1 joined G, a plausible
explanation is that S is correct and C2 simply posted no
messages, and if we know only that C2 sent M , a plausible
explanation is that S is correct and C1 is not a member of G.
We thus refer to {C1, C2} as a minimal observer set (MOS)
for this fault.

PeerReview [16] detects faults by collecting all observa-
tions about each node Ni at a central set of witness nodes.
This simplifies audits considerably, but, as we have seen ear-
lier, it violates Ni’s privacy.

2.4 Approach
Our approach is based on the observation that fault detec-
tion does not have to be centralized: in principle, we can
simply divide up the set of faults that could possibly occur
on each node Ni, and we can assign the duty of checking
for each fault to some of that fault’s MOS. If the fault does
occur, the nodes in the MOS will already have the necessary
observations – they do not need to exchange information with
any other nodes.

For verification, we distinguish three types of faults. Sim-
ple faults (SF) are ones whose MOS contains just a single
node; that node can check for the fault directly. Equivoca-

2

tion faults (EF) occur when Ni pretends to some nodes in
the MOS that some condition c is true, and to the others
that c is false. EFs can be detected by requiring Ni to com-
mit to c, and to reveal the commitment to the entire MOS.
This ensures detection, and it does not violate privacy be-
cause both groups can already infer c from the Ni’s actions.
Complex faults (CF) are all remaining faults, of which more
below.

Since the set of possible faults is typically infinite, we ob-
viously need the ability to handle large groups of faults with
a single proof. Intuitively, this can be done by considering
ranges, such as the messages sent in a certain interval, or
with a certain prefix; in Section 3.3, we describe a special
data structure for this purpose. This trick should also help
with detecting CFs: we can privately rule out most poten-
tial faults, and then fall back to running small circuit-based
ZKPs to check for the (hopefully few) faults that remain
plausible. For instance, if some chat messages had to pass
through a special filter before being posted, we could first
use commitments to determine the set of relevant messages,
and then run a circuit for each message to check the filter.

Another concern is that nodes in the MOS could them-
selves be faulty. Some faults have more than one MOS,1 so,
if we expect up to f faults, we can simply assign each fault to
f independent MOS, just as PeerReview would assign each
node to f witnesses. But, somewhat counterintuitively, even
if many (or all) faults have fewer than f different MOS, this
does not diminish the detection power of our approach: if
a fault can only be seen from k < f groups of nodes, and
each of these groups is compromised, then the fault is simply
not observable and thus fundamentally cannot be detected
in our setting [15], even with a non-private protocol.

3. CASE STUDY: CHAT
In this section, we illustrate how our approach can be applied
to our running example, the chat server from Figure 1. We
focus primarily on the server S, as it is more challenging to
verify than the clients.

3.1 Deriving correctness conditions
First, we identify all the possible ways the server can fail. We
observe that each rule τ:-α1,α2,. . . in Figure 1 implies two
correctness conditions: a tuple must be derived whenever
the preconditions hold (

∧
αi → τ), and second, the pre-

conditions must have held whenever the tuple was derived
(τ →

∧
αi). If there are other rules that could derive τ , the

second condition becomes a disjunction of conjunctions, one
for each such rule; if a rule contains free variables (as do all
the rules in our example), we add a universal quantifier for
that variable. The resulting set of conditions is complete:
any observable fault must violate at least one of them.

3.2 Reasoning about knowledge
If X → Y is a correctness condition for S and there exists
a single node Ni that can observe both X and Y , we are
“done”: we can simply ask Ni to verify that condition. But

1For instance, suppose node A is expected to receive num-
bers between 1 and 10 from B and C, add them, and send
the sum to D and E. Suppose B and C send 2 and 3, respec-
tively, and D and E each receive 18. Then there are four
MOS: {B,D}, {C,E}, {B,E}, {C,D}.

none of the conditions in our example are of that form; they
all involve at least one (private) table on S. However, nodes
can often infer at least some tuples that ought (not) to be in
these tables. For instance, joinReqD(C,G) tuples can only be
derived via r1, based on a joinReq(G) tuple C has sent to D.
Thus, each client C can predict the state of joinReqD(C,G)

on S based on the messages it has or has not sent to S. We
can use this type of inference to expand the set of rules that
a node can check.

