UIP: A Zero Configuration Architecture for Ad Hoc Internet Naming and Secure Global Connectivity

Jacob Strauss
Bryan Ford Frans Kaashoek
MIT
IRIS Student Workshop
November 7, 2004
Ubiquitous Networking is getting harder

• Unstable addresses
 ➢ DHCP addresses change
 ➢ Non-routable NAT addresses
• Domain names and dynamic DNS
• Security is inconvenient
• Devices can't talk without infrastructure
UIP Architecture

• Identity-Based Routing
 ➢ globally unique, self certifying endpoint IDs
 ➢ persistent, stable
 ➢ communications security
 ➢ mobility

• Meaningful names for manipulating EIDs
 ➢ DNS extensions
 ➢ Ad hoc DNS – each endpoint is a name server
Routing: Registration Servers

- Normal case
 - edge hosts register current location
 - reg servers lookup current location
 - direct route to destination
- Forward packets only when direct routes fail
NAT traversal

- Registration Servers mediate
- Supported by most NATs

A -> R: lookup B
R -> A: B is at ...

A -> B: ping B (blocked by NAT)
A -> R: ping B (relay succeeds)

B -> A: ack (succeeds)
Routing: Local Resolution

- Avoid IP configuration
- Infrastructure-free operation
 - Link Layer Broadcasts
 - Ethernet, 802.11, etc
 - local nodes only
- Global names unavailable
- Same Endpoint IDs
Ad Hoc Naming

• Each endpoint has a local name space
 ➢ Users create bookmarks to name other hosts
 ➢ either encoded EIDs or relative to other EIDs
 • alice.bob.af34f....3df.eid
 • alice.bob.foo.net

• Registration servers act as secondary nameservers
Related Work

- Internet Indirection Infrastructure \(i3\)
 - Identity Based Routing via DHT
- Host Identity Protocol
 - Persistent Endpoint IDs
- Delegation Oriented Architecture (DOA)
- SFR
Edge Node Implementation

- UIP appears to applications as a new address family
- Intercept socket & resolver calls

Diagram

1. `connect(EID)`
2. IPv6 address = `getipv6(EID)`
3. `connect(IPv6 address)`
4. TCP SYN packet
 - dst: IPv6 address

Local Host

- application
- stub library
- kernel
- local UIPd

UIPd or reg server

5. TCP SYN
 - over UIP
 - over Ethernet or IPv4/UDP
Status & Results

- Simple Registration Server
- Latency & Bandwidth
 - 20 Mbps, 1ms per packet overhead
- NAT traversal shortens paths
 - Supported by 75% of NATs
- Naming work underway