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ABSTRACT
When debugging a distributed system, it is sometimes necessary to
explain the absence of an event – for instance, why a certain route
is not available, or why a certain packet did not arrive. Existing
debuggers offer some support for explaining the presence of events,
usually by providing the equivalent of a backtrace in conventional
debuggers, but they are not very good at answering “Why not?”
questions: there is simply no starting point for a possible backtrace.
In this paper, we show that the concept of negative provenance can
be used to explain the absence of events in distributed systems.
Negative provenance relies on counterfactual reasoning to identify
the conditions under which the missing event could have occurred.
We define a formal model of negative provenance for distributed
systems, and we present the design of a system called Y! that tracks
both positive and negative provenance and can use them to answer
diagnostic queries. We describe how we have used Y! to debug
several realistic problems in two application domains: software-
defined networks and BGP interdomain routing. Results from our
experimental evaluation show that the overhead of Y! is moderate.

Categories and Subject Descriptors
C.2.3 [Network operations]: Network management; D.2.5
[Testing and debugging]: Diagnostics

Keywords
Diagnostics, Debugging, Provenance

1. INTRODUCTION
Finding problems in complex distributed systems has always been
challenging, as the substantial literature on network debugging and
root-cause analysis tools [5, 9, 12, 13, 18] can attest. The advent
of software-defined networking (SDN) has added a new dimension
to the problem: forwarding can now be controlled by programs,
and, like all other programs, these programs can have bugs. Find-
ing such bugs can be difficult because, in a complex network of
hosts, routers, switches, and middleboxes, they can manifest in
subtle ways that have no obvious connection with the root cause.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, Illinois, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626335.

It would be useful to have a “network debugger” that can assist
the network operator with this task, but existing techniques tend to
be protocol-specific and cannot necessarily be applied to arbitrary
distributed applications, or SDNs with arbitrary control programs.
Hence, as others [8,9] have observed, a more powerful debugger is
needed.

Existing solutions, such as NetSight [9] or SNP [35], approach
this problem by offering a kind of “backtrace”, analogous to a stack
trace in a conventional debugger, that links an observed effect of
a bug to its root causes. For instance, suppose the administrator
notices that a server is receiving requests that should be handled
by another server. The administrator can then trace the requests
to the last-hop switch, where she might find a faulty flow entry;
she can trace the faulty entry to a statement in the SDN controller
program that was triggered by a certain condition; she can trace the
condition to a packet from another switch; and she can continue to
recursively explain each effect by its direct causes until she reaches
a set of root causes. The result is the desired “backtrace”: a causal
chain of events that explains how the observed event came to pass.
We refer to this as the provenance [1] of the event.

Provenance can be a useful tool for debugging complex inter-
actions, but there are cases that it cannot handle. For instance,
suppose that the administrator observes that a certain server is no
longer receiving any requests of a particular type. The key differ-
ence to the earlier scenario is that the observed symptom is not a
positive event, such as the arrival of a packet, that could serve as a
“lead” and point the administrator towards the root cause. Rather,
the observed symptom is a negative event: the absence of packets
of a certain type. Negative events can be difficult to debug: prove-
nance does not help, and even a manual investigation can be diffi-
cult if the administrator does not know where the missing packets
would normally come from, or how they would be generated.

Nevertheless, it is possible to construct a similar “backtrace” for
negative events, using the concept of negative provenance [10, 32].
The key insight is to use counterfactual reasoning, that is, to exam-
ine all possible causes that could have produced the missing effect.
For instance, it might be the case that the missing packets could
only have reached the server through one of two upstream switches,
and that one of them is missing a flow entry that would match the
packets. Based on the controller program, we might then establish
that the missing entry could only have been installed if a certain
condition had been satisfied, and so on, until we either reach a pos-
itive event (such as the installation of a conflicting flow entry with
higher priority) that can be traced with normal provenance, or a
negative root cause (such as a missing entry in a configuration file).

Negative provenance could be a useful debugging tool for net-
works and distributed systems in general, but so far it has not been
explored very much. A small number of papers from the database
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Figure 1: Negative event scenario: Web requests from the In-
ternet are no longer reaching the web server because a faulty
program on the controller has installed an overly general flow
entry in the switch in the middle (S2).

community [3, 10, 19] have used negative provenance to explain
why a given database query did not return a certain tuple, but,
other than our earlier workshop paper that made a case for negative
provenance [32], we are not aware of any previous applications in
the networking domain.

In Section 2, we provide an overview of positive and negative
provenance. We then make the following contributions:

• A formal model of positive and negative provenance in dis-
tributed systems, as well as a concrete algorithm for tracking
such provenance (Section 3);

• A set of heuristics for simplifying the resulting provenance
graphs and for making them more readable to a human in-
vestigator (Section 4);

• The design of Y! (pronounced “Why not?”), a system for
tracking positive and negative provenance and for answering
queries about it (Section 5);

• Two case studies of Y!, in the context of software-defined
networks and BGP (Section 6); and

• An experimental evaluation of an Y! prototype, based on
Mininet, Trema [29] and RapidNet [24] (Section 7).

We discuss related work in Section 8 and conclude the paper in
Section 9.

2. OVERVIEW
In this section, we take a closer look at negative provenance, and
we discuss some of the key challenges.

2.1 Scenario: Network debugging
Figure 1 shows a simple example scenario that illustrates the prob-
lem we are focusing on. A network administrator manages a small
network that includes a DNS server, a web server, and a connection
to the Internet. At some point, the administrator notices that the
web server is no longer receiving any requests from the Internet.
The administrator strongly suspects that the network is somehow
misconfigured, but the only observable symptom is a negative event
(the absence of web requests at the server), so there is no obvious
starting point for an investigation.

Today, the only way to resolve such a situation is to manually
inspect the network until some positive symptom (such as requests
arriving at the wrong server) is found. In the very simple scenario
in Figure 1, this is not too difficult, but in a data center or large
corporate network, it can be a considerable challenge. It seems
preferable for the administrator to directly ask the network for an
explanation of the negative event, similar to a “backtrace” in a con-
ventional debugger. This is the capability we seek to provide.

EXIST(t=[2s,now], S2, 
flowTable(@S2, PrioHigh, DNS, Forward, Port5)) 

RECEIVE(t=2s, S2←Controller,  
flowTable(@S2, PrioHigh, DNS, Forward, Port5)) 

SEND(t=1.8s, Controller→S2,  
flowTable(@Controller, PrioHigh, DNS, Forward, Port5)) 

DERIVE(t=1.8s, Controller,  
flowTable(@Controller, PrioHigh, DNS, Forward, Port5)) 

APPEAR(t=5s, DNS Server, 
packet(@DNS Server, DNS)) 

V1 

RECEIVE(t=5s, S2←S1, 
packet(@S2, DNS)) 

V2 

SEND(t=5s, S1→S2, 
packet(@S1, DNS)) 

V3 

V4 

V5 

V6 

V7 

RECEIVE (t=1.8s, Controller ←S2, 
packet(@Controller, DNS)) 

V8 
EXIST(t=[0s,now], Controller,  

missHandler(@Controller, DNS, PrioHigh, DNS, Forward, Port5)) 

V9 

EXIST(t=[0.5s,now], S2, 
link(@S2, DNS Server, Port5)) 

V10 

APPEAR(t=0.5s, S2, 
link(@S2, DNS Server, Port5)) 

V11 

... 

... 

... 

Figure 2: Positive provenance example, explaining how a DNS
packet made its way to the DNS server.

2.2 Positive provenance
For positive events, there is a well-understood way to generate such
a “backtrace”: whenever an event occurs or some new state is gen-
erated, the system keeps track of its causes, and when an explana-
tion is requested, the system recursively explains each event with
its direct causes, until it reaches a set of “base events” (such as
external inputs) that cannot be explained further. The result can
be represented as a DAG, in which each vertex represents an event
and each edge indicates a direct causal relationship. In the database
literature, this is called the provenance [1] of the event; to distin-
guish it from negative provenance, we will refer to it as positive
provenance.

Figure 2 shows an example that explains why a DNS request
appeared at the DNS server at time t = 5 (V1). The DNS server
had received the packet from switch S2, which in turn had received
it from S1, and ultimately from the Internet (V2–V3); the switch
was connected to the DNS server via port #5 (V10–V11) and had
a flow entry that directed DNS packets to that port (V4). The flow
entry had been installed at t = 2 (V5–V7) because the switch had
forwarded an earlier DNS packet to the controller (V8), which had
generated the flow entry based on its configuration (V9).

Positive provenance is an active research area, but some solu-
tions for distributed systems are already available, such as Ex-
SPAN [37] or SNP [35]. Provenance is often a useful debugging
tool, just like the “backtraces” that many debuggers are offering.

