Micro-Policies
Formally Verified, Tag-Based Security Monitors

Arthur Azevedo de Amorim1,2 Maxime Dénès1,2 Nick Giannarakis2,3,4 Cătălin Hritcu2
Benjamin C. Pierce1 Antal Spector-Zabisky1 Andrew Tolmach5

1University of Pennsylvania 2Inria Paris-Rocquencourt 3ENS Cachan 4NTU Athens 5Portland State University

Abstract—Recent advances in hardware design have demonstrated mechanisms allowing a wide range of low-level security policies (or micro-policies) to be expressed using rules on metadata tags. We propose a methodology for defining and reasoning about such tag-based reference monitors in terms of a high-level “symbolic machine,” and we use this methodology to define and formally verify micro-policies for dynamic sealing, compartmentalization, control-flow integrity, and memory safety; in addition, we show how to use the tagging mechanism to protect its own integrity. For each micro-policy, we prove by refinement that the symbolic machine instantiated with the policy’s rules embodies a high-level specification characterizing a useful security property. Last, we show how the symbolic machine itself can be implemented in terms of a hardware rule cache and a software controller.

Index Terms—security; dynamic enforcement; reference monitors; low-level code; tagged hardware architecture; metadata; formal verification; refinement; machine-checked proofs; Coq; dynamic sealing; compartmentalization; isolation; least privilege; memory safety; control-flow integrity

1 Introduction

Today’s computer systems are distressingly insecure. However, many of their vulnerabilities can be avoided if low-level code is constrained to obey sensible safety and security properties. Ideally, such properties might be enforced statically, but for obtaining pervasive guarantees all the way to the level of running machine code it is often more practical to detect violations dynamically using a reference monitor [11], [16], [44], [74]. Monitors have been used for many tasks, including enforcement of memory safety [67] or control-flow integrity (CFI) [6], taint tracking and fine-grained information-flow control (IFC) [13], [78], and isolation of untrusted code [87], [89]. They are sometimes implemented in software [17], [19], [32], [42], [44], but this can significantly degrade performance and/or cause designers to settle for rough approximations of the intended policy that are potentially vulnerable to attack [35], [46]. Hardware acceleration is thus an attractive alternative, especially in an era of cheap transistors. Many designs for hardware monitors have been proposed, with early designs focusing on enforcing single, hard-wired security policies [21], [22], [29], [71], [73], [79] and later ones evolving toward more programmable mechanisms [23], [31], [37], [38], [45], [70], [83] that allow quicker adaptation to a shifting attack landscape. Recent work has gone yet further in this direction by defining a generic, fully programmable hardware/software architecture for tag-based monitoring on a conventional processor extended with a Programmable Unit for Metadata Processing (PUMP) [39].

The PUMP architecture associates each piece of data in the system with a metadata tag describing its provenance or purpose (e.g., “this is an instruction,” “this came from the network,” “this is secret,” “this is sealed with key k”), propagates this metadata as instructions are executed, and checks that policy rules are obeyed throughout the computation. It provides great flexibility for defining policies and puts no arbitrary limitations on the size of the metadata and the number of policies supported. Hardware simulations show [39] that an Alpha processor extended with PUMP hardware achieves performance comparable to dedicated hardware when simultaneously enforcing memory safety, CFI, and taint tracking on a standard benchmark suite [49]. Monitoring imposes modest impact on runtime (typically under 10%) and power ceiling (less than 10%), in return for some increase in energy usage (typically under 60%) and chip area (110%).

Coding correct, efficient policies to run on the PUMP architecture can be nontrivial. Indeed, it is often challenging even to give a high-level specification for a policy of interest. In prior work, we showed how to address this challenge for one specific policy by giving a mechanized correctness proof for an information-flow control (IFC) policy running on an idealized machine incorporating PUMP-like hardware [15]. This proof is organized around three layers of machines sharing a common core instruction set: an abstract machine whose instruction semantics has a specific IFC policy built in; an intermediate symbolic machine that allows for different dynamic IFC mechanisms to be expressed using a simple domain-specific language; and a concrete machine, where the IFC policy is implemented by a software controller that interacts with the low-level tag-management mechanisms of the hardware. A noninterference property is established at the abstract machine level and transferred to the other levels via two steps of refinement.

In this paper, we extend this IFC-specific proof to a generic framework for formalizing and verifying arbitrary policies enforceable by the PUMP architecture. We use the term micro-policies for such instruction-level security-monitoring mechanisms based on fine-grained metadata. We use this methodology to formalize and verify a diverse collection of micro-policies using the Coq proof assistant [82].

The heart of our methodology is a generic symbolic machine
(middle layer in Figure 1) that serves both as a programming interface—abstracting away unnecessary implementation details and providing a convenient platform for micro-policy designers—and as an intermediate step in correctness proofs. This machine is parameterized by a symbolic micro-policy that expresses tag propagation and checking in terms of structured mathematical objects rather than low-level concrete representations. Each symbolic micro-policy consists of (i) sets of metadata tags that are used to label every piece of data in the machine’s memory and registers (including the program counter); (ii) a transfer function that uses both the current opcode and the tags on the pc, on the current instruction, and on the instruction operands to determine whether the operation is permitted and, if it is, to specify how the pc and the instruction’s result should be tagged in the next machine state; and (iii) a set of monitor services that can be invoked by user code. For example, in a micro-policy for dynamic sealing (a language-based protection mechanism in the style of perfect symmetric encryption [62], described below in §4) the set of tags used for registers and memory might be \{Data, Key k, Sealed k\}, where Data is used to tag ordinary data values, Sealed k is used to tag values sealed with the key k, and Key k denotes a key that can be used for sealing and unsealing values. The transfer function for this micro-policy would allow, for example, arithmetic operations on values tagged Data but deny them on data tagged Sealed or Key. Monitor services are provided to allow user programs to create new keys and to seal and unseal data values with given keys.

We instantiate this symbolic machine with a diverse set of security micro-policies:

1) dynamic sealing [62], [80];
2) compartmentalization, which sandboxes untrusted code and allows it to run alongside trusted code [84];
3) control-flow integrity (CFI), which prevents code-reuse attacks such as return-oriented programming [6]; and
4) memory safety, which prevents temporal and spatial violations for heap-allocated data [39].

The intended behavior of each micro-policy is specified by an abstract machine (top layer in Figure 1), which gives a clear characterization of the micro-policy’s behavior as seen by a user-level programmer. The abstract machine enforces the invariants of the micro-policy by omitting insecure behaviors from its transition function: a program that violates the micro-policy gets stuck. Where appropriate, we prove that the abstract machine for a micro-policy satisfies standard properties from the literature. For example, for the CFI micro-policy we prove a variant of the original CFI property proposed by Abadi et al. [6], while for our compartmentalization micro-policy we prove a single-step property drawn from Wahbe et al.’s original software fault isolation (SFI) model [84]. For each micro-policy, we prove backward refinement between the abstract and symbolic machines, i.e., every possible symbolic machine behavior is a valid abstract behavior—hence, the symbolic machine always fail-stops on policy violations.

Finally, we extend this methodology to the hardware level by showing how instances of the symbolic machine can be realized on a low-level concrete machine, a minimalist RISC ISA extended with the key mechanisms of the PUMP hardware architecture [39] (bottom layer in Figure 1). Every word of data in this machine is associated with a piece of metadata called a tag—itself a full machine word that can, in particular, hold a pointer to an arbitrary data structure in memory. The interpretation of tags is left entirely to software; the hardware simply propagates tags from operands to results according to software-defined concrete rules. To propagate tags efficiently, the processor is augmented with a rule cache that operates in parallel with instruction execution. On a rule cache miss, control is transferred to a trusted miss handler which, given the tags of the instruction’s arguments, decides whether the current operation should be allowed and, if so, computes appropriate tags for its results. It then adds this tuple of argument and result tags to the rule cache so that when the same situation is encountered in the future, the rule can be applied without slowing down the processor.

Each micro-policy can be implemented at the concrete level by providing machine code for the transfer function and monitor services, along with a concrete bit-encoding for symbolic tags. This monitor code can make use of a handful of privileged instructions of the concrete machine, allowing it to inspect and change tags and to update the cache. For all micro-policies, it is obviously necessary to protect the integrity of the monitor’s code and data, and to prevent user programs from invoking the privileged instructions. We show that we can achieve this protection using only the tagging mechanism itself (no special kernel protection modes, page table tricks, etc.). We also give a generic proof of backward refinement between the symbolic and concrete machines, modulo some assumptions characterizing the behavior of the micro-policy-specific concrete code. Composing this refinement with the abstract-symbolic refinement described above gives a proof that the concrete machine always fail-stops on policy violations. For CFI, we additionally show that the corresponding higher-level property [6] is preserved by refinement, allowing us to transfer it to any valid implementation of the micro-policy.

Our focus throughout is on proving safety properties, which we formalize as backward refinements: the observable behaviors of the lower-level machine are also legal behaviors of the
higher-level machine, and in particular the lower-level machine fail-stops whenever the higher-level machine does. Liveness, or forward refinement (the lower-level machine only fail-stops when the higher-level one does), is also a desirable property; indeed, a completely inert machine (i.e., one that never steps) at the symbolic or concrete level would satisfy backward refinement but would be of no use. However, full forward refinement doesn’t always hold for our micro-policies. In particular, resource constraints that we prefer to ignore at the abstract level (e.g., word size and memory capacity) become visible at the symbolic or concrete level when tags and monitor data structures are made explicit. Fortunately, in practice it is reasonable to check that the lower-level machines are “live enough” by testing.

Our main contributions are as follows. First, we introduce a generic symbolic machine (§2–§3) for conveniently defining and effectively verifying a wide range of micro-policies for a simple RISC processor. Second, we use the symbolic machine to give formal descriptions and verified tag-based implementations of four security micro-policies: dynamic sealing (§4), compartmentalization (§5), control-flow integrity (§6), and memory safety (§7). Third, we define a concrete machine incorporating a PUMP cache (§8) and sketch how to construct concrete monitors implementing symbolic micro-policies. And finally (§9), we give a generic construction showing how tags can be used to protect the concrete monitor itself from attack, together with a generic proof (parameterized by some assumptions about the micro-policy-specific monitor code) that this construction is correct. We discuss related work specific to each micro-policy in the relevant section (§4–§7), saving more general related work on micro-policies and reference monitors for §10. We outline future work in §11. The appendices present additional technical details.