We use epistemic modal logic, based on Halpern and Moses
[18], to reason about the knowledge a given node Ni has
about the state on S. In this logic, the operator Ki is used
to indicate that a node Ni knows a certain fact. For instance,
if τ :- α, β is the only rule that can derive τ , then we can
make the inference Ki τ̄ → Ki ᾱ ∨ β̄, i.e., if node Ni knows
that τ was not derived, it knows that either α or β must
be absent. If Ni additionally knows that α is present, it
can conclude that β is absent. By reasoning in this way,
a client C can infer, for instance, that S must answer a
joinReq(C,G) with a joinResponse: r1 must trigger either
r2 or r3, depending on the state of authorized(G,C) (which
C does not know), but, because of tertium non datur (the law
of excluded middle), either of them must eventually trigger
r4. We use a number of other inference rules, but we cannot
present them here for lack of space.

For simple faults (SF), at least one client C will be able to
infer both sides of the corresponding correctness condition in
this way. For equivocation faults (EF), there will be multiple
conditions that are each partially checkable by some client,
except for some tuple(s) on S that none of the clients can
infer. We can detect EFs by requiring S to commit to the
state of these tuples, and to show that commitment to each
of these clients.

3.3 Zero-knowledge maps
Since tables can be unbounded, we need a way to efficiently
commit nodes to large ranges of tuples, without revealing
the total size of the table. For this, we use a special kind of
zero-knowledge set [24] we refer to as a zero-knowledge map
(ZKM). Suppose a node has a set of keysK and a mappingm
that maps each k ∈ K to some value m(k). (Both keys and
values can be arbitrary bitstrings.) Then the ZKM enables
the node to produce a commitment to K and m such that,
given a prefix p, the prover can selectively reveal to another
node a) the set of keys that have the prefix p (if any), and b)
the set of values that these keys map to, without revealing
anything about other keys and values. If p has length zero,
the prover fully reveals K and m.

We can implement a ZKM using a form of binary Merkle
hash tree (MHT) [23] in which the edges from each parent
vertex to its two children are labeled 0 and 1. Each key
k ∈ K is associated with the (unique) leaf Lk where the
labels on the path from the root to Lk, concatenated, result
in k. Next, we prune all vertices from the tree except for
a) the leaves Lk, k ∈ K, b) any vertices on the path from a
leaf Lk to the root, and c) any direct children of the vertices
added under b). We then associate each remaining vertex
with a hash value Hi := H(si ||H(ei || vi || ri) ||Hi0 ||Hi1)
where si is set to 1 if the vertex has any children, and 0
otherwise; ei is 1 if i ∈ K, and 0 otherwise; vi is m(i) if
i ∈ K, and empty otherwise; Hi0 and Hi1 are the hashes
of the right and left children, if any, and empty otherwise;

3

c1a @C: ∀G: joinReq(@C,G) -> joinReqD(@S,C,G)
c1b @C: ∀G: !joinReq(@C,G) -> !joinReqD(@S,C,G)
c2a @C: ∀G: joinReq(@C,G) -> joinResponse(@C,G,’YES’) ∨ joinResponse(@C,G,’NO’)
c2b @C: ∀G: joinResponse(@C,G,’YES’) ∨ joinResponse(@C,G,’NO’) -> joinReq(@C,G)
c2c @C: ∀G: joinResponse(@C,G,’YES’) -> channelMember(@S,C,G,’YES’) ∧ authorized(@S,G,C)
c2d @C: ∀G: joinResponse(@C,G,’NO’) -> channelMember(@S,C,G,’NO’) ∧ !authorized(@S,G,C)
c2e @C: ∀G: !joinResponse(@C,G,’YES’) ∧ !joinResponse(@C,G,’NO’) -> !channelMember(@S,G,C,?)
c3a @C: ∀G∀T: joinResponse(@C,G,’YES’) ∧ message(@C,G,M) -> allMsgs(@S,G,C,T,M)
c3b @C: ∀G∀T: !joinResponse(@C,G,’YES’) ∨ !message(@C,G,M) -> !allMsgs(@S,G,C,T,M)
c4a @C: ∀G∀C’∀T: msgRcvd(@C,G,C’,T,M) -> joinResponse(@C,G,’YES’) ∧ channelMember(@S,C,G,YES)
c4b @C: ∀G∀C’∀T: joinResponse(@C,G,’YES’) ∧ msgRcvd(@C,G,C’,T,M) -> allMsgs(@S,G,C’,T,M)
c4c @C: ∀G∀C’∀T: joinResponse(@C,G,’YES’) ∧ msgRcvd(@C,G,C’,T,M) -> channelMember(@S,C’,G,YES)
c4d @C: ∀G∀C’∀T: joinResponse(@C,G,’YES’) ∧ !msgRcvd(@C,G,C’,T,M) -> !allMsgs(@S,G,C’,T,M)