2.3 Case study: Broken flow entry
We now return to the scenario in Figure 1. One possible reason for
this situation is that the administrator has configured the controller
to produce a generic, low-priority flow entry for DNS traffic and a
specific, high-priority flow entry for HTTP traffic. If both entries
are installed, the system works as expected, but if the low-priority
entry is installed first, it matches HTTP packets as well; thus, these
packets are not forwarded to the controller and cannot trigger the
installation of the high-priority entry. This subtle race condition
might manifest only at runtime, e.g., when both entries expire si-
multaneously during an occasional lull in traffic; thus, it could be
quite difficult to find.

Positive provenance is not helpful here because, as long as re-
quests are still arriving at the HTTP server, their provenance con-
tains only the high-priority entry, and when the requests stop arriv-
ing, there is no longer anything to generate the provenance of !

2.4 How common are negative symptoms?
To get a sense of how common this situation is, we surveyed
diagnostics-related posts on three mailing lists. We chose lists that
cover a mix of different diagnostic situations, including NANOG-
user and Outages [23] (for faults and misconfigurations), and
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Mailing list Posts related Initial symptoms
to diagnostics Positive Negative

NANOG-user 29/144 14 (48%) 15 (52%)
floodlight-dev 19/154 5 (26%) 14 (74%)
Outages [23] 46/60 8 (17%) 38 (83%)

Table 1: Survey of networking problems and their symptoms,
as discussed on three mailing lists over a two-month period,
starting on November 22, 2013.

floodlight-dev (for software bugs). To get a good sample size, we
examined a two-month period for each list, starting on November
22, 2013. In each post, we looked for the description of the ini-
tial symptoms and classified them as either positive (something bad
happened) or negative (something good failed to happen).

Table 1 shows our results. While the proportion of positive and
negative symptoms varies somewhat between lists, we find that
the negative symptoms are consistently in the majority – that is,
it seems more common for problems to initially manifest as the ab-
sence of something (e.g., a route, or a response to a probe packet)
than as the presence of something (e.g., high latencies on a path, or
a DDoS attack).

Many of the problems we surveyed were eventually diagnosed,
but we observe that the process seems comparatively harder: there
were significantly more (and lengthier) email threads where nega-
tive symptoms resulted in inconclusive identification of root causes.
Moreover, troubleshooting negative symptoms often required ex-
ploratory “guesswork” by the mailing list participants. Since this
trial-and-error approach requires lots of time and effort, it seems
useful to develop better tool support for this class of problems.

2.5 Negative provenance
Our approach towards such a tool is to extend provenance to nega-
tive events. Although these cannot be explained directly with pos-
itive provenance, there is a way to construct a similar “backtrace”
for negative events: instead of explaining how an actual event did
occur, as with positive provenance, we can simply find all the ways
in which a missing event could have occurred, and then show, as a
“root cause”, the reason why each of them did not come to pass.

Intuitively, we can use a kind of counterfactual reasoning to re-
cursively generate the explanations, not unlike positive provenance:
for a web request to arrive at the web server, a request would have
had to appear at the rightmost switch (S3), which did not happen.
Such a request could only have come from the switch in the mid-
dle (S2), and, eventually, from the switch on the left (S1). But S2
would only have sent the request if there had been 1) an actual re-
quest, 2) a matching flow entry with a forward action to S3, and 3)
no matching higher-priority flow entry. Conditions 1) and 2) were
satisfied, but condition 3) was not (because of the DNS server’s
flow entry). We can then ask where the higher-priority flow entry
came from, which can be answered with positive provenance. We
refer to such a counterfactual explanation as negative provenance.

2.6 Challenges
To explain the key challenges, we consider two strawman solutions.
First, it may seem that there is a simpler way to investigate the miss-
ing HTTP requests from Section 2.3: why not simply compare the
system state before and after the requests stopped arriving, and re-
turn any differences as the likely cause? This approach may indeed
work in some cases, but in general, there are way too many changes
happening in a typical system: even if we could precisely pinpoint
the time where the problem appeared, chances are that most of the
state changes at that time would be unrelated. Moreover, if the
problem was caused by a chain of events, this method would re-

turn only the last step in the chain. To identify the relevant events
reliably, and to trace them back to the root cause, we must have a
way to track causality, which is, in essence, what provenance rep-
resents.

Second, it may seem that, in order to track negative provenance,
we can simply take an existing provenance system, like ExSPAN
or SNP, and associate each positive provenance vertex with a nega-
tive “twin”. However, the apparent similarity between positive and
negative provenance does not go very deep. While positive prove-
nance considers only one specific chain of events that led to an ob-
served event, negative provenance must consider all possible chains
of events that could have caused the observed event. This disparity
between existential and universal quantifiers has profound conse-
quences: for instance, negative provenance graphs are often infinite
and cannot be materialized, and responses to negative queries tend
to be a lot more complex, and thus need more sophisticated post-
processing before they can be shown to a human user. These are
some of the challenges we address in Y!.

3. BASIC NEGATIVE PROVENANCE
In this section, we show how to derive a simple provenance graph
for both positive and negative events. For ease of exposition, we
will assume that the distributed system is written in Network Data-
log (NDlog) [16], since this representation makes provenance par-
ticularly easy to see. However, our approach is not specific to ND-
log, or even to declarative languages; indeed, our case studies in
Section 6.1 apply it to Pyretic [21], an existing imperative program-
ming language for SDNs, as well as to BGP debugging.

3.1 Background: Network Datalog
We begin by briefly reviewing the features of NDlog that are rel-
evant here. In NDlog, the state of a node (switch, controller, or
server) is modeled as a set of tables. Each table contains a number
of tuples. For instance, an SDN switch might contain a table called
flowTable, and each tuple in this table might represent a flow
entry, or a SDN controller might have a table called packetIn
that contains the packets it has received from the switches. Tuples
can be manually inserted, or they can be programmatically derived
from other tuples; the former are called base tuples, and the latter
are referred to as derived tuples.

NDlog programs consist of rules that describe how tu-
ples should be derived from each other. For instance, the
rule A(@X,P):-B(@X,Q),Q=2*P says that a tuple A(@X,P)
should be derived on node X whenever there is also a B(@X,Q)
tuple on that node, and Q=2*P. Here, P and Q are variables that
must be instantiated with values when the rule is applied; for in-
stance, a B(@X,10) tuple would create an A(@X,5) tuple. The
@ operator specifies the node on which the tuple resides. (NDlog
supports other operators – e.g., arithmetic or aggregation operators
– as well as user-defined functions, but we do not consider these
here.) A key advantage of a declarative formulation is that causal-
ity is very easy to see: if a tuple A(@X,5) was derived using the
rule above, then A(@X,5) exists simply because B(@X,10) ex-
ists, and because 10=2*5.

Rules may include tuples from different nodes; for instance,
C(@X,P):- C(@Y,P) says that tuples in the C-table on node
Y should be sent to node X and inserted into the C-table there.
We write +τ to denote a message saying that the recipient should
insert a tuple τ , and −τ to denote a message saying that the recip-
ient should remove τ . To avoid redundancy, we write ±τ when a
statement applies to both types of messages. When a tuple can be
derived in more than one way, +τ is only sent when the first deriva-
tion appears, and −τ only when the last derivation disappears.
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3.2 Goals
Before we define our provenance graph, we first state, somewhat
informally, the properties we would like to achieve. One way to
describe what “actually happened” in an execution of the system is
by means of a trace: a sequence of message transmissions and ar-
rivals, as well as base tuple insertions and deletions. (Other events,
such as derivations, follow deterministically from these.) Follow-
ing [36], we can then think of the provenanceG(e, E) of an event e
in a trace E as describing a series of trace properties, which, in
combination, cause e to appear – or, in the case of a negative event,
prevent e from appearing. We demand the following properties:

• Soundness: G(e, E) must be consistent with E ;

• Completeness: There must not be another execution E ′
that is also consistent with G(e, E) but does not contain the
event e; and

• Minimality: There must not be a subset of G(e, E) that is
also sound and complete.

Informally, soundness means thatG(e, E) must describe events that
actually happened in E – we cannot explain the absence of a tu-
ple with the presence of a message that was never actually sent.
Completeness means that G(e, E) must be sufficient to explain e,
and minimality means that all events in G(e, E) must actually be
relevant (though there could be more than one provenance that is
minimal in this sense). We will state these properties formally in
Section 3.8.