2 Basic Machine

We begin by introducing the simplified RISC instruction set architecture that forms the common core of all the machines throughout the paper. This basic machine has a fixed word size and a fixed set of general-purpose registers plus a program counter (pc) register. It features a small collection of familiar instructions

\[
\text{inst ::= Nop | Const i r_d | Mov r_s r_d | Binop} \binop_1 r_1 r_2 r_d \text{ Load } r_p r_d \text{ | Store } r_p r_s \text{ | Jump } r \text{ | Jal } r \text{ } \text{Bnz } r \text{ | Halt}
\]

where \(\binop \in \{+,-,\times,=,\leq,\ldots\}\). \(\text{Const } i r_d\) puts an immediate constant \(i\) into register \(r_d\). \(\text{Mov } r_s r_d\) copies the contents of \(r_s\) into \(r_d\). \(\text{Jump}\) and \(\text{Jal}\) (jump-and-link) are unconditional indirect jumps, while \(\text{Bnz } r \text{ } i\) branches to a fixed offset \(i\) (relative to the current pc) if register \(r\) is nonzero. Each instruction is encoded in a word. (Most of our development is parametric in details like the exact word size, but at the lowest level we instantiate everything to 32-bit words.)

A basic machine state is a tuple \((\text{mem}, \text{reg}, \text{pc})\) of a word-addressable memory \(\text{mem}\) (a partial function from words to words), a register file \(\text{reg}\) (a function from register names to words), and a \(\text{pc}\) value (a word). Note that the memory is a partial function; trying to address outside of the valid memory (by trying to fetch the next instruction from an invalid address, or loading from or storing to one) halts the machine. A typical step rule for this machine is written like this:

\[
\begin{align*}
\text{mem}[pc] = i \quad &\text{decode } i = \binop \binop_2 r_1 r_2 r_d \quad \text{reg}[r_1] = w_1 \quad \text{reg}[r_2] = w_2 \quad \text{reg}' = \text{reg}[r_d \leftarrow w_1 + w_2] \\
\text{(mem, reg, pc)} \rightarrow (\text{mem, reg}', \text{pc} + 1) \quad &\text{(BINOP)}
\end{align*}
\]

Let’s read this rule in detail. Looking up the memory word at address \(pc\) yields the word \(i\), which should correspond to some instruction (i.e., an element of the \(\text{inst}\) set defined above) via partial function \(\text{decode}\). In this case, that instruction is \(\binop \binop_2 r_1 r_2 r_d\). Registers \(r_1\) and \(r_2\) contain the operands \(w_1\) and \(w_2\). The notation \(\text{reg}[r_d \leftarrow w_1 + w_2]\) denotes a partial function that maps \(r_d\) to \(w_1 + w_2\) and behaves like \(\text{reg}\) on all other arguments. The next machine state is calculated by updating the register file, incrementing the pc, and leaving the memory unchanged.

The step rule for the Store instruction is similar. (The notation \(\text{mem}[w_p \leftarrow w_s]\) is defined only when \(\text{mem}[w_p]\) is defined; i.e., it fails if \(w_p\) is not a legal address in \(\text{mem}\). This ensures that the set of addressable memory locations remains fixed as the machine steps.)

\[
\begin{align*}
\text{mem}[pc] = i \quad &\text{decode } i = \text{Store } r_p r_s \quad \text{reg}[r_p] = w_p \quad \text{reg}[r_s] = w_s \quad \text{mem}' = \text{mem}[w_p \leftarrow w_s] \\
\text{(mem, reg, pc)} \rightarrow (\text{mem}', \text{reg}, \text{pc} + 1) \quad &\text{(STORE)}
\end{align*}
\]

Subroutine calls are implemented by the Jal instruction, which saves the return address to a general-purpose register \(r_s\). To make subsidiary calls, \(r_s\) must be manually spilled to the stack using Store and restored afterwards using Load. Returns from subroutines are just Jumps through the \(r_s\) register.

\[
\begin{align*}
\text{mem}[pc] = i \quad &\text{decode } i = \text{Jal } r \\
\text{reg}[r] = \text{pc'} \quad &\text{reg}' = \text{reg}[r_s \leftarrow \text{pc} + 1] \\
\text{(mem, reg, pc)} \rightarrow (\text{mem}, \text{reg}', \text{pc'}) \quad &\text{(JAL)}
\end{align*}
\]

3 Symbolic Machine

The symbolic machine is the keystone of our methodology, embodying our micro-policy programming model. It allows micro-policies to be expressed and reasoned about in terms of high-level programs written in Gallina, Coq’s internal functional programming language, abstracting away irrelevant details about how they are implemented on concrete low-level hardware and providing an appropriate level of abstraction for reasoning about their security properties. In this section, we give just the bare definition of the symbolic machine; §4 illustrates how its features are used.

The symbolic machine shares the same general organization as the basic machine from §2. Its definition is abstracted on several parameters that are provided by the micro-policy designer, collectively forming a symbolic micro-policy: (1) A collection of symbolic tags, which are used to label instructions and data. (2) A partial function transfer, which is invoked on each step of the machine to propagate tags from the current
machine state to the next one. (3) A partial function get_service mapping addresses to pairs of a symbolic monitor service (a partial function on machine states) and a symbolic tag that can be used to restrict access to that service. (4) A type EX of extra machine state for use by the monitor services, plus an initial value for this extra state.

Symbolic states \((\text{mem}, \text{reg}, \text{pc}, \text{extra})\) consist of a memory, a register file, a program counter, and a piece of extra state. The memory, registers, and pc hold symbolic atoms written \(w@t\), where \(w\) (the “payload”) is a machine word and \(t\) is a symbolic tag. The tag parts are not separately addressable; they are only accessible to the transfer function and monitor services, not to user programs.\(^1\)

The symbolic step rules call the transfer function to decide whether the step is allowed by the micro-policy and, if so, how the tags should be updated in the next machine state. The transfer function is passed a 6-tuple containing the current opcode plus the tags from the current pc, current instruction, and the inputs to the current instruction (up to three, depending on the opcode). It returns a pair containing a tag for the next pc and a tag for the instruction’s result, if any. For example, here is the symbolic step rule for the Binop instruction:

\[
\begin{align*}
\text{mem}[\text{w}_\text{pc}] &= i@t_i & \text{decode } i &= \text{Binop}_i \cdot r_1 \cdot r_2 \cdot r_d \\
\text{reg}[r_1] &= w_1@t_1 & \text{reg}[r_2] &= w_2@t_2 & \text{reg}[r_d] &= \_@t_d \\
\text{transfer}(\text{Binop}_i, \text{t}_\text{pc}, t_1, t_2, t_d) &= (t_\text{pc}', t_d') \\
\text{reg}' &= \text{reg}[r_d]\rightarrow(w_1@t_1\oplus w_2@t_2@t_d') \\
\end{align*}
\]

(BINOP)

\[(\text{mem}, \text{reg}, \text{w}_\text{pc}@\text{t}_\text{pc}, \text{extra}) \rightarrow (\text{mem}', \text{reg}', (\text{w}_\text{pc}+1)@\text{t}_\text{pc}', \text{extra})\]

As in the basic machine, looking up the memory word at address \(w_{\text{pc}}\) (the payload part of the current pc value) yields the atom \(i@t_i\); decoding its payload part yields the instruction Binop\(_i\), \(r_1\), \(r_2\), \(r_d\). Registers \(r_1\) and \(r_2\) contain the operands \(w_1\) and \(w_2\), with tags \(t_1\) and \(t_2\), and the current tag on the result register \(r_d\) is \(t_d\). The payload part of the current contents of \(r_d\) doesn’t matter, since it’s about to be overwritten; we indicate this with the wildcard pattern \(\_\). Passing all these tags to the transfer function yields tags \(t_{\text{pc}'}\) and \(t_d'\) for the next pc and the new contents of \(r_d\). Since transfer is a partial function, it may not return anything at all for a given 6-tuple of opcode and tags. If it doesn’t—i.e., if the next step would cause a policy violation—then none of the step rules will apply and the current machine state will be stuck. (For simplicity, we assume here that policy violations are fatal; various error-recovery mechanisms could also be used [50], [59].) Passing \(t_d\), the tag on the old contents of the target register, to the transfer function allows it to see what kind of data is being overwritten. This information is useful for instance for implementing dynamic information-flow policies like “no sensitive upgrade” [15].

To illustrate how a transfer function might behave, consider how the symbolic machine might be used to implement a very simple taint-propagation micro-policy. Symbolic tags are drawn from the set \(\{\top, \bot\}\), representing tainted and untainted values. The transfer function is written to ensure that, on each step of the machine, any result that is influenced by tainted values is itself tainted. E.g., it might include this clause for the Binop opcode

\[
\text{transfer}(\text{Binop}_i, \text{t}_\text{pc}, t_1, t_2, t_d) = (t_\text{pc}, t_1 \lor t_2)
\]

where \(t_1 \lor t_2\) denotes the max of \(t_1\) and \(t_2\), where \(\bot < \top\). For this policy, the \(t_1\) and \(t_d\) tags don’t matter, which we indicate by writing a dummy value “–“.

The generic symbolic step rule for Store is similar:

\[
\begin{align*}
\text{mem}[w_{\text{pc}}] &= i@t_i & \text{decode } i &= \text{Store} \cdot r_p \cdot r_s \\
\text{reg}[r_p] &= w_p@t_p & \text{reg}[r_s] &= w_s@t_s & \text{mem}[w_{\text{pc}}] &= \_@t_d \\
\text{transfer}(\text{Store}, t_\text{pc}, t_1, t_2, t_s, t_d) &= (t_\text{pc}', t_d') \\
\text{mem}' &= \text{mem}[w_{\text{pc}}\leftarrow w_s@t_d']
\end{align*}
\]

(STORE)

\[(\text{mem}, \text{reg}, w_{\text{pc}}@t_{\text{pc}}, \text{extra}) \rightarrow (\text{mem}', \text{reg}', (w_{\text{pc}}+1)@t_{\text{pc}}', \text{extra})\]

The symbolic machine’s step relation includes a similarly augmented version of each of the step rules of the basic machine (see §8 for a complete listing). In addition, there is one new step rule for handling calls to monitor services, which applies when the pc is at a service entry point—i.e., an address for which the get_service function is defined.

\[
\begin{align*}
\text{get_service } w_{\text{pc}} &= (f, t_i) \\
\text{transfer}(\text{Service}, t_{\text{pc}}, t_1, t_2, t_3) &= (\_\_\_ - , - , - ) \\
\end{align*}
\]

\[(\text{mem}, \text{reg}, w_{\text{pc}}@t_{\text{pc}}, \text{extra}) \rightarrow (\text{mem}', \text{reg}', p_c', \text{extra'})\] (SVC)

Here, get_service returns the monitor service itself (the function \(f\), plus a tag \(t_i\). The call to transfer checks that this service is permitted, given the tag on the current pc. The last three inputs to transfer are set to the dummy value “–“ (we only care about the pc and instruction tags), and the outputs are not used, since we only care whether the operation is allowed or not. The Service “opcode” is a special value that is just used for querying the transfer function about service routines. The first premise is a sanity check on the machine state: there should be no user instructions at monitor service addresses. Finally, the rule invokes \(f\) to carry out the actual work of the service routine. The behavior of \(f\) itself is now completely up to the micro-policy designer: it is given the complete symbolic machine state as argument, and it returns an entire new machine state as result. In particular, some of the service routines for the policies described below will modify the tags in the memory. Also, user code will typically get to the service routine entry point by executing a Jal, and the service routine is responsible for resetting the pc to the return address stored in register \(r_a\) by the Jal. Allowing service routines to be arbitrary partial functions from machine states to machine states reflects the fact that, at the concrete level, service routine code runs with a high level of privilege.