Figure 2: Conditions each client C verifies on the server S. Tuples in ZKMs are in bold; keys are underlined.

ri is a random bitstring that is sufficiently long to prevent
guessing; H is a cryptographic hash function that behaves
as a random oracle (i.e., is both binding and hiding); and ||
is concatenation. Then the commitment is the hash value
that is assigned to the root of the MHT.

To produce a proof for a prefix p, the prover starts at
the root and follows edges using the bits in p until a) all
the bits in p have been used, or b) it reaches a leaf. In
the first case, the prover reveals all the si, ei, vi, and ri
values in the subtree it has reached; in both cases, it reveals
the si, H(ei || vi || ri), Hi0, and Hi1 values along the path to
the root. The verifier then checks whether the si bits are 1
for leaves and 0 for interior nodes, and it uses the provided
values to recompute the hash value of the root. If the latter
matches the commitment, the verifier accepts the proof.

3.4 Assigning keys
ZKMs enable us to efficiently check for equivocation faults: if
a table T appears in conditions that are checked by different
clients, we simply ask the server to put it into a ZKM, to
commit to the ZKM, and to reveal to each client C the range
of tuples in T that are visible to C. The key of the ZKM
are the elements of T that are universally quantified in the
conditions, in some order; the value are the elements of T
that the client can see. Figure 2 show the conditions for our
running example; the tables in ZKMs are in bold, and the
keys are underlined. We have proven that these conditions,
if checked by each client, satisfy all three of our requirements
for a detection protocol (Section 2.1), but we omit the proof
for lack of space.

An interesting challenge arises when choosing the order
of the elements in the keys. For instance, at first glace,
using C rather than C ||G as a key for channelMember seems
equally plausible; however, notice that, in condition c4c,
client C must verify the membership of some other client
C′ in a specific group G (to check whether the server may
have fabricated a message). Since C may not know which
other groups C′ has joined, it is not safe to reveal the other
memberships to C, so the ability to use prefixes of different
lengths is necessary to preserve privacy.

3.5 Preliminary results
To test the efficiency of our detection protocol, we have im-
plemented a checker for the conditions in Figure 2, based on
ZKMs. We simulated a run with 200 clients and 50 groups;
each client joined half of the groups at random and posted
five messages per joined group. The probability of autho-

rization was 0.5 per join request. We then ran the detection
protocol. Generating the commitment for the largest ZKM
(≈ 637, 000 entries) took 2.41 s. The generation of a proof
for each client took between 3.6 ms and 36 ms; the size of
the proofs was between 639 kB and 2.4 MB, and the verifi-
cation on the clients took between 28 ms and 113 ms. These
results are initial evidence that efficient, privacy-preserving
fault detection is possible, at least for some protocols.