3.3 The provenance graph
Provenance can be represented as a DAG in which the vertices are
events and the edges indicate direct causal relationships. Thanks to
NDlog’s simplicity, it is possible to define a very simple provenance
graph for it, with only ten types of event vertices (based on [35]):

• EXIST([t1, t2], N, τ): Tuple τ existed on nodeN from time
t1 to t2;

• INSERT(t,N, τ), DELETE(t,N, τ): Base tuple τ was in-
serted (deleted) on node N at time t;

• DERIVE(t,N, τ), UNDERIVE(t,N, τ): Derived tuple τ
acquired (lost) support on N at time t;

• APPEAR(t,N, τ), DISAPPEAR(t,N, τ): Tuple τ ap-
peared or disappeared on node N at time t;

• SEND(t,N→N ′,±τ), RECEIVE(t,N←N ′,±τ): ±τ
was sent (received) by node N to/from N ′ at t; and

• DELAY(t,N →N ′,±τ, d): ±τ , sent from node N to N ′

at time t, took time d to arrive.

The edges between the vertices correspond to their intuitive causal
connections: tuples can appear on a node because they a) were in-
serted as base tuples, b) were derived from other tuples, or c) were
received in a message from another node (for cross-node rules).
Messages are received because they were sent, and tuples exist be-
cause they appeared. Note that vertices are annotated with the node
on which they occur, as well as with the relevant time; the latter
will be important for negative provenance because we will often
need to reason about past events.

This model can be extended to support negative provenance by
associating each vertex with a negative “twin” [32]:

• NEXIST([t1, t2], N, τ): Tuple τ never existed on node N
in time interval [t1, t2];

• NINSERT([t1, t2], N, τ), NDELETE([t1, t2], N, τ): Tu-
ple τ was never inserted (removed) on N in [t1, t2];

• NDERIVE([t1, t2], N, τ), NUNDERIVE([t1, t2], N, τ):
τ was never derived (underived) on N in [t1, t2];

• NAPPEAR([t1,t2],N, τ), NDISAPPEAR([t1,t2],N, τ):
Tuple τ never (dis)appeared on N in [t1, t2];

• NSEND([t1, t2], N, τ), NRECEIVE([t1, t2], N, τ): τ was
never sent (received) by node N in [t1, t2]; and

• NARRIVE([t1, t2], N1 → N2, t3, τ): τ was sent from N1

to N2 at t3 but did not arrive within [t1, t2].

Again, the causal connections are the intuitive ones: tuples never
existed because they never appeared, they never appeared because
they were never inserted, derived, or received, etc. However, note
that, unlike their positive counterparts, all negative vertices are an-
notated with time intervals: unlike positive provenance, which can
refer to specific events at specific times, negative provenance must
explain the absence of events in certain intervals.

3.4 Handling multiple explanations
Sometimes the absence of an event can have more than one cause.
For instance, suppose there is a rule A:-B,C,D and, at some time
t, none of the tuples B, C, or D exist. How should we explain the ab-
sence of A in this case? One possible approach would be to include
the absence of all three tuples; this would be useful, for instance,
if our goal was recovery – i.e., if we wanted to find a way make A
appear. However, for diagnostic purposes, the resulting provenance
is somewhat verbose, since the absence of each individual tuple is
already sufficient to explain the absence of A. For this reason, we
opt to include only a sufficient reason in our provenance trees.

In cases where there is more than one sufficient reason, the ques-
tion arises which one we should choose. Since we aim for compact
provenance trees, we try to find the reason that can be explained
with the fewest vertices. For instance, if B and D are derived tuples
whose absence is due to a complex sequence of events on several
other nodes, whereas C is a base tuple that simply was never in-
serted, we would choose the explanation that is based on C, which
only requires a single NINSERT vertex. In practice, it is not al-
ways easy to see which explanation is simplest (at least not without
fully expanding the corresponding subtree), but we can use heuris-
tics to find a good approximation, e.g., based on a look-ahead of a
few levels down the tree.

3.5 Graph construction
Provenance systems like ExSPAN [37] rely on a materialized
provenance graph: while the distributed system is executing, they
build some representation of the vertices and edges in the graph,
and they respond to queries by projecting out the relevant sub-
tree. This approach does not work for negative provenance because
the provenance graph is typically infinite: for instance, it contains
NEXIST vertices for every tuple that could potentially exist, and,
for each vertex with that contains a time interval I , it also contains
vertices with intervals I ′ ⊆ I .

For this reason, we adopt a top-down procedure for construct-
ing the provenance of a given (positive or negative) event “on de-
mand”, without materializing the entire graph. We define a func-
tion QUERY(v) that, when called on a vertex v in the provenance
graph, returns the immediate children of v. Thus, the provenance
of a negative event e can be found by constructing a vertex ve that
describes e (e.g., a NEXIST vertex for an absent tuple) and then
calling QUERY recursively on ve until leaf vertices are reached. The
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function QUERY(EXIST([t1, t2],N,τ ))
S← ∅
for each (+τ ,N,t,r,c) ∈ Log: t1≤ t≤ t2

S← S ∪ { APPEAR(t,N,τ ,r,c) }
for each (−τ ,N,t,r,c) ∈ Log: t1≤ t≤ t2

S← S ∪ { DISAPPEAR(t,N,τ ,r,c) }
RETURN S

function QUERY(APPEAR(t,N,τ ,r,c))
if BaseTuple(τ ) then

RETURN { INSERT(t,N,τ ) }
else if LocalTuple(N,τ ) then

RETURN { DERIVE(t,N,τ ,r) }
else RETURN{RECEIVE(t,N←r.N ,τ )}

function QUERY(INSERT(t,N,τ ))
RETURN ∅

function QUERY(DERIVE(t,N,τ ,τ :-τ1,τ2...))
S← ∅
for each τi: if (+τi,N,t,r,c) ∈ Log:

S← S ∪ { APPEAR(t,N,τi,c) }
else

tx← max t′<t: (+τ ,N ,t′,r,1) ∈ Log
S← S ∪ { EXIST([tx,t],N,τi,c) }

RETURN S

function QUERY(RECEIVE(t,N1←N2,+τ ))
ts← max t′<t: (+τ ,N2,t′,r,1) ∈ Log
RETURN { SEND(ts,N1 → N2,+τ ),

DELAY(ts,N2→N1,+τ ,t− ts) }
function QUERY(SEND(t,N → N ′,+τ ))

FIND (+τ ,N,t,r,c) ∈ Log
RETURN { APPEAR(t,N ,τ ,r) }

function QUERY(NEXIST([t1,t2],N,τ ))
if ∃t < t1 : (-τ ,N,t,r,1) ∈ Log then

tx← max t<t1: (-τ ,N,t,r,1) ∈ Log
RETURN { DISAPPEAR(tx,N,τ ),

NAPPEAR((tx,t2],N,τ ) }
else RETURN { NAPPEAR([0,t2],N,τ ) }

function QUERY(NDERIVE([t1,t2],N,τ ,r))
S← ∅
for (τi, Ii) ∈ PARTITION([t1,t2],N,τ ,r)

S← S ∪ { NEXIST(Ii,N,τi) }
RETURN S

function QUERY(NSEND([t1,t2],N,+τ ))
if ∃t1<t<t2 : (-τ ,N,t,r,1) ∈ Log then

RETURN { EXIST([t1,t],N,τ ),
NAPPEAR((t,t2],N,τ ) }

else RETURN { NAPPEAR([t1,t2],N,τ ) }

function QUERY(NAPPEAR([t1,t2],N,τ ))
if BaseTuple(τ ) then

RETURN { NINSERT([t1,t2],N,τ ) }
else if LocalTuple(N,τ ) then

RETURN
⋃
r∈Rules(N):Head(r)=τ

{ NDERIVE([t1,t2],N,τ ,r) }
else RETURN {NRECEIVE([t1,t2],N,+τ )}

function QUERY(NRECEIVE([t1,t2],N,+τ ))
S← ∅, t0← t1 −∆max
for each N ′ ∈ SENDERS(τ ,N):

X←{t0≤ t≤ t2|(+τ ,N ′,t,r,1)∈Log}
tx← t0
for (i=0; i< |X|; i++)

S←S∪{NSEND((tx,Xi),N ′,+τ ),
NARRIVE((t1,t2),N ′→N ,Xi,+τ )}
tx←Xi

S← S ∪ { NSEND([tx,t2],N ′,+τ ) }
RETURN S

function Q(NARRIVE([t1,t2],N1→N2,t0,+τ ))
FIND (+τ ,N2,t3,(N1,t0),1) ∈ Log
RETURN { SEND(t0,N1→N2,+τ ),

DELAY(t0,N1→N2,+τ ,t3 − t0) }

Figure 3: Graph construction algorithm. Some rules have been omitted; for instance, the handling of +τ and −τ messages is
analogous, and the rules for INSERT/DELETE, APPEAR/DISAPPEAR, and DERIVE/UNDERIVE are symmetric.

interval in ve can simply be some interval in which ewas observed;
it does not need to cover the entire duration of e, and it does not
need to contain the root cause(s).