To streamline proofs about the micro-policies in later sections, we divide the symbolic tags into four distinct sets that are used in different parts of the symbolic machine: tags from the set \(T_m\) are used for labeling words in memory, \(T_r\) for registers, \(T_{\text{pc}}\) for the pc, and \(T_s\) for monitor services. The definition of the transfer function must conform to these conventions;

\(^1\)We use the term “user code” for all code in the system that is not part of the micro-policy monitor, including OS-level code such as schedulers and device drivers.
for example, when propagating tags for Binop, the three last arguments \( t_1, t_2, \) and \( t_4 \) should belong to \( T_r \) and the result tag \( t'_r \) should also be in \( T_r \). This separation allows some policy invariants to be maintained “by typechecking,” obviating the need to maintain them explicitly in proofs and easing the burden of formal policy verification.

As we will see in the following sections, each micro-policy has complete freedom to treat tags as if they are associated with the contents of memory locations or registers (pc included) or as if they are associated with the memory locations or registers themselves. Both points of view are valid and useful: micro-policies like dynamic sealing and taint tracking associate metadata only with contents, while CFI uses tags to distinguish the memory locations containing instructions and the sources and targets of indirect jumps, while using the pc tag to track execution history (the sources of indirect jumps). In fact, some micro-policies mix the two points of view: IFC associates tags with memory and register contents, but the pc tracks execution history (implicit flows), while memory safety tags memory locations with compound tags that contain a part associated with the contents and a part associated with the location.

4 Sealing Micro-Policy

Now it’s time to build micro-policies! As a warm-up, we begin with a simple micro-policy for dynamic sealing [62], [80], a linguistic mechanism analogous to perfect symmetric encryption. Informally, we extend the basic machine with three new primitives (presented as monitor services): mkkey creates a fresh sealing key; seal takes a data value (a machine word) and a key and returns an opaque “sealed value” that can be stored in memory and registers but not used in any other way until it is passed (together with the same key that was used to seal it) through the unseal service, which unwraps it and returns the original raw word.

We proceed in three steps. First, we define an abstract sealing machine, a straightforward extension of the basic machine from §2 that directly captures the “user’s view.” Second, we show how the abstract machine can be emulated on the symbolic machine by providing an appropriate encoding of abstract-machine values (words, sealed values, and keys) as symbolic atoms, together with a transfer function (written as a program in Gallina) and Gallina implementations of the mkkey, seal, and unseal monitor services. We prove that the symbolic sealing machine refines the abstract one. Third, we build concrete machine-code realizations of the symbolic transfer function and the three monitor services, which can be executed (together with user code) on a concrete processor with PUMP hardware extensions. We carry out the first two parts in this section and sketch the third in §9.

Abstract Sealing Machine. To define an abstract machine with built-in sealing, we replace the raw words in the registers and memory of the basic machine with values \( v \) drawn from the more structured set

\[
\text{Val ::= } w \mid k \mid \{w\}_k
\]

where \( w \) ranges over machine words, \( k \) ranges over an infinite set \( AK \) of abstract sealing keys, and \( \{w\}_k \) is the sealing of payload \( w \) under key \( k \). To keep the example simple, we disallow nested sealing and sealing of keys: only words can be sealed.

The rules of the basic step relation are modified to use this richer set of values. Most instructions will only work with raw words—e.g., attempting to compare sealed values or jump to a key will halt the machine. Load and Store require a word as their first argument (the target memory address) but they place no restrictions on the value being loaded or stored; similarly Mov copies arbitrary values between registers.

\[
\begin{align*}
\text{(STORE)} & \quad \frac{\text{mem}[pc] = i \quad \text{decode } i = \text{Store } r_p, r_s \quad \text{reg}[r_p] = w_p \quad \text{reg}[r_s] = v_s \quad \text{mem'} = \text{mem}[w_p, v_s]}{(\text{mem}, \text{reg}, \text{pc}) \rightarrow (\text{mem'}, \text{reg}, \text{pc}+1)}
\end{align*}
\]

The operations of generating keys, sealing, and unsealing are provided by monitor service routines located at addresses mkkey_addr, seal_addr, and unseal_addr, all of which lie outside of accessible memory at the symbolic and abstract levels (at the concrete level, the code for the services will begin at these addresses). By convention, these routines take any arguments in general-purpose registers \( t_{reg1} \) and \( t_{reg2} \) and return their result in a general-purpose register \( t_{ret} \). The definition of the step relation includes a rule for each service that applies when the pc is at the corresponding address. The MkKey rule, for example, describes key generation:

\[
\begin{align*}
\text{(MkKey)} & \quad \frac{k = \text{fresh}(\text{mem}, \text{reg}) \quad \text{reg}' = \text{reg}[t_{ret} \leftarrow k] \quad \text{reg}[t_s] = \text{pc}'}{(\text{mem}, \text{reg}, \text{mkkey}_\text{addr}) \rightarrow (\text{mem}, \text{reg}', \text{pc}')}\end{align*}
\]

This rule applies when the machine’s pc is mkkey_addr. The first premise chooses a new key \( k \) that does not occur in the current machine state. The second premise updates the result register \( t_{ret} \) with \( k \). The third premise restores the pc from the register \( t_s \). To invoke this service, a user program performs a jal to the address mkkey_addr, which sets \( t_s \) appropriately and causes this rule to fire on the next step. Invoking services this way means that we can run exactly the same user code on this abstract machine as we do on the symbolic machine (described below) and the concrete machine (§8-§9).

The sealing service is defined as follows:

\[
\begin{align*}
\text{(SEAL)} & \quad \frac{\text{reg}[t_{reg1}] = w \quad \text{reg}[t_{reg2}] = k \quad \text{reg}' = \text{reg}[t_{ret} \leftarrow \{w\}_k] \quad \text{reg}[t_s] = \text{pc}'}{(\text{mem}, \text{reg}, \text{seal_addr}) \rightarrow (\text{mem}, \text{reg}', \text{pc}')}\end{align*}
\]

The first and second premises ensure that the service arguments have the right form—namely, that the first argument is an unsealed value \( w \), and the second argument is a sealing key \( k \). Then, the service updates the stores the sealed value \( \{w\}_k \) on the return register (third premise) before returning to the caller (fourth premise).

The rule for the unsealing service is similar:
The symbolic sealing machine described above constitutes a specification—an application programmer’s view—of the sealing micro-policy. The next piece of the micro-policy definition is a symbolic micro-policy that implements this abstract specification in terms of tags. Since the pc is just a bare word in the sealing abstract machine, and there are no restrictions on when monitor services can be called, we can take the pc and service tag sets \( T_p \) and \( T_o \) to be just the singleton set \( \{ \bullet \} \). The remaining symbolic rules enforce similar restrictions:

\[
\begin{align*}
\text{Nop} : & (\bullet, \text{Data}, -, -) \rightarrow (\bullet, -) \\
\text{Const} : & (\bullet, \text{Data}, -, -) \rightarrow (\bullet, \text{Data}) \\
\text{Mov} : & (\bullet, \text{Data}, t_{\text{src}}, -) \rightarrow (\bullet, t_{\text{src}}) \\
\text{Jump} : & (\bullet, \text{Data}, -, -) \rightarrow (\bullet, -) \\
\text{Bnz} : & (\bullet, \text{Data}, -, -) \rightarrow (\bullet, -)
\end{align*}
\]

Notice that all rules force the current instruction tag to be Data, since sealed values can be leaked by running them.

As we described in §3, the symbolic machine handles all monitor services with a single rule that uses a function \( \text{get\_service} \) (provided as part of the micro-policy definition) to do the actual work; given a memory address, \( \text{get\_service} \) returns either nothing or a pair of a Gallina function defining the service’s behavior and a symbolic tag that is passed to the transfer function so that it can check whether the call to this service is legal from this machine state. For the sealing micro-policy, we define 

\[ \text{get\_service} \] \to \text{mkkey\_addr} \to (\text{mkkey}, \bullet), \text{seal\_addr} \to (\text{seal}, \bullet), \text{and unseal\_addr} \to (\text{unseal}, \bullet), \text{where mkkey}, \text{seal}, \text{and unseal are defined by:}

\[
\begin{align*}
\text{reg}[r] &= w_{\text{pc}} @ r \quad \text{reg}' = \text{reg}[r] @ 0 @ (\text{Key nk}) \\
\text{mkkey}(\text{mem}, \text{reg}, \text{pc}, \text{nk}) &\rightarrow (\text{mem}, \text{reg}', w_{\text{pc}} @ \bullet, \text{nk}) \\
\text{reg}[r_{\text{src}}] &= w @ \text{Data} \quad \text{reg}[r_{\text{reg}}] = w' @ (\text{Key k}) \\
\text{reg}[r] &= w_{\text{pc}} @ r \quad \text{reg}' = \text{reg}[r] @ w @ (\text{Sealed k}) \\
\text{seal}(\text{mem}, \text{reg}, \text{pc}, \text{nk}) &\rightarrow (\text{mem}, \text{reg}', w_{\text{pc}} @ \bullet, \text{nk}) \\
\text{reg}[r_{\text{src}}] &= w @ (\text{Sealed k}) \quad \text{reg}[r_{\text{reg}}] = w' @ (\text{Key k}) \\
\text{reg}[r] &= w_{\text{pc}} @ r \quad \text{reg}' = \text{reg}[r] @ w @ \text{Data} \\
\text{unseal}(\text{mem}, \text{reg}, \text{pc}, \text{nk}) &\rightarrow (\text{mem}, \text{reg}', w_{\text{pc}} @ \bullet, \text{nk})
\end{align*}
\]

These rules are mostly direct translations of the corresponding ones for the abstract sealing machine: instead of working on abstract values, they inspect symbolic tags to ensure that atoms have the right form—i.e., a sealing key, a sealed value, or an unsealed one. The constant \( \text{max\_key} \) stands for the largest representable key, and 0 is used as a dummy payload for fresh keys.

Note that \( \text{mkkey} \) is a partial function: it can fail if all keys have been used up. This models the fact that, on the concrete machine, keys will be implemented as fixed-width machine words. By contrast, the abstract sealing machine uses an infinite set of keys, so it will never fail for this reason. This discrepancy is not an issue for the backward refinement property, which only requires us to show that if the symbolic machine takes a step then a corresponding step can be taken by the abstract machine. (Forward refinement, on the other hand, does not hold: the symbolic machine will fail to simulate the abstract one when it runs out of fresh keys. Giving up forward refinement is the price we pay for choosing not to expose low-level resource constraints at the abstract level.)