4. CHALLENGES AND NEXT STEPS
In our current work, we are further generalizing our approach
to broaden the range of protocols to which it can be applied.
Below, we discuss some of the challenges and how we plan
to address them.
Complex faults: Our running example contained only sim-
ple faults and equivocation faults. For complex faults, we
can either use different data structures – such as the bit
vector in PVR [31], which verifies a minimum over a set
of integers, or techniques from privacy-preserving data min-
ing [1, 20] – or fall back on general ZKP circuits. Compilers
are available, e.g., in [3], that can generate such circuits from
high-level programs. To preserve structural privacy, it is suf-
ficient to ensure that all participating verifiers can statically
predict a) the set of circuits they should participate in, and
b) the structure of these circuits. We hope to accomplish
this using the ZKMs and the epistemic reasoning from Sec-
tions 3.3 and 3.2, respectively.
Verification at runtime: In this paper, we made the sim-
plifying assumption that the detection protocol runs after
the execution has finished, but in practice, protocols can run
for a long time. To enable verification of running protocols,
we need to ensure that all verifiers are using a consistent
snapshot of the prover’s state and of their own relevant ob-
servations, perhaps using a variant of the Chandy-Lamport
algorithm [4]; note, however, that the snapshot needs to
cover just the union of the MOS and not the entire system.
The addition of a privacy-preserving “checkpoint” should en-
able incremental checking, analogous to PeerReview [16].
Evidence and privacy: Accountability critically relies on
the ability to prove the presence of a fault to a third party.
In principle, evidence of faults could be constructed using a
combination of signed messages and/or challenges that the
faulty node cannot answer [16]; however, if privacy is an is-
sue, the evidence itself may leak information! One way to
mitigate this would be to shrink the evidence to the mini-
mum that is necessary to prove the fault; another would be
to verify the evidence itself in zero-knowledge.

4

5. RELATED WORK
The vision behind this work was described in an earlier posi-
tion paper [17]. This paper contributes a concrete technical
approach towards an efficient solution.
Verifiable computing: Recently there has been a lot of
interest in efficient verification of outsourced computation,
including PCPs [27], Pinocchio [25], Ginger [28], Zaatar [26],
Allspice [29], and Gennaro et al. [9]; however, these focus on
a two-party setting in which one party knows all the in-
puts, and are thus not directly applicable in our setting.
Some special-case solutions for distributed protocols do ex-
ist: VEX [2] privately verifies ad exchanges, and our earlier
work on PVR [12, 31] verifies BGP routing decisions.
Zero-knowledge proofs: There are numerous specialized
zero-knowledge arguments, e.g., for set membership [24] or
equality testing [8, 21], but these approaches are not general
enough for our purposes. Lately, new techniques have been
developed that can verify arbitrary computations, modeled
as circuits [9, 11], but are less efficient. Our goal is to adapt
both approaches to the context of distributed computing,
and to combine them in a way that harnesses both efficiency
and generality.
Privacy-preserving data mining: This line of work, ini-
tiated by [1, 20], focuses on extracting information from dis-
tributed, private data sets. It is typically optimized for very
specific classes of algorithms that are relevant for data min-
ing; for instance, P4P [6, 7] implements algorithms that can
be decomposed into a sequence of vector additions. Thus, it
is complementary to our own work, which focuses on general
message-passing algorithms.

6. CONCLUSION
At first glance, privacy and accountability may appear to be
incompatible: to detect whether a node has correctly per-
formed the function it has been assigned, it seems necessary
to know the node’s actions. However, there is mounting evi-
dence that privacy-preserving accountability is not only pos-
sible, but perhaps not even particularly expensive – neither
in terms of overhead nor in terms of detection power!

The technique we present here is not yet a complete so-
lution: it is still quite easy to find protocols for which it
fails. However, we believe that it can be further generalized
by integrating small ZKPs to detect complex faults; we are
investigating this in our ongoing work.

Acknowledgments
We thank Ariel Feldman and Wenchao Zhou for helpful com-
ments on an earlier draft of this paper. This work was sup-
ported by DARPA contract FA8650-11-C-7189, NSF grants
CNS-1054229 and CNS-1065130, and by a gift from Google.
Any opinions, findings, and conclusions or recommendations
expressed herein are those of the authors and do not neces-
sarily reflect the views of the funding agencies.

References
[1] R. Agrawal and R. Srikant. Privacy-preserving data mining.

In Proc. SIGMOD, 2000.
[2] S. Angel and M. Walfish. Verifiable auctions for online ad

exchanges. In Proc. SIGCOMM, Aug. 2013.
[3] M. Backes, M. Maffei, and K. Pecina. Automated synthesis of

privacy-preserving distributed applications. In NDSS, 2012.

[4] K. M. Chandy and L. Lamport. Distributed snapshots: de-
termining global states of distributed systems. ACM Trans.
Comput. Syst., 3(1):63–75, Feb. 1985.