QUERY needs access to a log of the system’s execution to date.
We assume that the log is a sequence of tuples (±τ,N, t, r, c),
which indicate that τ was derived (+τ ) or underived (−τ ) on node
N at time t via rule r. Since some tuples can be derived in more
than one way, we include a derivation counter c, which is 1 when a
tuple first appears, and is increased by one for each further deriva-
tion. For tuples that nodeN received from another nodeN ′, we set
r = N ′, and for base tuples, we set r = ⊥ and c = 1.

Figure 3 shows part of the algorithm we use to construct pos-
itive and negative provenance. There are several points worth
noting. First, the algorithm uses functions BaseTuple(τ ) and
LocalTuple(N,τ ) to decide whether a missing tuple τ is a base tuple
that was not inserted, a local tuple on node N that was not derived,
or a remote tuple that was not received. The necessary information
is a byproduct of the compilation of any NDlog program and is thus
easily obtained. Second, to account for propagation delays, the al-
gorithm uses a constant ∆max that denotes the maximum time a
message can spend in the network and still be accepted by the re-
cipient; this is used to narrow down the time interval during which
a missing message could have been sent. Third, the algorithm can
produce the same vertex more than once, or semantically identical
vertices with adjacent or overlapping intervals; in these cases, it is
necessary to coalesce the vertices using the union of their intervals
in order to preserve minimality. Finally, the algorithm uses two
functions PARTITION and SENDERS, which we explain next.

3.6 Explaining nonderivation
The PARTITION function encodes a heuristic for choosing among
several possible explanations of a missing derivation. When ex-
plaining why a rule with multiple preconditions did not derive a cer-
tain tuple, we must consider a potentially complex parameter space.
For instance, if A(@X,p):-B(@X,p,q,r),C(@X,p,q) did
not derive A(@X,10), we can explain this with the absence of
B(@X,10,q,r), C(@X,10,q,r), or a combination of both –
e.g., by dividing the possible q and r values between the two pre-

conditions. Different choices can result in explanations of dramati-
cally different sizes once the preconditions themselves have been
explained; hence, we would prefer a partition of the parameter
space (here,Q×R) that results in an explanation that is as small as
possible. In general, finding the optimal partition is at least as hard
as the SETCOVER problem, which is NP-hard; hence the need for
a heuristic. In our experiments, we use a simple greedy heuristic
that always picks the largest available subspace; if there are multi-
ple subspaces of the same size, it explores both for a few steps and
then picks the one with the simplest subgraph.

3.7 Missing messages
The SENDERS(±τ ,N) function is used to narrow down the set of
nodes that could have sent a specific missing message ±τ to node
N . One valid choice is to simply return the set of all nodes in the
system that have a rule for deriving τ ; however, the resulting prove-
nance can be complex, since it must explain why each of these
nodes did not send ±τ . Hence, it is useful to enhance SENDERS
with other information that may be available. For instance, in a
routing protocol, communication is restricted by the network topol-
ogy, and messages can come only from direct neighbors.

In some cases, further nodes can be ruled out based on the spe-
cific message that is missing: for instance, a BGP message whose
AS path starts with 7 should come from a router in AS 7. We do not
pursue this approach here, but we hypothesize that static analysis
of the NDlog program could be used for inferences of this type.

3.8 Formal properties
We now briefly present the key definitions from our formal
model [33]. An event d@n = (m, r, t, c,m′) represents that rule
r was triggered by message m and generated a set of (local or re-
mote) messages m′ at time t, given the precondition c (a set of
tuples that existed on node n at time t). Specifically, we write
d@nrecv = (m@nsend,−, t, 1,m@nrecv) to denote a message m
(from nsend is delivered at nrecv at t). A trace E of a system
execution is an ordered sequence of events from an initial state

S0, S0
d1@n1−−−−→ S1

d2@n2−−−−→ ...
dx@nx−−−−→ Sx. We say a trace

E is valid, if (a) for all τk ∈ ci, τk ∈ Si−1, and (b) for all
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di@ni = (mi, ri, ti, ci,m
′
i), either mi is a base message from

an external source, or there exists dj@nj = (mj , rj , tj , cj ,m
′
j)

that precedes di@ni and mi ∈ m′j . We say that E ′ is a subtrace of
E (written as E ′ ⊆ E) if E ′ consists of a subset of the events in E in
the same order. In particular, we write E|n to denote the subtrace
that consists of all the events on node n in E . We say that E ′ and E
are equivalent (written as E ′ ∼ E) if, for all n, E ′|n = E|n.

To properly define minimality, we use the concept of a reduc-
tion: given negative provenance G(e, E), if there exist vertices
v1, v2 ∈ V (G), where the time interval of v1 and v2 (t(v1) and
t(v2) respectively) are adjacent, and v1 and v2 have the same de-
pendencies, then G can be reduced to G′ by combining v1 and v2
into v ∈ V (G′), where t(v) = t(v1) ∪ t(v2). Given two nega-
tive provenanceG(e, E) andG′(e, E), we sayG′ is simpler thanG
(written as G′ < G), if any of the following three hold: (1) G′ is
a subgraph of G; (2) G′ is reduced from G (by combining v1 and
v2); or (3) there exists G′′, such that G′ < G′′ and G′′ < G.

Using these definitions, we can formally state the three proper-
ties from Section 3.2 as follows:

Property (Soundness): Negative provenance G(e, E) is sound iff
(a) it is possible to extract a valid subtrace Esub ⊆ E ′, such that
E ′ ∼ E and (b) for all vertices in G(e, E), their corresponding
predicates hold in E .

Property (Completeness): Negative provenance G(e, E) is com-
plete iff there exists no trace E ′ such that a) E ′ assumes the same
external inputs as G(e, E), and b) e exists in E ′.

Property (Minimality): Negative provenance G(e, E) is minimal,
if no G′ < G is sound and complete.

We have proven that our provenance graph has all three properties.
The proofs are available in [33].

4. ENHANCING READABILITY
So far, we have explained how to generate a “raw” provenance
graph. This representation is correct and complete, but it is also
extremely detailed: for instance, simple and common events, such
as message exchanges between nodes, are represented with many
different vertices. This “clutter” can make the provenance difficult
to read. Next, we describe a post-processing technique that can
often simplify the provenance considerably, by pruning unhelpful
branches, and by summarizing common patterns into higher-level
vertices.

4.1 Pruning unhelpful branches
Logical inconsistencies: Some explanations contain logical incon-
sistencies: for instance, the absence of a tuple τ1 with parameter
space S1 might be explained by the absence of a tuple τ2 with pa-
rameter space S2 ⊆ S1. If we can recognize such inconsistencies
early, there is no need to continue generating the provenance until
a set of base tuples is reached – the precondition is clearly unsat-
isfiable. Thus, we can safely truncate the corresponding branch of
the provenance tree.
Failed assertions: Some branches explain the absence of events
that the programmer has already ruled out. For instance, if a branch
contains a vertex NEXIST([t1, t2],N,P(5)) and it is known that P can
only contain values between 0 and 4, the subtree below this vertex
is redundant and can be removed. We use programmer-specified as-
sertions (where available) to recognize situations of this type. The
assertions do not have to be provenance-specific – they can be the
ones that a good programmer would write anyway.
Branch coalescing: A naïve execution of the algorithm in Fig-
ure 3 would result in a provenance tree, but this tree would contain

many duplicate vertices because many events have more than one
effect. To avoid redundancy, we combine redundant vertices when-
ever possible, which turns the provenance tree into a DAG. If two
vertices have overlapping time intervals but are otherwise identical,
we use the union of the two intervals. (Note that a smart implemen-
tation of PARTITION could take the multiplicity of shared subtrees
into account.)
Application-specific invariants: Some explanations may be irre-
levant for the particular SDN that is being debugged. For instance,
certain data – such as constants, topology information, or state from
a configuration file – changes rarely or never, so the absence of
changes, or the presence of a specific value, do not usually need to
be explained. One simple way to identify constant tables is by the
absence of derivation rules in which the table appears at the head.
Optionally, the programmer can use a special keyword to designate
additional tables as constant.