Refinement We formalize the connection between the abstract and symbolic sealing machines as a backward (i.e., from symbolic to abstract) refinement property on traces. We state the property here in a general form so that we can instantiate it repeatedly throughout the paper.
Definition 4.1 (Backward refinement). We say that a low-level machine \((\text{State}^L, \to^L)\) backward refines a high-level machine \((\text{State}^H, \to^H)\) with respect to a simulation relation \(\sim\) between low-level and high-level states if, whenever \(s^L_1 \sim s^H_1\) and \(s^L_1 \to^L s^L_2\), there is some \(s^H_2\) so that \(s^H_1 \to^H s^H_2\) and \(s^L_2 \sim s^H_2\).

Following standard practice, we prove this general multi-step refinement property by establishing a correspondence between individual execution steps. In the case of sealing, we prove a strong 1-backward simulation theorem showing that each step of the symbolic machine is simulated by exactly one step of the abstract one.

Definition 4.2 (1-backward simulation). If \(s^L_1 \sim s^H_1\) and \(s^L_1 \to^L s^L_2\) then there exists \(s^H_2\) such that \(s^H_1 \to^H s^H_2\) and \(s^L_2 \sim s^H_2\).

For sealing, since keys are dynamically allocated, our simulation relation is parameterized by a partial map \(\psi\) relating abstract and symbolic keys. We begin by defining an auxiliary relation \(\sim_{SA}\) showing how abstract atoms relate to symbolic ones (SA stands for Symbolic-to-Abstract):

\[
\begin{align*}
    w@Data & \sim_{SA} w' & \text{ when } w = w' \\
    w@(Key \ k^S) & \sim_{SA} k^A & \text{ when } \psi[k^A] = k^S \\
    w@(Sealed \ k^S) & \sim_{SA} \{w'\}_{k^A} & \text{ when } w = w' \land \psi[k^A] = k^S.
\end{align*}
\]

The relation \(\sim_{SA}\) does not hold otherwise. Then, we define the simulation relation on states, also noted \(\sim_{SA}\), by lifting the previous relation “pointwise” to all atoms, and adding these invariants: (a) all abstract keys in the domain of \(\psi\) appear in the current abstract state; (b) all symbolic keys in the range of \(\psi\) are strictly smaller than the current value of the monotonic counter; and (c) \(\psi\) is injective. We then get the following result:

Theorem 4.3 (1-backward SA-simulation for sealing). The symbolic machine instantiated with the sealing micro-policy 1-backward-simulates the sealing abstract machine with respect to the simulation relation \(\lambda s^B s^A, \exists \psi. \ s^S \sim_{SA} s^A\).

Notice that, in the above statement, the key map parameter \(\psi\) is existentially quantified and not fixed, since it must be updated on each call to \(\text{mkkey}\) to maintain the correspondence between the newly generated keys, which are drawn from different sets at the two levels. This setup allows us to elide irrelevant details of key allocation from the abstract machine. This is only a minor convenience for sealing, but the idiom becomes quite important in other micro-policies for hiding complex objects like memory allocators (§7) from the high-level specification.

5 Compartmentalization Micro-Policy

We next describe a micro-policy for enforcing isolation between program-defined “compartments,” dynamically demarcated memory regions that, by default, cannot jump or write to each other. This model is based on Wahbe et al.’s work on software fault isolation (SFI) [84], with a few differences discussed below. To demonstrate isolation, we show that a symbolic-machine instance refines an abstract machine that enforces compartmentalization by construction.

Abstract Machine The abstract machine for this micro-policy enforces compartmentalization directly by maintaining, alongside the usual machine state, a set \(C\) of current compartments that is consulted on each step to prevent one compartment from improperly transferring execution to or writing to another. Each abstract compartment in \(C\) is a triple \((A, J, S)\) containing

1) an address space \(A\) of addresses that belong to the compartment, i.e., where its instructions and data are stored;
2) a set of jump targets \(J\), additional addresses that it is allowed to jump to; and
3) a set of store targets \(S\), additional addresses that it is allowed to write to.

Compartments are not limited to contiguous regions of memory (as they usually are when conventional page-table mechanisms are used to protect regions of code from each other). Also, as in Wahbe et al.’s model [84], reading from memory is not constrained: code in one compartment is permitted to read from addresses in any other. (Adding a set of “read targets” to each abstract compartment would be a straightforward extension.) The machine maintains a number of invariants, of which the most important is that all compartments have disjoint address spaces.

The abstract machine state also includes a flag \(F\) ∈ \{Jumped, FallThrough\} that records whether or not the previous instruction was a Jump or a Jal, together with the previously executing compartment, \(\text{prev} = (A_{\text{prev}}, J_{\text{prev}}, S_{\text{prev}})\). This information is used to prevent illegal pc changes (on both jumps and ordinary steps) and to allow monitor services to see which compartment called them.

At the abstract level, all instructions behave as in the basic machine (§2), with the addition of a compartmentalization check. For example, here is the rule for Store:

\[
\begin{align*}
    \text{mem}[pc] = i \quad \text{decode} \ i = \text{Store} \ r_p r_s \\
    \text{reg}[r_p] = w_p \quad \text{reg}[r_s] = w_s \quad \text{mem'} = \text{mem}[w_p \leftarrow w_s] \\
    (A, J, S) \in C \quad \text{pc} \in A \quad w_p \in A \cup S \\
    (A, J, S) = (A_{\text{prev}}, J_{\text{prev}}, S_{\text{prev}}) \lor (F = \text{Jumped} \land \text{pc} \in J_{\text{prev}}) \\
    (\text{mem, reg, pc, C, F, (A_{\text{prev}}, J_{\text{prev}}, S_{\text{prev}})}) \rightarrow (\text{mem'}, \text{reg, pc + 1, C, FallThrough, (A, J, S)}) \quad \text{ (STORE)}
\end{align*}
\]

Most of the new features here are common to the step rules for all the instructions: each rule checks that the current instruction is executing inside some compartment \((A, J, S) \in C\) and \(\text{pc} \in A\) and (using \(\text{prev}\)) that execution arrived at this instruction either (a) from the same compartment, or (b) with \(F = \text{Jumped}\) and the current pc in the previous compartment’s set of jump targets (the final line of the precondition). In the new machine state, we update the previous compartment to be the compartment in which the pc currently lies and we set \(F\) to FallThrough (the rules for Jump and Jal set it to Jumped). Besides these generic conditions, the Store rule has an additional check that its write is either to the current compartment or to one of its store targets \(w_p \in A \cup S\). (Other rules are for this machine are presented in §C.)

Deferring detection of illegal pc changes until one step after they have occurred is the key trick that makes this tag-based
implementation at the symbolic level work; we will use a similar approach for CFI in §6.

The compartmentalization abstract machine also provides three new monitor services. The core service is `isolate`, which creates a new compartment. It takes as input the description of a fresh compartment \( (A', J', S') \) and adds it to \( C \), also removing the addresses in \( A' \) from the address space of the parent compartment. Before allowing the operation, the service checks, relative to the parent compartment \( (A, J, S) \), that \( A' \subseteq A \), that \( J' \subseteq A \cup J \), and that \( S' \subseteq A \cup S \). This ensures that the new compartment is no more privileged than its parent. The argument sets are passed to the service as pointers to in-memory data structures representing sets of addresses. That is, each argument set \( (A', J', S') \) is represented as a pointer to a vector of pairs: the value \( x \) at the pointed-to address is the number of pairs, and the next \( 2x \) addresses contain pairs \( (l, h) \); the set is the union of these (inclusive) intervals.

The other two services modify the target sets of the current compartment. If the current compartment is \( (A, J, S) \), `add_jump_target` takes as input an address \( a \in A \) and modifies the current compartment to \( (A, J \cup \{a\}, S) \); `add_store_target` does the same thing for store targets. Note that although `isolate` removes the child’s address space from the parent, it leaves the store and jump targets \( (S \text{ and } J) \) of the parent unchanged, and these can overlap with the child’s address space. Thus, the parent can preserve access to an address in its child’s memory by calling `add_jump_target` or `add_store_target` with that address before invoking `isolate`.

In the initial configuration of the abstract machine, all defined addresses lie in one big compartment and each monitor service address has its own unique compartment (i.e., these locations are special and live outside of addressable memory). The main compartment has the addresses of the monitor services in its set of jump targets, allowing it to call them; the monitor service compartments have all defined addresses in their set of jump targets, allowing them to return to any address. Since, in order to call a monitor service, its address must lie in the calling compartment’s set of jump targets, a parent compartment can choose to prevent a child it creates from calling specific services by restricting the child’s jump table.

Before returning, each monitor service checks that the compartment it is returning to is the same as the one it was called from. This detail is needed to prevent malicious use of monitor services to change compartments: otherwise, calling a service from the last address of a compartment would cause execution to proceed from the first address of a subsequent compartment, even if the original compartment was not allowed to jump there.

As a sanity check on the abstract machine, we prove that it satisfies a compartmentalization property based on the informal presentation by Wahbe et al. [84]. We first prove that the machine maintains invariants ensuring that each defined memory location lies in exactly one compartment. We use this to prove that, on every step, (a) if the machine isn’t stuck, then the new pc is either in the initial pc’s compartment or in its set of jump targets; and (b) if a memory location was changed, then its address was either in the initial pc’s compartment or in its set of store targets. (For more details, see §C.)

**Symbolic Machine** Our method for implementing this abstract machine in terms of tags involves “dualizing” the representation of compartments: rather than maintaining global state recording which compartments exist and what memory locations they are allowed to affect, we instead tag memory locations to record which compartments are allowed to affect them. Compartments are represented by unique ids, and the extra state of the symbolic machine contains a monotonic counter \( n \) for the next available compartment id. We maintain the invariant that this counter is larger than all compartment ids currently in use.

For this policy, \( T_m \) contains triples \( (c, I, W) \), where \( c \) is the id of the compartment to which a tagged memory location belongs, \( I \) is the set of incoming compartment ids identifying which other compartments are allowed to jump to this location, and \( W \) is the set of writer ids identifying which other compartments are allowed to write to this location. \( T_{pc} \) contains pairs \( (F, c) \), where \( F \in \{\text{Jumped}, \text{FallThrough}\} \) records whether the previous instruction was a Jump or a Jal or not and \( c \) is the id of the compartment from which the previous instruction was executed. (This is the same as the corresponding auxiliary information on the abstract machine.) Since registers do not play a role in this micro-policy, \( T_r \) contains just the dummy tag \( \bullet \). The extra state contains three tags, \( t_1, t_{AL}, \text{ and } t_{AS} \), corresponding to the tags on the monitor services’ entry points in the abstract machine. We cannot use the symbolic machine’s monitor service tags, as those are immutable; the compartmentalization policy thus maintain its mutable monitor service tags in the extra state. (This limitation is not fundamental, and does not impact any other micro-policy we study here.)