[5] S. Davidson, S. Khanna, S. Roy, J. Stoyanovich, V. Tannen,
and Y. Chen. On provenance and privacy. In ICDT, 2011.

[6] Y. Duan, J. Canny, and J. Zhan. P4P: practical large-scale
privacy-preserving distributed computation robust against
malicious users. In Proc. USENIX Security, 2010.

[7] Y. Duan and J. F. Canny. Practical private computation and
zero-knowledge tools for privacy-preserving distributed data
mining. In Proc. SDM, 2008.

[8] R. Fagin, M. Naor, and P. Winkler. Comparing information
without leaking it. Commun. ACM, 39(5):77–85, 1996.

[9] R. Gennaro, C. Gentry, B. Parno, and M. Raykova.
Quadratic span programs and succinct NIZKs without PCPs.
In Proc. EUROCRYPT, 2013.

[10] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof-systems. In STOC, 1985.

[11] J. Groth. Short pairing-based non-interactive zero-knowledge
arguments. In Proc. ASIACRYPT, 2010.

[12] A. J. T. Gurney, A. Haeberlen, W. Zhou, M. Sherr, and B. T.
Loo. Having your cake and eating it too: Routing security
with privacy protections. In Proc. HotNets, Nov. 2011.

[13] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Ac-
countable virtual machines. In Proc. OSDI, Oct. 2010.

[14] A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel.
NetReview: Detecting when interdomain routing goes wrong.
In Proc. NSDI, Apr 2009.

[15] A. Haeberlen and P. Kuznetsov. The Fault Detection Prob-
lem. In Proc. OPODIS, Dec. 2009.

[16] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview:
Practical accountability for distributed systems. In Proc.
SOSP, Oct 2007.

[17] A. Haeberlen, M. Zhao, W. Zhou, A. J. T. Gurney, M. Sherr,
and B. T. Loo. Privacy-preserving collaborative verification
protocols. In Proc. LADIS, 2012.

[18] J. Y. Halpern and Y. Moses. Knowledge and common knowl-
edge in a distributed environment. J. ACM, 37(3):549–587,
July 1990.

[19] L. Lamport, R. Shostak, and M. Pease. The Byzantine gen-
erals problem. ACM TOPLAS, 4(3):382–401, 1982.

[20] Y. Lindell and B. Pinkas. Privacy preserving data mining.
In Proc. CRYPTO, 2000.

[21] H. Lipmaa. Verifiable homomorphic oblivious transfer and
private equality test. In Proc. ASIACRYPT, 2003.

[22] B. Loo, T. Condie, M. Garofalakis, D. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica.
Declarative networking. CACM, 52(11):87–95, Nov. 2009.

[23] R. Merkle. Protocols for public key cryptosystems. In Proc.
Symposium on Security and Privacy, Apr. 1980.

[24] S. Micali, M. Rabin, and J. Kilian. Zero-knowledge sets. In
Proc. FOCS, Oct. 2003.

[25] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinoc-
chio: Nearly practical verifiable computation. In Proc. IEEE
Symposium on Security and Privacy, May 2013.

[26] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and
M. Walfish. Resolving the conflict between generality and
plausibility in verified computation. In Proc. EuroSys, 2013.

[27] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish.
Making argument systems for outsourced computation prac-
tical (sometimes). In Proc. NDSS, Feb. 2012.

[28] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few
steps closer to practicality. In Proc. USENIX Security, 2012.

[29] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid
architecture for interactive verifiable computation. In Proc.
IEEE Symposium on Security and Privacy, May 2013.

[30] A. C. Yao. Protocols for secure computations. In Proc. Sym-
posium on Foundations of Computer Science (SFCS), 1982.

[31] M. Zhao, W. Zhou, A. J. T. Gurney, A. Haeberlen, M. Sherr,
and B. T. Loo. Private and verifiable interdomain routing
decisions. In Proc. SIGCOMM, 2012.

5

	Introduction
	Overview
	Goals
	Running example: Chat
	Minimum observer sets
	Approach

	Case study: Chat
	Deriving correctness conditions
	Reasoning about knowledge
	Zero-knowledge maps
	Assigning keys
	Preliminary results

	Challenges and next steps
	Related work
	Conclusion