4.2 Different levels of detail
Another way to make negative provenance graphs more useful for
the human investigator is to display the provenance at different lev-
els of detail. For instance, if a message fails to appear at node
N1 but could only have originated at node N2 several hops away,
the basic provenance tree would show, for each node on the path
from N1 to N2, that the message was not sent from there, be-
cause it failed to appear there, because it was not received from
the next-hop node, etc. We can improve readability by summariz-
ing these (thematically related) vertices into a single super-vertex.
When the graph is first shown to the human investigator, we include
as many super-vertices as possible, but the human investigator has
the option to expand each super-vertex into the corresponding fine-
grained vertices if necessary.1

We have identified three situations where this summarization
can be applied. The first is a chain of transient events that orig-
inates at one node and terminates at another, as in the above ex-
ample; we replace such chains by a single super-vertex. The
second is the (common) sequence NEXIST([t1, t2], N, τ) ←
NAPPEAR([t1, t2], N, τ) ← NDERIVE([t1, t2], N, τ), which
basically says that a tuple was never derived; we replace
this with a single ABSENCE([t1, t2], N, τ) super-vertex; its
positive counterpart EXISTENCE([t1, t2], N, τ) is used to re-
place a positive sequence. The third situation is a deriva-
tion that depends on a small set of triggers – e.g., flow en-
tries can only be generated when a packet p is forwarded
to the controller C. In this case, the basic provenance
will contain a long series of NAPPEAR([ti, ti+1], C, p) ver-
tices that explain the common case where the trigger packet
p does not exist; we replace these with a single super-vertex
ONLY-EXIST({t1, t2, . . .} in [tstart, tend], C, p) that initially fo-
cuses attention on the rare cases where the trigger does exist.

5. THE Y! SYSTEM
In this section, we describe the design of Y! (for “Why not?”), a
system for capturing, storing, and querying both positive and neg-
ative provenance.

5.1 Overview
Like any debugger, Y! is meant to be used in conjunction with
some other application that the user wishes to diagnose; we refer
to this as the target application. Y! consists of four main compo-
nents: The provenance extractor (Section 5.2) monitors the target

1More generally, visualization and interactive exploration are use-
ful strategies for working with large provenance graphs [17].
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application and extracts relevant events, such as state changes or
message transmissions. These events are passed to the provenance
storage (Section 5.3), which appends them to an event log and also
maintains a pair of indices to enable efficient lookups of negative
events. When the user issues a provenance query, the query pro-
cessor uses the stored information to construct the relevant subtree
of the provenance graph, simplifies the subtree using the heuristics
from Section 4, and then sends the result to the frontend, so that the
user can view, and interactively explore, the provenance. We now
explain some key components in more detail.

5.2 Provenance extractor
Recall from Section 3 that the input to the graph construction algo-
rithm is a sequence of entries (±τ,N, t, r, c), which indicate that
the c.th derivation of tuple τ appeared or disappeared on node N
at time t, and that the reason was r, i.e., a derivation rule or an
incoming message. The purpose of the provenance extractor is to
capture this information from the target application. This function-
ality is needed for all provenance systems (not just for negative
provenance), and it should be possible to use any of the several
approaches that have been described in the literature. For instance,
the target application can be annotated with calls to a special library
whenever a relevant event occurs [22], the runtime that executes the
target application (e.g., an NDlog engine or a virtual machine) can
report the relevant events [37], or a special proxy can reconstruct
the events from the sequence of messages that each node sends and
receives [35]. Note that the latter two approaches can be applied
even to legacy software and unmodified binaries.

5.3 Provenance storage
The provenance storage records the extracted events in an append-
only log and makes this log available to the query processor. A
key challenge is efficiency: with positive provenance, it is pos-
sible to annotate each event with pointers to the events that di-
rectly caused it, and, since there is a fairly direct correspondence
between events and positive vertices in the provenance graph, these
pointers can then be used to quickly navigate the graph. With neg-
ative provenance, however, it is frequently necessary to evaluate
range queries over the time domain (“Did tuple τ ever exist dur-
ing interval [τ1, τ2]”). Moreover, our PARTITION heuristic requires
range queries over other domains, e.g., particular subspaces of a
given table (“Are there any X(a,b,c) tuples on this node with
5 ≤ b ≤ 20?”) to decide which of several possible explanations
might be the simplest. If Y! evaluated such range queries by scan-
ning the relevant part of the log, performance would suffer greatly.

Instead, Y! uses R-trees [7] to efficiently access the log. R-trees
are tree data structures for indexing multi-dimensional data; briefly,
the key idea is to group nearby objects and to represent each group
by its minimum bounding rectangle at the next-higher level of the
tree. Their key advantage in our setting is that they can efficiently
support multidimensional range queries.

On each node, Y! maintains two different R-trees for each table
on that node. The first, the current tree, contains the tuples that cur-
rently exist in the table; when tuples appear or disappear, they are
also added or removed from the current tree. The second, the his-
torical tree, contains the tuples that have existed in the past. State
tuples are added to the historical tree when they are removed from
the current tree; event tuples, which appear only for an instant, are
added directly to the historical tree.

The reason for having two separate trees is efficiency. It is
known that the performance of R-trees degrades when elements are
frequently inserted and removed because the bounding rectangles
will no longer be optimal and will increasingly overlap. By sepa-

rating the historical tuples (where deletions can no longer happen)
from the current tuples, we can obtain a more compact tree for the
former and confine fragmentation to the latter, whose tree is much
smaller. As an additional benefit, since tuples are appended to the
historical tree in timestamp order, splits in that tree will typically
occur along the time dimension; this creates a kind of “time index”
that works very well for our queries.

5.4 Pruning the historical tree
Since the historical tree is append-only, it would eventually con-
sume all available storage. To avoid this, Y! can reclaim storage
by deleting the oldest tuples from the tree. For instance, Y! can
maintain a cut-off time Tcut; whenever the tree exceeds a certain
pre-defined size limit, Y! can slowly advance the cut-off time and
keep removing any tuples that existed before that time until enough
space has been freed. To enable the user to distinguish between
tuples that were absent at runtime and tuples that have been deleted
from the tree, the graph construction algorithm can, whenever it ac-
cesses information beyond Tcut, annotate the corresponding vertex
as potentially incomplete.

5.5 Limitations
Like other provenance systems, Y!’s explanations are limited by
the information that is available in the provenance graph. For in-
stance, Y! could trace a misconfiguration to the relevant setting,
but not to the person who changed the setting (unless that informa-
tion were added to the provenance graph). Y! also has no notion
of a program’s intended semantics: for instance, if a program has a
concurrency bug that causes a negative event, a query for that event
will yield a detailed explanation of how the given program pro-
duced that event. Only the operator can determine that the program
was supposed to do something different.

6. CASE STUDIES
In this section, we describe how we have applied Y! to two applica-
tion domains: software-defined networks (SDN) and BGP routing.
We chose these domains partly because they yield interesting de-
bugging challenges, and partly because they do not already involve
declarative code (applying Y! to NDlog applications is straightfor-
ward!). We illustrate two different implementation strategies: auto-
matically extracting declarative rules from existing code (for SDN)
and writing a declarative description of an existing implementation
(for BGP). We report results from several specific debugging sce-
narios in Section 7.

6.1 SDN debugging
Our first case study is SDN debugging: as others [8] have pointed
out, better debugging support for SDNs is urgently needed. This
scenario is challenging for Y! because SDNs can have almost ar-
bitrary control programs, and because these programs are typically
written in non-declarative languages. Provenance can be extracted
directly from imperative programs [22], but switching to a different
programming model would require some adjustments to our prove-
nance graph. Hence, we use automated program transformation to
extract declarative rules from existing SDN programs.
Language: Pyretic We chose to focus on the Pyretic lan-
guage [21]. We begin by briefly reviewing some key features of
Pyretic that are relevant here. For details, please see [21].

Pyretic programs can define a mix of static policies, which are
immutable, and dynamic policies, which can change at runtime
based on system events. Figure 4 shows a summary of the rele-
vant syntax. A static policy consists of actions, e.g., for forward-
ing packets to a specific port (fwd(port)), and predicates that
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Primitive actions:
A ::= drop | passthrough | fwd(port) | flood |

push(h=v) | pop(h) | move(h1=h2)
Predicates:
P ::= all_packets | no_packets | match(h=v) |

ingress | egress | P & P | (P | P) | ∼P
Query policies:
Q ::= packets(limit,[h]) | counts(every,[h])
Policies:
C ::= A | Q | P[C] | (C|C) | C>>C | if_(P,C,C)

Figure 4: Static Pyretic syntax (from [21])

def learn(self):
def update(pkt):

self.P = if_(match(dstmac=pkt[’srcmac’]),
switch=pkt[’switch’]),
fwd(pkt[’inport’]), self.P)

q = packets(1,[’srcmac’,’switch’])
q.when(update)
self.P = flood | q

def main():
return dynamic(learn)()

Figure 5: Self-learning switch in Pyretic (from [21])

restrict these actions to certain types of packets, e.g., to packets
with certain header values (match(h=v)). Two policies a and
b can be combined through parallel composition (a|b), mean-
ing that a and b should be applied to separate copies of each
packet, and/or through sequential composition (a>>b), meaning
that a should be applied to incoming first, and b should then
be applied to any packet(s) that a may produce. For instance,
match(inport=1)>>(fwd(2)|fwd(3)) says that packets
that arrive on port 1 should be forwarded to both ports 2 and 3.