Here are a few of the symbolic rules (the rest are similar):

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Nop</code></td>
<td>( ((F, c), (c', I, W), -, -, -) \rightarrow ((\text{FallThrough}, c'), -) )</td>
</tr>
<tr>
<td><code>Jump</code></td>
<td>( ((F, c), (c', I, W), \bullet, -, -) \rightarrow ((\text{Jumped}, c'), -) )</td>
</tr>
<tr>
<td><code>Store</code></td>
<td>( ((F, c), (c', I, W), \bullet, (c'', I', W')) \rightarrow ((\text{FallThrough}, c), (c'', I', W')) )</td>
</tr>
</tbody>
</table>

The first side-condition on all the rules guarantees that all pc changes are legal: \( c \), taken from the pc tag, is the previously-executing compartment; and \( c' \), from the tag on the current instruction, is the current compartment. An execution step is allowed if it is in the same compartment \( (c = c') \), or if it follows a jump from a permitted incoming compartment \( (F = \text{Jumped} \land c \in I) \). Similarly, the extra side-condition for Store checks that the write is to a location in the currently-executing compartment \( (c' = c'') \) or to a location that accepts the current compartment as a writer \( (c' \in W') \).

From the rules, we can see that this encoding breaks up the jump targets of each compartment, scattering the jumping...
compartment’s id into the destination component in the tag on each individual jump target; the store target are similarly scattered across the writers component. (This is why we must maintain the tags for monitor service addresses separately: they cannot be encoded directly as memory tags, since there is no memory at these addresses.) The state maintained in the pc tag corresponds exactly to the extra state maintained by the abstract machine (i.e., F and prev), except that we use a compartment id rather than an abstract compartment.

The monitors services must also be rephrased in terms of tags. The add_jump_target service simply modifies the tag on the given address; if the previous tag was \(c, I, W\) and the current compartment is \(c'\), then the new tag will be \(\langle c, I \cup \{c\}, W\rangle\). The add_store_target service is analogous. The isolate service does four things: (1) It gets a fresh compartment id \(c_{\text{new}}\) (from the counter, which it then increments). (2) It retags every location in the new compartment’s address space, changing its tag from \(\langle c, I, W\rangle\) into \(\langle c_{\text{new}}, I, W\rangle\). (3) It retags every location in the new compartment’s set of jump targets, changing its tag from \(\langle c_{\text{new}}, I, J, W, J'\rangle\) into \(\langle c_{\text{new}}, I, J, W, J'\rangle\). (4) It retags the new compartment’s set of store targets, changing each tag from \(\langle c_{\text{new}}, S, I, W\rangle\) into \(\langle c_{\text{new}}, S, I, W\rangle\). (5) It adds new inter-compartment calls and returns (i.e., the programs must also predeclare the sites from which they make RPCs).

6 Control-Flow Integrity Micro-Policy

We next outline a micro-policy enforcing fine-grained control-flow integrity (CFI) [6] as well as providing basic non-writable code (NWC) and non-executable data (NXD) protection. It dynamically enforces that all indirect control flows (computed jumps) adhere to a fixed control flow graph (CFG). (This CFG might, for example, be obtained from a compiler.) This prevents control-flow-hijacking attacks, in which an attacker exploits a low-level vulnerability to gain full control of a target program. More detailed description of this micro-policy is in §B.

Our main result is a proof that a variant of the CFI property of Abadi et al. [6] holds for the symbolic machine when instantiated with our CFI micro-policy. For this, we first prove that the CFI property is preserved by backward simulation. We then use this preservation result to show that the symbolic CFI machine has CFI, by proving that it simulates an abstract machine that has CFI by construction. The CFI definition relies on a formal overapproximation of the attacker’s capabilities, allowing the attacker to change any data in the system except for the code, the pc, and the tags (if the machine has them). This models an attacker that can mount buffer-overflow attacks but cannot subvert the monitor; this is a reasonable assumption since we assume that any implementation of the monitor will be able to protect its integrity. For the same reason we assume that in monitor mode all control flows are allowed. Since we assume that monitor code is correct, we do not need to dynamically enforce CFI there.

Abstract CFI Machine The abstract machine has separate instruction and data memories; the instruction memory is fixed (NWC), and instructions are fetched only from this memory (NXD). Indirect jumps are checked against an allowed set \(J\) of source-target pairs; if the control flow is invalid the machine stops. The attacker can make arbitrary changes to the data memory and registers at any time.

Symbolic CFI Machine At the symbolic level, code and data are stored in the same memory, and we use tags to distinguish between the two. Tags on memory are drawn from the set \(\text{Data} \mid \text{Code} \mid \text{Data} \bot \text{Code} \bot \) and for the pc from \(\text{Code} \| \text{addr} \| \text{Code} \bot \) (other registers are always tagged \(\bullet\)). For the CFG conformance checks, instructions that are the source or target of indirect control flows are tagged with \(\text{Code} \| \text{addr}\), where
addr is the address of the instruction in memory. For example, a Jump instruction stored at address 500 is tagged Code 500. The CFI policy does not need to keep track of where other instructions are located, so they are all tagged Code ⊥. (This keeps the number of distinct tags small, which would reduce cache pressure when executing this micro-policy on the concrete machine described in §8.) Only memory locations tagged Data can be modified (NWC), and only instructions fetched from locations tagged Code can be executed (NXD). The symbolic rule for Store illustrates both these points:

\[
\text{Store}: (\text{Code } ⊥, \text{Code } _, −, −, \text{Data}) \rightarrow (\text{Code } ⊥, \text{Data})
\]

It requires the fetched Store instruction to be tagged Code and the written location to be tagged Data. On the other hand, the Jal instruction’s rule requires that the current instruction be tagged Code src for an address src; it then copies Code src to the pc tag:

\[
\text{Jal}: (\text{Code } ⊥, \text{Code } src, −, −, −) \rightarrow (\text{Code } src, −)
\]

Only on the next instruction do we get enough information from the tags to check that the destination of the jump is indeed allowed by J. For this we add a second rule for each instruction, dealing with the case where it is the target of a jump and thus the pc tag is Code src, e.g.:

\[
(src, dst) \in J
\]

\[
\text{Store}: (\text{Code } src, \text{Code } dst, −, −, \text{Data}) \rightarrow (\text{Code } ⊥, \text{Data})
\]

We add such rules even for jump instructions, since the target of a computed jump can itself be another computed jump:

\[
(src, dst-src) \in J
\]

\[
\text{Jal}: (\text{Code } src, \text{Code } dst-src, −, −, −) \rightarrow (\text{Code } dst-src, −)
\]

Proof Organization Our proofs are structured around a generic CFI preservation result that states that CFI is preserved by backward simulation under some additional assumptions (§B). As mentioned, we use this to transport the CFI property from the abstract machine to the symbolic machine. Finally, we prove that the symbolic machine backward-simulates the correct-by-construction abstract machine, which—in combination with our CFI preservation result—proves the correctness of the micro-policy.

This approach allows us to structure our proofs in a modular way. More importantly, the reusable nature of the preservation theorem provides an easy way to transfer the CFI property from the symbolic machine to a concrete machine that correctly implements the CFI micro-policy while keeping most of the reasoning about the properties of the micro-policy at a higher level. We were able to do this and transport the CFI property to the instance of the concrete machine presented in §8; details are presented in §B.

Related Work Abadi et al. [6] proposed both the first CFI definition and a reasonably efficient, though coarse-grained, enforcement mechanism based on binary analysis and rewriting, in which each node in the CFG is assigned to one of three equivalence classes. This seminal work was extended in various directions, often trading off precision for low overheads and practicality [88]. However, recent attacks against coarse-grained CFI [35], [46] have illustrated the security risks of imprecision. This has spurred interest in fine-grained CFI [30], [60], [69], sometimes called complete or ideal CFI; however, this has been deemed “very expensive” [46]. Several proposed hardware mechanisms are directly targeted at speeding up CFI [21], [34]; here we achieve CFI using a generic hardware mechanism in a formally verified way. The PUMP mechanism supports fine-grained CFI with average runtime overheads below 2% [39]. Previous formal verification efforts for CFI include ARMor [89] and KCoFI [30]. Like most work on CFI, they use inline reference monitoring [44]; their verification targets a small-TCB component, which validates that the right checks were inserted in the instrumented binary before its execution is allowed. For ARMor [89] the validator itself is written, formally verified, and executed in HOL. This ensures a very small TCB but also extremely long validation times [63]. The verification of KCoFI [30] targets a relatively compact Coq model that only focuses on certain aspects and is not related formally to the implementation.

7 Memory Safety Micro-Policy

Last, we describe a micro-policy that enforces safe access to heap-allocated data, by preventing both spatial safety violations (e.g., accessing an array out of its bounds) and temporal safety violations (e.g., referencing through a pointer after the region has been freed). Such violations are a common source of serious security vulnerabilities [12], [81] such as heap-based buffer overflows [1], [5], [33], [72], [76], confidential data leaks [4], and exploitable use-after-free [3], [10], and double-buffer overflows [1], [5], [33], confidential data leaks [4], and exploitable use-after-free [3], [10], and double-buffering [2], [41]. The micro-policy we study here only guards heap-allocated data, for which calls to the malloc and free monitor services tell us how to set up and tear down memory regions; we leave stack allocation and C-like unboxed structs as future work.

Abstract Machine The memory-safety abstract machine presents a block-based memory model to the programmer [15], [57], [58]: it operates on values that are either ordinary machine words w or pointers p.

\[
v ::= w \mid p
\]

A pointer p is a pair (b, o) of a block identifier b (drawn from an infinite set) and an offset o (a machine word). The memory is a partial function from block identifiers to lists of values; its domain is the set of allocated blocks.

Load and Store require pointer values (b, o). They first look up the block id b in the memory; if this block is currently allocated, they obtain a list of values vs, which they read or update at index o (provided o is in bounds).

\[
\begin{align*}
\text{mem}[b] = & \ vs \ vs'[o] = i \\
\text{decode } i = & \ \text{Load } r_p r_d \ reg[r_p] = (b, o) \\
\text{mem}[b] = & \ vs \ vs'[o] = v \ reg' = \ reg \ reg' \ \text{write } v \\
\end{align*}
\]

\[
(\text{mem, reg, (b_p, o_p)}) \rightarrow (\text{mem, reg'}, (b_p, o_p + 1))
\]

(LOAD)
\[
\begin{align*}
\text{mem}[b_{pc}] = vs_{pc} & \quad vs_{pc}[o_{pc}] = i \\
\text{reg}[r_p] = (b, o) & \quad \text{reg}[r_s] = v \\
\text{mem}[b] = vs & \quad 0 = vs[0] - vs[v] & \quad \text{mem} = \text{mem}[b - vs']
\end{align*}
\] (STORE)

The pc itself contains a pointer with a block and an offset; instruction fetching works the same as normal memory loads. The pc is advanced by incrementing its offset.

