Does Overlay Routing Security Require Admission Control?

Chris Lesniewski–Laas and M. Frans Kaashoek
{ctl, kaashoek}@mit.edu
November 7, 2004
Routing Overlays

- **Function:**
 - starting from node A...
 - contact node B responsible for ID `target`.
 - In an Internet overlay, generally boils down to finding B's IP address.

- **Key layer of:**
 - DHTs (thus filesystems, caches, I3, etc.)
 - P2P routing protocols, multicast overlays
 - censorship-resistant or anonymity systems
 - etc.
Attacks

- Impersonation / forgery
 - Self-certifying IDs
- Misdirection: prevent A from finding B.
 - M: "sorry, nobody is closer to target than me."
 - Attack can be targeted if bad guy can choose ID.
Previous Approaches

- Byzantine Fault Tolerance
 - Not efficient, but can guarantee correctness if less than 1/3 of node IDs are bad.

- Castro et al, OSDI2002
 - central ID-assignment authority
 - constrained routing tables
 - density-based routing failure test
 - improves security when <25% of node IDs are bad.
The Counting Model

• Goal of previous approaches:

 Any two nodes A and B should be able to communicate via the overlay if the adversary controls fewer than M out of the N total nodes.

• Can always be thwarted by an adversary who can manufacture IDs!
The Sybil Tarpit

- Requires centralized gatekeeper to keep out the unverified masses.
- How does it decide who to admit? (too restrictive vs. too permissive)
 - passports, letterhead (like Verisign?)
 - money (oops: RIAA, Diebold. Hello, moral hazard.)
 - crypto puzzles (oops: zombie networks)
 - IP addresses (oops: MIT, zombies, IPv6)
- Doesn't help small overlays.
- Centralized gatekeeper goes against the grain of what we're trying to accomplish with decentralized systems.
The Bootstrap Graph Model

- Set of out-of-band initial links
- If entire initial set colludes, you're doomed anyway.
- Security Criterion:

Any two nodes A and B should be able to communicate via the overlay if there exists a path between A and B, in the bootstrap graph, consisting entirely of good nodes.
Scalability Criterion

- Normal-case behavior (when not under attack) should be scalable.
- System shouldn't amplify DoS attacks.
- Scalability Criterion:

 The average bandwidth and storage cost to a node with degree D in the bootstrap graph should be $O(D \log^k N)$.

- Per: search, maintenance cycle
- **Local** costs for bad decisions
 - incentives in the right places!
Topknot

- Secure routing protocol for a **treelike** bootstrap graph.
- Augments structured routing table with a certified hash tree
 - Hash tree is used to verify the correctness of every hop.
Summary

Bootstrap graph:
Out-of-band links via which nodes joined the overlay.

Security criterion:
A can talk to B iff there is a good path in the bootstrap graph.

Scalability criterion:
Damage inflicted by bad nodes is localized.

The upshot:
The bootstrap graph model enables protocols to defeat the Sybil attack without centralized admission control.