Dynamic policies are based on queries. A query describes pack-
ets or statistics of interest – for instance, packets for which no
policy has been defined yet. When a query returns new data, a
callback function is invoked that can modify the policy. Figure 5
(taken from [21]) shows a simple self-learning switch that queries
for packets with unknown MAC addresses; when a packet with a
new source MAC m is observed on port p, the policy is updated to
forward future packets with destination MAC m to port p.

Pyretic has other features besides these, and providing compre-
hensive support for them is beyond the scope of our case study.
Here, our goal is to support an interesting subset, to demonstrate
that our approach is feasible.
Translation to NDlog: Our Pyretic frontend transforms all static
policies into a “normal form” that consists of groups of parallel
“atoms” (with a sequence of matches and a single action) that are
arranged sequentially. This form easily translates to OpenFlow
wildcard entries: we can give the highest priority to the atoms in the
first group, and assign further priorities to the following groups in
descending order. To match Pyretic’s behavior, we do not install the
wildcard entries in the switch directly, but rather keep them as base
tuples in a special MacroRule table in the controller. A second
stage then matches incoming packets from the switches against this
table, and generates the corresponding microflow entries (without
wildcards), which are then sent to the switch.

For each query policy, the frontend creates a separate table and
a rule that sends incoming packets to this table if they match the
query. The trigger is evaluated using NDlog aggregations; for in-
stance, waiting for a certain number of packets is implemented with
NDlog’s count<> operator.

Our frontend supports one type of dynamic policies: policies
that append new logic in response to external events. These are es-
sentially translated to a single NDlog rule that is triggered by the
relevant external event (specified as a query policy) and computes

MacroRule(@C,sw,inPort0,dstMAC0,act,Prio0) :-
UpdateEvent(@C,sw,srcMac), HighestP(@C,Prio),
PktIn(@sw,inPort1,srcMAC,dstMAC1), inPort0=*,
dstMAC0=srcMAC, act=fwd(inPort1),
Prio0=Prio1+10

Figure 6: NDlog translation of the self-learning switch.

and installs the new entry. The self-learning switch from Figure 5
is an example of such a policy; Figure 6 shows the rule that it is
translated to. The rule directly corresponds to the if-then part
in Figure 5, which forwards packets to newly observed MAC ad-
dresses to the correct port, and otherwise (in the else branch) falls
back on the existing policy. Once translated in this way, it is easy
to see the provenance of a dynamic policy change: it is simply the
packet that triggered the change.

6.2 BGP debugging
Our second case study focuses on BGP. There is a rich literature on
BGP root-cause analysis, and a variety of complex real-world prob-
lems have been documented. Here, we focus exclusively on the
question whether Y! can be used to diagnose BGP problems with
negative symptoms, and we ignore many other interesting ques-
tions, e.g., about incentives and incremental deployment. (Briefly,
we believe that the required infrastructure and the privacy impli-
cations would be roughly comparable to those of [27]; in a par-
tial deployment, some queries would return partial answers that are
truncated at the first vertex from a network outside the deployment.)

To apply Y!, we follow the approach from [35] and write a sim-
ple declarative program that describes how the BGP control plane
makes routing decisions. Our implementation is based on an ND-
log encoding of a general path vector protocol provided by the au-
thors of [30]; since this code was generic and contained no spe-
cific policies, we extended it by adding simple routing policies that
respect the Gao-Rexford guidelines and import/export filters that
implements the valley-free constraint. This yielded essentially a
declarative specification of an ISP’s routing behavior. With this,
we could capture BGP message traces from unmodified routers, as
described in [35], and infer the provenance of the routing decisions
by replaying the messages to our program.

7. EVALUATION
In this section, we report results from our experimental evaluation
of Y! in the context of SDNs and BGP. Our experiments are de-
signed to answer two high-level questions: 1) is negative prove-
nance useful for debugging realistic problems? and 2) what is the
cost for maintaining and querying negative provenance?

We ran our experiments on a Dell OptiPlex 9020 workstation,
which has a 8-core 3.40 GHz Intel i7-4770 CPU with 16 GB of
RAM. The OS was Ubuntu 13.04, and the kernel version was 3.8.0.

7.1 Prototype implementation
For our experiments, we built a prototype of Y! based on the Rapid-
Net declarative networking engine [24]. We instrumented Rapid-
Net to capture provenance for the NDlog programs it executes,
and we added provenance storage based on the R-tree implementa-
tion from [14]. To experiment with SDNs, we set up networks in
Mininet [20]. Since NDlog is not among the supported controllers,
we wrote a simple proxy for Trema [29] that translates controller
messages to NDlog tuples and vice versa. To capture the prove-
nance of packets flowing through the network, we set up port mir-
roring on the virtual switches and used libpcap to record packet
traces on the mirrored ports. Since Y!’s provenance graphs only
use the packet headers, we capture only the first 96 bytes of header
and its timestamp.
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Q1 SDN1 NAPPEAR([t1,t2], packet(@D, PROTO=HTTP))
Q2 SDN2 NAPPEAR([t1,t2], packet(@D, PROTO=ICMP))
Q3 SDN3 NAPPEAR([t1,t2], packet(@D, PROTO=SQL))
Q4 SDN2 APPEAR (t3, packet(@D, PROTO=ICMP))
Q5 SDN3 APPEAR (t3, packet(@D, PROTO=SQL))
Q6 BGP1 NAPPEAR([t1,t2], bestroute(@AS2, TO=AS7))
Q7 BGP2 NAPPEAR([t1,t2], packet(@AS7, SRC=AS2))
Q8 BGP3 NAPPEAR([t1,t2], bestroute(@AS2, TO=AS7))
Q9 BGP4 NAPPEAR([t1,t2], bestroute(@AS2, TO=AS7))

Table 2: Queries we used in our experiments

To demonstrate that our approach does not substantially affect
throughput and latency, we also built a special Trema extension that
can capture the provenance directly, without involving RapidNet.
This extension was used for some of experiments in Section 7.5, as
noted there. Other than that, we focused more on functionality and
complexity than on optimizing performance; others have already
shown that provenance can be captured at scale [15], and the in-
formation Y! records is not substantially different from theirs – Y!
merely uses it in a different way.

7.2 Usability: SDN debugging
For our SDN experiments, we used Mininet to create the following
three representative SDN scenarios:

• SDN1: Broken flow entry. A server receives no requests
because an overly general flow entry redirects them to a dif-
ferent server (taken from Section 2.3).

• SDN2: MAC spoofing. A host, which is connected to the
self-learning switch from Figure 5, receives no responses to
its DNS lookups because another machine has spoofed its
MAC address.

• SDN3: Incorrect ACL. A firewall, intended to allow In-
ternet users to access a web server W and internal users a
database D, is misconfigured: Internet users can access only
D, and internal users only W .

Each scenario consists of four hosts and three switches. For all
three scenarios, we use Pyretic programs that have been translated
to NDlog rules (Section 6.1) and are executed on RapidNet; how-
ever, we verified that each problem also occurs with the original
Pyretic runtime. Note that, in all three scenarios, positive prove-
nance cannot be used to diagnose the problem because there is no
state whose provenance could be queried.

The first three queries we ask are the natural ones in these sce-
narios: in SDN1, we ask why the web server is not receiving any
requests (Q1); in SDN2, we ask why there are no responses to the
DNS lookups (Q2); and in SDN3, we ask why the internal users
cannot get responses from the database (Q3). To exercise Y!’s
support for positive provenance, we also ask two positive queries:
why a host in SDN2 did receive a certain ICMP packet (Q4), and
why the internal database is receiving connections from the Inter-
net (Q5). To get a sense of how useful negative provenance would
be for debugging realistic problems in SDNs, we ran diagnostic
queries in our three scenarios and examined the resulting prove-
nance. The first five rows in Table 2 show the queries we used. The
full responses are in the long version of this paper [33], but we do
not have the space to discuss all of them here; hence, we focus on
Q1 from scenario SDN1, which asks why HTTP requests are no
longer appearing at the web server.