Besides their usual behavior on integers, some arithmetic instructions can be used on this machine for manipulating pointers as well. For instance, adding a word to a pointer increments that pointer’s offset:

\[
(b, o) + w = (b, o + w)
\]

On the other hand, some operations on pointers are explicitly disallowed, such as adding two pointers together, or subtracting two pointers that do not point to the same memory region. Some of these choices are motivated by what we can express efficiently in terms of symbolic tags; we discuss these issues in more detail later when presenting the symbolic rules for this micro-policy.

Memory management is done using two monitor services for allocating and freeing blocks:

\[
\begin{align*}
\text{reg}[s_{reg1}] = s & \quad s > 0 & \quad b = \text{fresh}(\text{mem}, \text{reg}) \\
\text{mem}[b \leftarrow \text{zeros}(s)] & \quad \text{reg}[\text{free} \leftarrow (b, 0)] & \quad \text{reg}[r_s] = pc' \\
\text{mem}, \text{reg}, \text{mallocc_addr} & \rightarrow (\text{mem}, \text{reg'}, pc')
\end{align*}
\] (MALLOCC)

\[
\begin{align*}
\text{reg}[s_{reg1}] = (b, _) & \quad \text{mem} = \text{mem}[b \leftarrow \_] & \quad \text{reg}[r_s] = pc' \\
\text{mem}[b] \neq \bot & \quad (\text{mem}, \text{reg}, \text{free_addr}) & \rightarrow (\text{mem'}, \text{reg'}, pc')
\end{align*}
\] (FREE)

As in the sealing micro-policy \((\S 4)\), the allocation service first chooses a block identifier \(b\) that is not present in the current machine state. It then assigns to that identifier a block of size \(s\) consisting of only zeros, returning a pointer to the beginning of the new block. The freeing service takes a pointer \((b, _)\) as its argument (notice that the offset component is ignored), ensures that \(b\) points to a valid block (second premise), and then updates the memory so that it is undefined at that block identifier.

We additionally provide monitor services for obtaining the base and size of a block, and for comparing values (including pointers) for equality.

**Symbolic Machine** In the symbolic part of the memory-safety micro-policy, we replace the block-structured memory of the abstract machine by a flat memory where each cell is tagged with a *color* representing the block to which it belongs. Pointers are also tagged with colors, and when a pointer is dereferenced we check that its color matches the color of the memory cell it points to.

More precisely, we use different sets of tags for registers (including the pc) and memory. Values in registers are either pointers tagged with a *color* \(c\) or non-pointers tagged \(\bot\):

\[
t_v := c \mid \bot
\]

Allocated memory locations are tagged with a pair \((c, t_v)\), where \(c\) is the color of the encompassing block and \(t_v\) is the tag of the stored value. Unallocated memory is tagged with the special tag \(F\) (free).

\[
t_m := (c, t_v) \mid F
\]

The extra state for this policy is a list of *block descriptors* recording which memory regions have been allocated (with the corresponding base and bounds) and which colors correspond to them, plus a counter for generating new colors.

The *malloc* monitor service first searches the list of block descriptors for a free block of at least the required size, cuts off the excess if needed, generates a fresh color \(c\), initializes the new memory block with \(0\oplus(c, \bot)\), and returns the atom \(w \oplus c\), where \(w\) is the start address of the block.

The *free* monitor service reads the pointer color, deallocates the corresponding block, tags its cells with \(F\), and updates the block descriptors. The \(F\) tags prevent any remaining pointers to the deallocated block from being used to access it after deallocation. If a later allocation reuses the same memory, it will be tagged with a different (larger) color, so these dangling pointers will still be unusable. As in the sealing symbolic micro-policy \((\S 4)\), the machine halts if the color counter reaches its maximum value, which is not a problem for backward refinement, but causes forward refinement to break.

The symbolic rules for *Load* and *Store* check that the pointer and the referenced location have the same color \(c\).

\[
\text{Load} : (c_{pc}, (c_{pc}, \bot), c, (c, t_v), \neg) \rightarrow (c_{pc}, t_v)
\]

\[
\text{Store} : (c_{pc}, (c_{pc}, \bot), c, t_v, (c, t_v')) \rightarrow (c_{pc}, (c, t_v))
\]

We additionally require that the pc tag \(c_{pc}\) matches the color of the block to which the pc points. This ensures that the pc cannot be used to fetch instructions from inaccessible frames. On *Jumps* we change the color of the pc to the color \(c\) of the pointer, while for *Jal* we also use the color of the old pc to tag the \(r_s\) register:

\[
\text{Jump} : (c_{pc}, (c_{pc}, \bot), c, -,-) \rightarrow (c, -)
\]

\[
\text{Jal} : (c_{pc}, (c_{pc}, \bot), t_v, -,-) \rightarrow (t_v, c_{pc})
\]

We also allow *Jals* to words tagged \(\bot\), since monitor services lie outside the accessible memory at this level of abstraction and so cannot be referenced by normal pointers.

Binary operations are allowed between values tagged \(\bot\) (non-pointers), and they produce values tagged \(\bot\):

\[
\text{Binop}_{\oplus} : (c_{pc}, (c_{pc}, \bot), \bot, \bot, -) \rightarrow (c_{pc}, \bot)
\]

We also allow adding and subtracting integers from pointers:

\[
\text{Binop}_{+,-} : (c_{pc}, (c_{pc}, \bot), c, \bot, -) \rightarrow (c_{pc}, c)
\]

\[
\text{Binop}_{+} : (c_{pc}, (c_{pc}, \bot), \bot, c, -) \rightarrow (c_{pc}, c)
\]

The result of such pointer arithmetic is a pointer with the same color \(c\). The new pointer is not necessarily in bounds, but the rules for *Load* and *Store* prevent invalid accesses. (Computing an out-of-bounds pointer is not a violation *per se*—indeed,
it happens quite often in practice, e.g., at the end of loops.)
Moreover, subtraction can compute the integer offset between
two pointers to the same block:

\[ \text{Binop}_{\text{loc},=} : (\text{e}_{\text{pc}}, (\text{e}_{\text{pc}}, \bot), c, c, \neg) \rightarrow (\text{e}_{\text{pc}}, \bot) \]

Pointers to the same block can also be compared for equality
using Binop\(_{\text{loc},=} \). But comparing a pointer and a non-pointer or
comparing two pointers to different blocks must be disallowed
(because two out-of-bounds pointers to different blocks can be
numerically equal at the symbolic level, whereas they cannot be
equal at the abstract level). While the transfer function can
detect this situation, it cannot alter the results of instructions;
thus, we can only preserve refinement by having the transfer
function stop execution. Intuitively, all instructions on pointers
must be expressible at the abstract level independent of base
addresses. (Subtraction works as presented because equal base
addresses cancel out, even in the presence of overflows.)
Monitor services do not have this restriction, though, so we
provide a total equality monitor service that returns false in
those cases where the equality instruction would be disallowed.
Finally, we provide monitor services for getting the base address
of a pointer’s block.

The remaining symbolic rules are as follows:

\[
\begin{align*}
\text{Nop} & : (\text{e}_{\text{pc}}, (\text{e}_{\text{pc}}, \bot), \neg, \neg, \neg) \rightarrow (\text{e}_{\text{pc}}, \neg) \\
\text{Const} & : (\text{e}_{\text{pc}}, (\text{e}_{\text{pc}}, \bot), \neg, \neg, \neg) \rightarrow (\text{e}_{\text{pc}}, \bot) \\
\text{Mov} & : (\text{e}_{\text{pc}}, (\text{e}_{\text{pc}}, \bot), t_u, \neg, \neg) \rightarrow (\text{e}_{\text{pc}}, t_u) \\
\text{Bnz} & : (\text{e}_{\text{pc}}, (\text{e}_{\text{pc}}, \bot), \bot, \neg, \neg) \rightarrow (\text{e}_{\text{pc}}, \neg) \\
\text{Jal} & : (\text{e}_{\text{pc}}, (\text{e}_{\text{pc}}, \bot), c, \neg, \neg) \rightarrow (c, \text{e}_{\text{pc}})
\end{align*}
\]

**Refinement** We prove a backward-simulation theorem similar
to the one for sealing (§4):

**Theorem 7.1 (backward SA-simulation for memory safety).**
The symbolic memory safety machine backward-simulates the
abstract machine.

The main technical difficulty lies in formalizing the correspond-
ence between memory addresses at the symbolic and abstract
levels, and showing that this correspondence is preserved
throughout execution. Specifically, each color \( c \) used at
the symbolic machine should map to a block identifier \( b \) at the
abstract level, in such a way that the memory region tagged
with \( c \) matches the block pointed to by \( b \); we consider that an
address \( x \) marked with color \( c \) should correspond to memory
location \((b, x - \text{x}_{\text{base}})\) at the abstract level, where \text{x}_{\text{base}}
is the base address of the corresponding region. Additionally,
we must maintain the invariant that symbolic block descriptors
faithfully describe how memory regions are tagged.

Showing that memory operations and monitor services (in
particular, the allocator) preserve the refinement relation in-
volves explicitly manipulating the address mappings described
above and a fair amount of low-level reasoning about address
segments (i.e., a set of contiguous addresses, which form
regions) and arithmetic, which consumes almost half of the
complete proof.

**Related Work** Our scheme is inspired by the metadata taint-
ing technique of Clause et al. [28]. Similar ideas have been
used by Watchdog [64], [65] (for temporal safety), though these
dsystems do not have formal proofs. While there is previous
work on formally verifying memory safety, some of it outlined
below, we are not aware of any general extensional definition of
this property, so our proof of backward refinement with respect
to a correct-by-construction abstract machine seems in sync
with the current state of the art. Necula et al. [68] study a model
of CCured and provide a hand proof of a progress theorem
after instrumenting the semantics to distinguish executions that
stop because of memory safety violations. Nagarakatte et al.
have verified in Coq that the SoftBound pass in LLVM/Vellvm
satisfies “spatial safety” [67] and that the CETS temporal safety
extension to SoftBound is correct in the sense of backward
simulation [66]. These proofs are with respect to correct-by-con-
struction special-purpose machines. Finally, Abadi et al.
[7]–[9] show that address space layout randomization can be
used to prevent low-level attacks, including memory safety
violations, by proving a probabilistic variant of full abstraction
with respect to a high-level language semantics.

CHERI [24], [85], [86] is an alternative hardware-based
security model. It uses capabilities, instead of rich per-word
tags, to enforce memory safety [86]; nevertheless, like the
PUMP, its core capability-based model can be extended to
implement other security policies.

8 **Concrete Machine**

Having explored four examples of how the symbolic machine
can be instantiated to enforce a variety of micro-policies, we
turn to the question of how its behavior can be realized on a
concrete machine that incorporates a PUMP-like hardware
interface (ISA) [39] in idealized form. The concrete machine
differs from the symbolic one in several key ways.

1) Its memory, registers, and pc hold concrete atoms of the
form \text{w}@[\text{t}], where the concrete tag \text{t} is simply a machine
word (possibly interpreted as a pointer into memory).

2) It propagates and checks tags using a cache of concrete
rules, each encoding a single tuple from the graph of the
(concrete) transfer function.

3) The cache initially contains a finite set of ground rules; it
is further populated as needed by a software miss handler,
which embodies the transfer function.

4) Extra machine state is represented by ordinary in-memory
data structures.

5) Each monitor service is implemented as an (almost) ordi-
nary software subroutine, whose starting address coincides
with the service’s entry point at the abstract and symbolic
levels.

An instance of the symbolic machine for a specific micro-
policy is realized on the concrete machine by defining a
concrete encoding for tags and any extra state, providing a miss
handler that implements the symbolic transfer function, and
providing implementations of any monitor services. In §9, we
describe a generic approach to constructing and verifying such
realizations. In the remainder of this section, we formalize the concrete machine itself as an extension of the basic machine (§2). A practical PUMP implementation [39] would add similar extensions to a real-world RISC ISA. The details in this section are not needed to follow §9 and can be skimmed if desired.

The concrete machine adds four new instructions to the basic machine from §2:

AddRule | JumpFpc | GetTag rs rd | PutTag rs rtag rd

AddRule, described in detail below, inserts a new rule into the cache. JumpFpc is used to return from the miss handler: it jumps to the address in the fpc (“fault pc”), a special-purpose register that holds the address of the faulting instruction when the pc tag is don’t-care (i.e., when the pc tag is dc); we use this to ensure that the set of ground rules is finite (see §9) and that the monitor does not fault when it comes in contact with user tags (for instance when returning back to user mode).

Concrete states have the form (mem, reg, pc, fpc, cache), where cache, the rule cache, is a set of concrete rules, each of the form (iv, ov). The input vector iv represents the key for rule cache lookups and contains the instruction opcode, the tag of the current instruction, the tag of the pc, and up to three operand tags. The output vector ov provides the tags of the new pc and of the result. On each step, the machine constructs iv from the current instruction opcode and the relevant tags and looks it up in the cache. If a matching rule is found (written cache ⊢ iv → ov), the instruction is allowed and the next state is tagged according to ov. If no rule matches (cache ⊬ iv), then iv is saved in low memory, the current pc value is saved in the fpc, and control is transferred to a fixed address where the miss handler should be loaded (trappaddr). Accordingly, each rule in the step relation comes in two variants—one for when we hit in the cache and one for when we trap to the miss handler. For example, here are the rules for Store:

\[
\begin{align*}
\text{mem}[w_{pc}] &= i \mathbin{@} t_i \quad \text{decode } i = \text{Store } r_p \ r_s \\
\text{reg}[r_p] &= w_p \mathbin{\hat{\&}} t_p \quad \text{reg}[r_s] = w_s \mathbin{\hat{\&}} t_s \\
\text{mem}[w_p] &= \_ \mathbin{\hat{\&}} t_d \\
\text{cache} \vdash (\text{Store}, t_{pc}, t_i, t_p, t_s, t_d) \mapsto (t'_{pc}, t'_d) \\
\text{mem}' &= \text{mem}[w_p \mathbin{\hat{\&}} t_d]
\end{align*}
\]

Here ⊢ is map update, overwriting any previous value for \((\text{opcode}, t_1, t_2, t_3, t_4, t_5)\). Note that, as in all the other instructions, we include a cache lookup to check that the AddRule instruction is permitted in the current machine state.

Once the new rule has been added, the miss handler uses JumpFpc to return control back to the faulting instruction address held in the fpc. At this point, assuming the miss handler is implemented correctly, the hardware cache lookup will succeed and the instruction will be allowed to proceed.

For simplicity, we assume that the cache’s size is unlimited, avoiding the need to model eviction; limiting the cache size would require more complicated code for handling cache misses, of course, but would not change the specification of handler correctness (see §9).

A final technical detail is that the machine can be configured on a per-opcode basis to mask out (i.e., set to a predefined “don’t care” tag) selected fields of the iv before matching against the cache. This is easy to implement in hardware, and it permits a single cache entry to match many different iv tuples. The machine can also be configured on a per-opcode basis to “copy through” a specified iv tag to either of the ov tag fields. These features allow even more compact representation of transfer functions as concrete rules. The machine uses a special pair of don’t-care and copy-through masks when running monitor code (i.e., when the pc tag is Monitor); we use this to ensure that the set of ground rules is finite (see §9) and that the monitor does not fail when it comes in contact with user tags (for instance when returning back to user mode).

More precisely, the concrete machine is parameterized by two pairs of “masks,” each of the form \((dc, ct)\). Which pair of masks to use on a given cache lookup is decided based on whether the current pc is tagged Monitor or not. (This is

\[2\]Strictly speaking, the tag of this new atom is actually determined not by hardware but by the ground rules described in §9.

Addresses 0 to 5 are used, by convention, to store the current iv for use by the miss handler in the final premise of the second rule.

When the cache lookup fails and control passes to the miss handler, the handler can run arbitrary code to compute the intended transfer function on the opcode and tags in iv. If the transfer function is undefined—i.e., if the current micro-policy defines iv as illegal—the miss handler simply halts the machine.

In a complete implementation with a full-blown operating system, it would instead alert the scheduler to kill the offending process.
because the “self-protection micro-policy” for monitor code, described in [39], is simpler than most user-level micro-policies and can get away with masking out more fields). A “don’t care” mask \( dc \) is a vector of 5 bits, each of them indicating whether the corresponding tag in the \( iv \) should be “masked out” (i.e., turned into a default tag) or not before a cache lookup. For instance a \( dc \) mask \( (0, 0, 1, 1, 0) \) turns the \( iv \) \( (ap, 1, 2, 3, 4, 5) \) into \( (1, 2, 0, 0, 5) \) before the cache lookup. When inserting a rule into the cache using AddRule it will also be automatically masked this way, with respect to the \( t_{pc} \neq \) Monitor mask. One of the “copy through” masks \( ct \) is used in case of a cache hit to choose whether any of the tags in the found \( ov \) should be replaced with a tag directly copied from the \( iv \). A \( ct \) is a pair of optional \( iv \) indices, one for the new pc tag and the other for the result tag. For instance, a \( ct \) mask of \((\text{Some PC}, \text{None})\) instructs the PUMP to copy the new pc tag from the \( PC \) component of the \( ov \) and to use the \( R' \) from the \( ov \) found in the cache in order to produce the final \( ov \).

9 Concrete Micro-Policy Monitor

The last piece of our story is the realization of symbolic micro-policies on the concrete machine. Although symbolic micro-policies vary widely in details, concrete micro-policy implementations share several important characteristics:

1) concrete tags (and extra state) must faithfully encode symbolic tags (and extra state);
2) the concrete miss handler and monitor services code must implement the symbolic machine’s Coq specifications;
3) control transfers between user and monitor code must obey a clear protocol; and
4) tags and monitor code and data must be protected from malicious or compromised user code.

To take advantage of these commonalities, we have built a generic framework for organizing the construction of concrete micro-policies and proved a theorem stating that they refine a corresponding symbolic machine instance. We assume the details of concrete tag and extra state representation plus the actual code for the miss handler and monitor services are provided to our framework. This policy-specific code might be handwritten or generated from a high-level language by a compiler; the details are unimportant here. The proof of correctness of the generic framework is parameterized on correctness proofs for these policy-specific components.

Tag Representation

A micro-policy has four sets of symbolic tags \((T_m, T_r, T_{pc}, T_s)\) that must be represented as word-sized bit vectors on the concrete machine. Concrete tags on the register file and the pc will be used to represent symbolic ones drawn from the corresponding sets—namely, \( T_r \) and \( T_{pc} \).

Since monitor services are implemented by code that lives in memory, a tag in memory will either represent something in \( T_m \) (in which case it marks a memory location that is visible at the symbolic level), or something in \( T_s \) (in which case it marks the address of a monitor service).

Formally, this representation scheme is specified by partial decoding functions \( dec_M(mem^C, t^C) \) that take a concrete machine memory and concrete machine tag word as inputs, and produce symbolic tags as output.\(^3\) Here, \( k \in \{M, R, P\} \) specifies which kind of concrete tag—memory, register or pc—we are decoding, so that we know what kind of symbolic tag to produce. Hence,

\[
\begin{align*}
\text{dec}_M&((\text{mem}^C, t^C) \in \{\text{User} t^S | t^S \in T_m\} \\
&\cup \{\text{Entry} t^S | t^S \in T_s\} \\
\text{dec}_R&((\text{mem}^C, t^C) \in T_r) \\
\text{dec}_P&((\text{mem}^C, t^C) \in T_{pc}).
\end{align*}
\]

We say that a concrete tag is a valid user-level tag (given some memory) when it can be decoded into a symbolic tag. For simplicity, from here on we will refer to such tags by their symbolic decodings. We require that \( \text{dec}_k(\text{mem}^C, \text{Monitor}) \) be undefined—i.e., that no symbolic tag be represented by it.

Monitor Self-Protection

At the symbolic level, it is impossible for user code to interfere with the internal state of the micro-policy. At the concrete level, however (unlike in some of our own previous work [15], [39]), monitor code and data live in ordinary memory and registers, which user code must somehow be prevented from accessing. Moreover, we need to ensure that only monitor code can execute the special instructions AddRule, PutTag, GetTag, and JumpFpc. Fortunately, we can use the PUMP itself both to implement the symbolic micro-policy and, at the same time, to enforce the restrictions above (which we call monitor self-protection). To achieve this, we use the special Monitor tag to mark all of the monitor’s code and data, allowing the miss handler to detect when untrusted code is trying to tamper with it, as explained below.

Monitor Code and Ground Rules

On the concrete machine, every instruction causes a rule cache lookup, which results in a fault if no corresponding rule is present. Since the machine has no special “privileged mode,” this applies even to monitor code. To ensure that monitor code can do its job, we set up cache ground rules (one for each opcode) saying that the machine can step whenever the \( PC \) and \( CI \) tags in the \( iv \) are tagged Monitor; in this case, the next pc and any result of the instruction are also tagged Monitor. Monitor code must never change or override these rules.