Figure 7 shows the provenance generated by Y! for Q1. The
explanation reads as follows: HTTP requests did not arrive at the
HTTP server (V1) because there was no suitable flow entry at the

ABSENCE(t=[15s,185s], HTTP Server, 
packet(@HTTP Server, HTTP)) 

V1 

ABSENCE(t=[1s,185s], S2, 
flowTable(@S2, HTTP, Forward, Port1)) 

V2 

EXISTENCE(t={81s,82s,83s} in [15s,185s], S1, 
packet(@S1, HTTP))  

V3-‐a 

EXISTENCE(t=[81s,now], S1,  
flowTable(@S1, Ingress HTTP,Forward,Port1))  

V3-‐b 

EXISTENCE(t={81s,85s,86s}, S2, 
flowTable(@S2, HTTP, Forward, Port2)) 

V4 

EXISTENCE(t=[81s], Controller, 
packetIn(@Controller, HTTP))  

V5-‐a 

ABSENCE(t=[1,80s], S2,  
flowTable(@S2, HTTP,*,*))  

V5-‐b 

ABSENCE(t=[1,80s], S1,  
packet(@S1, HTTP))  

V5-‐c 

EXISTENCE(t=[81s], Controller, 
policy(@Controller, Inport=1,Forward,Port2)  

V6-‐a 

EXISTENCE(t=[63s], Controller, 
packetIn(@Controller, DNS))  

V6-‐b 

EXISTENCE(t=[62s], S1, 
packet(@S1, DNS))  

V6-‐c 

EXISTENCE(t=[61s,now], S1,  
flowTable(@S1, Ingress DNS,Forward,Port1))  

V6-‐d 

ABSENCE(t=[1,61s], S1, 
flowTable(@S1, DNS,*,*))  

V6-‐e 

ABSENCE(t=[1,61s], S1,  
packet(@S1, DNS))  

V6-‐f 

AND 

AND 

AND 
AND 

AND 

The server did not get any HTTP request 
since t=15s because the flow entry was 

missing at an upstream switch.  

The flow entry could only has been 
inserted in response to a HTTP packet. 
Such packets only arrived at t=81s, 82s, 83s.  

But that HTTP packet was handled by an 
existing flow entry at that switch, and was 

therefore not sent to the controller.  

The existing flow entry was derived from 
a policy which was triggered by a DNS  

packet at t=62s.  ... 

... 

Figure 7: Answer to Q1, as returned by Y!

AS 5 AS 6 AS 7AS 4AS 3

AS 1

AS 8 AS 9

AS 2

Figure 8: Topology for the BGP1 scenario.

switch (V2). Such an entry could only have been installed if a
HTTP packet had arrived (V3a+b) and caused a table miss, but
the latter did not happen because there already was an entry – the
low-priority entry (V4) – that was forwarding HTTP packets to a
different port (V5a-c), and that entry had been installed in response
to an earlier DNS packet (V6a-f). We believe that “backtraces” of
this kind would be useful in debugging complex problems.

7.3 Usability: BGP debugging
For our BGP experiments, we picked four real BGP failure scenar-
ios from our survey (Section 2.4):

• BGP1: Off-path change. In the topology from Figure 8,
AS 2 initially has a route to AS 7 via AS 1,3,4,5,6, but loses
that route when a new link is added between AS 8 and AS 9
(neither of which is on the path). This is a variant of a sce-
nario from [27].

• BGP2: Black hole. A buggy router advertises a spurious
/32 route to a certain host, creating a “black hole” and pre-
venting that host from responding to queries.

• BGP3: Link failure. An ISP temporarily loses connectivity,
due to a link failure at one of its upstream ASes.

• BGP4: Bogon list. A network cannot reach a number of
local and federal government sites from its newly acquired
IP prefix because that prefix was on the bogon list earlier.

We set up small BGP topologies, using between 4 and 18 simu-
lated routers, to recreate each scenario. In each scenario, we then
asked one query: why AS 2 in scenario BGP1 has no route to AS 7
(Q6), why a host in scenario BGP2 cannot reach the black-holed
host (Q7), why the ISP in scenario BGP3 cannot reach a certain
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ABSENCE(t=[55s,65s], AS2, bestRoute(@AS2,  
Prefix=AS7, Type=Any, Cost=Any, Next=Any)) 

TIMEOUT(t=[39s], AS2, bestRoute(@AS2, 
Prefix=AS7, Type=Provider , Cost=6, Next=AS1)) ABSENCE(t=[39s,65s], AS2, advertisement(@AS2,  

Prefix=AS7, Cost=Any, Next=Any)) 
ABSENCE(t=[39s,65s], AS1, bestRoute(@AS1,  
Prefix=AS7, Type=Any, Cost=Any, Next=Any)) 

TIMEOUT(t=[37s], AS1, bestRoute(@AS1,  
Prefix=AS7, Type=Peer, Cost=5, Next=AS3)) 

ABSENCE(t=[37s,65s], AS1, advertisement(@AS1,  
Prefix=AS7, Cost=Any, Next=Any)) 

ABSENCE(t=[37s,65s], AS3, bestRoute(@AS3  
Prefix=AS7, Type=Customer, Cost=Any, Next=Any)) 

DELETE(t=[37s], AS3, bestRoute(@AS3,  
Prefix=AS7, Type=Customer, Cost=4, Next=AS4)) 

EXISTENCE(t=[38s,40s, …, 64s], AS3,  
advertisement(@AS3, Prefix=AS7, Cost=4, Next=AS4)) EXISTENCE(t=[37s,65s], AS3, bestRoute(@AS3,  

Prefix=AS7, Type=Peer, Cost=3, Next=AS8)) ... 

EXISTENCE(t=[37s], AS3, advertisement(@AS3,  
Prefix=AS7, Cost=3, Next=AS8)) 

AND 

AND 

AND 

AND 

V1-‐a 

V1-‐b 
V1-‐c 

V2-‐a 

V2-‐c 

V2-‐b 

V3-‐a 

V3-‐b 

V3-‐c 
V3-‐d 

V4 

AS2’s previous route to AS7 expired at 
t=39s, and after that, AS2 never received  
any advertisement from its provider (AS1). 

AS1 stopped advertising route to AS2 because its  
own route to AS7 expired at t=37s, and since then,  
its peer (AS3) has sent no more advertisements. 

AS3 would only advertise customer routes to AS1.  
At t=37s, its route to AS7 got updated to a peer route. 
Although after t=37s, AS3 continued to receive customer  
routes from AS4, its best route remains the peer route  
because it is shorter. 

At t=37s, AS3 received the  
peer route to AS7 from AS8. ... 

Figure 9: Answer to Q6, as returned by Y!
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Figure 10: Size of the provenance with some or all heuristics
disabled.

AS (Q8), and why the network in scenario BGP4 cannot connect
to a particular site (Q9). Table 2 shows the specific queries. As
expected, Y! generated the correct response in all four scenarios;
here, we focus on one specific query (Q6/BGP1) due to lack of
space. The other results (available in [33]) are qualitatively similar.

Figure 9 shows the provenance generated by Y! for query Q6.
The explanation reads as follows: AS 2 has no route to AS 7 (V1-
a) because its previous route expired (V1-b) and it has not received
any new advertisements from its provider AS 1 (V1-c). This is
because AS 1 itself has no suitable route: its peer AS 3 stopped
advertising routes to AS 7 (V2a-c) because AS 3 only advertises
customer routes to AS 7 due to the valley-free constraint (V3-a).
AS 3 previously had a customer route but it disappeared (V3-b).
Although AS 3 continues to receive the customer route from AS 4
(V3-c), the peer route through AS 8 (V4) is preferred because it has
a shorter AS path (V3-d). The provenance of the peer route could
be further explored by following the graph beyond V4.

7.4 Complexity
Recall from Section 4 that Y! uses a number of heuristics to sim-
plify the provenance before it is shown to the user. To quantify
how well these heuristics work, we re-ran the queries in Table 2
with different subsets of the heuristics disabled, and we measured
the size of the corresponding provenance graphs.

Figure 10 shows our results. Without heuristics, the provenance
contained between 55 and 386 vertices, which would be difficult
for a human user to interpret. The pruning heuristics from Sec-
tion 4.1 generally remove about half the vertices, but the size of the

root

V1

V3-a

V3-a V3-a

V3-b

V2

V4

V6-a

V5-a

...

...

...

Materialized Vertices
Intermediate Vertices
Inconsistent/Repeated Vertices

V# Labels in Summarized Tree

More Vertices...

Figure 11: Raw provenance for query Q1 before post-
processing.
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Figure 12: Turnaround time for the queries in Table 2.

provenance remains substantial. However, the super-vertices from
Section 4.2 are able to shrink the provenance considerably, to be-
tween 4 and 24 vertices, which should be much easier to interpret.

To explain where the large reduction comes from, we show the
raw provenance tree (without the heuristics) for Q1 in Figure 11.
The structure of this tree is typical of the ones we have generated:
a “skeleton” of long causal chains, which typically correspond to
messages and events propagating across several nodes, and a large
number of small branches. The pruning heuristics remove most
of the smaller branches, while the super-vertices “collapse” the
long chains in the skeleton. In combination, this yields the much-
simplified tree from Figure 7.

7.5 Run-time overhead
Disk storage: Y! maintains two data structures on disk: the packet
traces and the historical R-tree. The size of the former depends on
the number of captured packets; each packet consumes 120 bytes
of storage. To estimate the size of the latter, we ran a program
that randomly inserted and removed flowEntry tuples, and we
measured the number of bytes per update. We found that, for trees
with 103 to 106 updates, each update consumed about 450 byte of
storage on average.

These numbers allow us to estimate the storage requirements in
a production network. We assume that there are 400 switches that
each handle 45 packets per second, and that the SDN controller
generates 1,200 flow entries per second. Under these assumptions,
a commodity hard disk with 1TB capacity could easily hold the
provenance for the most recent 36 hours. If necessary, the storage
cost could easily be reduced further, e.g., by compressing the data,
by storing only a subset of the header fields, and/or by removing
redundant copies of the headers in each flow.
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Figure 13: Scalability results

Latency and throughput: Maintaining provenance requires some
additional processing on the SDN controller, which increases the
latency of responses and decreases throughput. We first measured
this effect in our prototype by using Cbench to send streams of
PacketIn messages, which is a current standard in evaluating Open-
Flow controllers [4]. We found that the 95th percentile latency in-
creased by 29%, from 48.38 ms to 62.63 ms, when Y! was enabled;
throughput dropped by 14%, from 56.0 to 48.4 requests per second.

However, these results are difficult to generalize because Rapid-
Net’s performance as an SDN controller is not competitive with
state-of-the-art controllers, even without Y!. We therefore re-
peated the experiment with our Y! extension for native Trema (Sec-
tion 7.1); here, adding Y! increased the average latency by only
1.6%, to 33 microseconds, and decreased the average throughput by
8.9%, to 100,540 PacketIn messages per second. We note that this
comparison is slightly unfair because we manually instrumented a
specific Trema program to work with our extension, whereas the
RapidNet prototype can work with any program. However, adding
instrumentation to Trema programs is not difficult and could be au-
tomated. More generally, our results suggest that capturing prove-
nance is not inherently expensive, and that an optimized RapidNet
could potentially do a lot better.

7.6 Query processing speed
When the user issues a provenance query, Y! must recursively con-
struct the response using the process from Section 3.5 and then
post-process it using the heuristics from Section 4. Since debug-
ging is an interactive process, a quick response is important. To see
whether Y! can meet this requirement, we measured the turnaround
time for the queries in Table 2, as well as the fraction of time con-
sumed by Y!’s major components.

Figure 12 shows our results. We make two high-level observa-
tions. First, the turnaround time is dominated by R-tree and packet
recorder lookups. This is expected because the graph construction
algorithm itself is not very complex. Second, although the queries
vary in complexity and thus their turnaround times are difficult to
compare, we observe that none of them took more than one sec-
ond; the most expensive query was Q9, which took 0.33 seconds to
complete.

7.7 Scalability
We do not yet have experience with Y!, or negative provenance,
in a large-scale deployment. However, we have done a number of
experiments to get an initial impression of its scalability. Due to
lack of space, we report only a subset of our results here.
Complexity: In our first experiment, we tested whether the com-
plexity of the provenance increases with the number of possible
traffic sources. We simulated a four-layer fat-tree topology with
15 switches, and we placed the client and the server on different
leaves, to vary the hop distance between them from 2 to 6. Our
results for running the learning-switch query (Q1) are shown in

Figure 13a (the bars are analogous to Figure 10). As expected, the
size of the raw provenance for Q1 grew substantially – from 250 to
386 vertices – because 1) there number of possible sources for the
missing traffic increased, because each additional hop brings addi-
tional branches on the backtrace path and 2) each additional hop
required extra vertices to be represented in the provenance. But the
first effect was mitigated by our pruning heuristics, since the extra
sources were inconsistent with the network state, and the second
effect was addressed by the summarization, which merged the ver-
tices along the propagation path into a single super-vertex. Once
all the heuristics had been applied, the size of the provenance was
16 vertices, independent of the hop count.
Storage: In our second experiment, we simulated three-layer fat-
tree topologies of different sizes (i.e., with different node degrees);
each edge switch was connected to a fixed number of active hosts
that were constantly sending HTTP requests to the server. Fig-
ure 13b shows how Y!’s storage requirements grew with the num-
ber of switches in the network. As expected, the size of both the
pcap trace and the R-tree was roughly proportional to the size of
the network; this is expected because a) each new switch added a
fixed number of hosts, and b) the depth of the tree, and thus the hop
count between the server and its clients, remained constant. Gener-
ally, the storage requirement depends on the rate at which events of
interest (packet transmissions, routing changes, etc.) are captured,
as well as on the time for which these records are retained.
Query speed: Our third experiment is analogous to the second,
except that we issued a query at the end and measured its turn-
around time. Figure 13c shows our results. The dominant cost
was the time it took to find packets in the pcap trace; the R-tree
lookups were much faster, and the time needed to construct and
post-process the graph was so small that it is difficult to see in the
figure. Overall, the lookup time was below one second even for the
largest network we tried.
Possible optimizations: Since our implementation has not been
optimized, some of the costs could grow quickly in a large-scale
deployment. For instance, in a data center with 400 switches that
handle 1 Gbps of traffic each, our simple approach of recording
pcap traces at each switch would consume approximately 30 GB
of storage per second for the date center, or about 75 MB for each
switch. Packet recorder lookups, which compromise a major por-
tion of query latency, in such a large trace would be limited by
disk read throughput, and could take minutes. However, we note
that there are several ways to reduce these costs; for instance, tech-
niques from the database literature – e.g., a simple time index –
could be used to speed up the lookups, and the storage cost could
be reduced by applying filters.

7.8 Summary
Our results show that Y! – and, more generally, negative prove-
nance – can be a useful tool for diagnosing problems in networks:
the provenance of the issues we looked at was compact and read-
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able, and Y! was able to find it in less than a second in each case.
Our results also show that the readability is aided considerably by
Y!’s post-processing heuristics, which reduced the number of ver-
tices by more than an order of magnitude. Y!’s main run-time cost
is the storage it needs to maintain a history of the system’s past
states, but a commodity hard-drive should be more than sufficient
to keep this history for more than a day.

8. RELATED WORK
Network debugging: Many tools and techniques for network de-
bugging and root cause analysis have been proposed, e.g., [5, 9,
18, 26], but most focus on explaining positive events. These tools
can be used to (indirectly) troubleshoot negative symptoms, but the
results from our survey in Section 2.4 suggest that the lack of di-
rect support for negative queries makes this significantly more dif-
ficult. Hubble [12] uses probing to find AS-level reachability prob-
lems but is protocol-specific; header space analysis [13] provides
finer-grain results but relies on static analysis and thus cannot ex-
plain complex, dynamic interactions like the ones we consider here.
ATPG [34] tests for liveness, reachability, and performance, but
cannot handle dynamic nodes like the SDN controller. NICE [2]
uses model checking to test whether a given SDN program has
specific correctness properties; this approach is complementary to
ours, which focuses on diagnosing unforeseen problems at runtime.
We are not aware of any protocol-independent systems that can ex-
plain negative events in a dynamic distributed system.
Negative provenance: There is a substantial literature on tracking
provenance in databases [1, 6, 11, 25, 31] and in networks [35, 37],
but only a few papers have considered negative provenance. Huang
et al. [10] and Meliou et al. [19] focus on instance-based expla-
nations for missing answers, that is, how to obtain the missing
answers by making modifications to the value of base instances
(tuples); Why-Not [3] and ConQueR [28] provide query-based ex-
planations for SQL queries, which reveal over-constrained condi-
tions in the queries and suggest modifications to them. None of
these papers considers distributed environments and networks, as
we do here. In the networking literature, there is some prior work
on positive provenance, including our own work on ExSPAN [37],
SNP [35], and DTaP [36], but none of these systems can answer
(or even formulate) negative queries. To our knowledge, the only
existing work that does support such queries is our own workshop
paper [32], on which this paper is based.

9. CONCLUSION
In this paper, we have argued that debuggers for distributed systems
should not only be able to explain why an unexpected event did oc-
cur, but also why an expected event did not occur. We have shown
how this can be accomplished with the concept of negative prove-
nance, which so far has received relatively little attention. We have
defined a formal model of negative provenance, we have presented
an algorithm generating such provenance, and we have introduced
Y!, a practical system that can maintain both positive and nega-
tive provenance in a distributed system and answer queries about
it. Our evaluation in the context of software-defined networks and
BGP suggests that negative provenance can be a useful tool for di-
agnosing complex problems in distributed systems.
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