In addition, the fact that the machine uses a special pair of don’t-care and copy-through masks when running monitor code

\(^4\)To manage the size of our verification effort and focus attention on the more novel parts, we assume the existence of correct monitor implementations as hypotheses. We expect the actual implementations to be straightforward, and verification of this kind of low-level code is a well-studied area [15], [25], [52], [53]. Moreover, building a verified compiler [56] for symbolic micro-policies seems feasible, and this would once and for all lift these assumptions. One way to close this gap would be porting our micro-policy framework to a conventional RISC architecture (e.g., ARM) with an existing verification infrastructure for low-level code or a verified compiler for a general-purpose language that we could use as a backend. This code is also a good target for property-based testing [27], [51].
lets us ensure that the monitor does not fault when coming in contact with user tags. For example, while policies will usually check the tag on the target pc every time user code performs a Jump (which may cause faults), such checks are not needed for monitor code, since we assume that it behaves correctly. To allow for both behaviors, we program the monitor-specific masks to always use the tag of a Jump target as the new pc tag, while disabling this bypass in the normal masks. Aside from information.

between the symbolic and abstract machines doesn’t hold for all policies—we
the focus of the present work—and since, in any case, forward refinement
machine and the corresponding symbolic machine instance. Since this is not
forward
simulation relation
of the specific policy; these policy-specific proofs are assumed
parts of the same micro-policy) as a
machine (instantiated with the symbolic parts of some micro-
We formalize the relation between the symbolic
Refinement
Entry
Monitor
add
AddRule
should store the resulting
the micro-policy. If the instruction is allowed, the miss handler
the transfer function on the
Jump
JumpPc
Mv, Load, Store, and Jal also use copy-through for the result tag.

Miss Handler Since ground rules ensure that monitor code
never faults, the miss handler is only invoked for monitoring
user-level code. The job of the miss handler is thus twofold:
(i) implement the symbolic transfer function of a micro-policy; and
(ii) enforce monitor self-protection. For the latter, the
miss handler just needs to ensure that the faulting opcode
is not a privileged instruction (e.g., AddRule), and that the
Monitor tag does not occur anywhere in the faulting iv (which,
crucially, includes the tags on the “old contents” of any registers
and memory locations that the instruction overwrites). If these
checks fail, the miss handler halts the machine. (In a real system,
the miss handler would instead tell the scheduler to halt just the
offending process.) Otherwise, the miss handler can compute
the transfer function on the iv, halting the machine if it violates
the micro-policy. If the instruction is allowed, the miss handler
should store the resulting ov into the appropriate memory slots,
call AddRule to install it, and restart the instruction that trapped
by jumping through the fpc register.

Besides correctly implementing its symbolic counterpart,
the concrete transfer function is also responsible for setting the
next pc to Monitor whenever a valid monitor-service call is made
(i.e., when the instruction tag is Entry $t^S$). This ensures
that monitor services can execute with the appropriate privilege.

Refinement We formalize the relation between the symbolic
machine (instantiated with the symbolic parts of some micro-
policy) and the concrete machine (instantiated with the concrete
parts of the same micro-policy) as a backward refinement
between their step relations. The proof of backward refinement
relies on some lemmas relating the symbolic and concrete parts
of the specific policy; these policy-specific proofs are assumed
by our framework.

At the heart of our refinement result lies the following strong simulation relation, which describes how a symbolic machine state is represented at the concrete level.

\[ \text{Definition 9.1.} \text{ Strong simulation } \approx^{CS} \text{ is defined as follows (its pieces are discussed below):} \]

\[
\begin{align*}
\text{reg}^C & \sim_{\text{mem}^C} \text{ reg}^S \\
\text{cache}_{\text{ok}}(\text{mem}^C, \text{cache}) & \sim \text{ services}_{\text{ok}}(\text{mem}^C) \\
\text{mem}^C[0..7] & = \lfloor \@ \text{Monitor}, \ldots, \@ \text{Monitor} \rfloor \\
I(\text{mem}^C, \text{reg}^C, \text{cache, extra}) & \quad \text{ decp}(\text{mem}^S, t^C) = t^S \\
\approx^{CS} (\text{mem}^S, \text{reg}^S, \text{pc}@[t^C, \text{fpc}, \text{cache})} \\
\end{align*}
\]

This relation is implicitly parameterized over policy-specific decoding functions (decp, etc.) plus an invariant I, which should be chosen to ensure that (i) the symbolic machine’s extra state component is correctly represented in the concrete machine memory; (ii) the monitor’s code and data are tagged appropriately; and (iii) the cache contains the ground rules needed by the monitor. A concrete register file simulates a symbolic one ($\text{reg}^C \sim_{\text{mem}^C} \text{ reg}^S$) when they agree on register values and the tags decode to the corresponding symbolic tags:

\[ \forall r, x, t^S, (\exists t^C, \text{reg}^C[r] = x@[t^C] \land \text{decp}(\text{mem}^C, t^C) = t^S) \]

\[ \iff \quad \text{reg}^S[r] = x@[t^S] \]

The relation $\text{mem}^C \sim \text{mem}^S$ is defined similarly; notice that the concrete machine can contain more registers or memory locations than the symbolic machine, as long as the concrete tags on these registers or locations do not encode any valid user tag. The predicate cache_{ok} states that, whenever a rule with a valid user-level pc tag is found in the cache, the rule’s result matches that of the symbolic transfer function, modulo the tag encoding. The predicate services_{ok} states that each location in the concrete memory that corresponds to a monitor service is tagged with Entry $t^S$, where $t^S$ is that service’s tag.

Once again, we would like to construct a backward refinement inductively by using a backward simulation (Definition 4.2). However, we can’t use Definition 9.1 for this right away, since backward refinement doesn’t hold for it because steps taken by the concrete machine while inside the monitor are not mapped to any steps of the symbolic machine. Moreover, the concrete monitor will often need to temporarily break both the invariants and the strong correspondence with respect to some symbolic state. To address these points, we use Definition 9.1 to define a weak simulation relation $\sim^{CS}$:

\[ \text{Definition 9.2.} \text{ s}^C \sim^{CS} s^S \text{ if either (i) the pc of } s^C \text{ has a valid user-level tag and } s^C \approx^{CS} s^S, \text{ or else (ii) the pc of } s^C \text{ is tagged Monitor and there exists a concrete state } s^C_{uv} \text{ with a pc that is a valid user-level tag such that } s^C_{uv} \approx^{CS} s^S \text{ and } s^C_{uv} \to s^C \text{, where all states in this execution have the pc tagged Monitor.} \]

Case (ii) handles concrete states where the monitor is executing, for which we do not have a direct correspondence with any symbolic state, but giving us a way to remember enough information from the point where the monitor was invoked to be able to reestablish strong simulation once execution returns to user mode.

\[ \text{Definition 9.3 (} \{0,1\text{-backward simulation}).} \text{ We say that a low-level machine } (\text{State}^L, \to^L, \{0,1\}) \text{-backward simulates a} \]
high-level machine \((\text{State}^H, \rightarrow^H)\) with respect to a relation \(\sim\) if, whenever \(s_1^H \sim s_2^H\) and \(s_1^L \rightarrow s_2^L\), either \(s_2^L \sim s_1^H\) or there exists \(s_2^H\) such that \(s_1^H \rightarrow s_2^H\) and \(s_2^H \sim s_2^L\).

**Theorem 9.4 (Backward CS-simulation).** The concrete machine \(\{0, 1\}\)-backward-simulates the symbolic machine, with respect to \(\sim^{CS}\).

The proof assumes the correctness of the monitor machine code:

1) On a cache miss, if all the invariants are satisfied at the faulting instruction, then the miss handler must successfully return to a user state only if the faulting tag combination is allowed by the transfer function. In this case, the resulting user state must be a refinement of the original symbolic state, and the cache must be updated to allow execution to proceed.
2) When executing a monitor service, the concrete machine returns to user code only if the corresponding symbolic monitor service allows that execution. In this case, the resulting user state must be a refinement of the new symbolic state.
3) Monitor data structures and invariants are not affected by updates to user memory.

Therefore, for any policy implemented in terms of abstract and symbolic machines, we can get end-to-end refinement by composing Theorem 9.4 and the policy-specific symbolic-abstract simulation, relating the abstract machine to the concrete machine instantiated with a correct monitor implementation.

**Example: Concrete Sealing Machine** To implement the sealing micro-policy from §4 on the concrete machine, we can represent symbolic sealing tags as follows on a concrete machine with 32-bit words, assuming that \(|SK| \leq 2^{28}\) and the Monitor tag is represented by 0.

\[
\begin{align*}
 f(0^{28} \cdot 0 \cdot 0) &= \text{Data} \\
 f(k \cdot 0 \cdot 1) &= \text{Key} \ k \\
 f(k \cdot 1 \cdot 1) &= \text{Sealed} \ k \\
 \text{dec}_{CP}(m, 0 \cdot 1) &= \bullet \\
 \text{dec}_{CM}(m, 0 \cdot 1) &= \text{User} \ f(t) \\
 \text{dec}_{CM}(m, 0 \cdot 1) &= \text{Entry} \bullet
\end{align*}
\]

Here \(\cdot\) is bitstring concatenation and \(k\) is a 28-bit binary representation of a symbolic key. (Notice that our sealing tags can be represented in a single word, so \(\text{dec}\) does not depend on the machine memory.) The key counter on the symbolic machine is represented concretely as a single word of monitor memory. Implementing the transfer function is easy: we just need to prevent certain operations (e.g., Binop) from being performed on sealed values and keys, following the symbolic rules presented in §4. Implementing the monitor services is also simple. The \text{mkkey} routine increments the key counter (halting if it would overflow) and remembers the old value \(k\). It then tags the return register with Key \(k\) (with a dummy payload) and returns to user code. The \text{seal} routine checks (using \text{GetTag}) that its first argument has the form \(x@\text{Data}\) and its second argument is tagged Key \(k\), assembling \(x@\text{Sealed} \ k\) in \(r_{ret}\) using PutTag, and returns. \text{unseal} does the converse, checking that its first argument is of the form \(x@\text{Sealed} \ k\) and its second argument is tagged Key \(k\), assembling \(x@\text{Data}\) in the return register. All of these routines halt if the arguments do not have the required form.

## Related Work

We have already discussed work related to specific micro-policies. Here we focus on work related to micro-policies and reference monitors in general.

**Micro-Policies** The micro-policies framework and the PUMP architecture have their roots in SAFE, a clean-slate, security-oriented architecture [36], [40] and the earlier TIARA [75] and ARIES [20] designs. There, the PUMP was used only to implement dynamic IFC; other special-purpose hardware mechanisms enforced properties such as memory safety [55] and compartmentalization [40]. Still, the PUMP design in the SAFE system was made quite flexible, since dynamic IFC is an active area of research, with various mechanisms [14], [18], [19], [48], [50], [78] and “label models” [61], [77] being proposed regularly, making baked-into-hardware solutions unattractive. A simple IFC micro-policy was studied formally for an idealized version of the SAFE processor [15].

The present work aims to demonstrate the applicability of the PUMP beyond IFC and beyond clean-slate hardware. We consider a diverse set of micro-policies and a more conventional architecture—a simplified RISC machine, with bit-strings as words (instead of integers), with registers (instead of a hardware stack), and with no separate instruction memory, no call-stack or memory protection, no special monitor mode with access to protected memory, and no special monitor invocation instruction. Despite giving up these multiple specialized hardware protection features, we obtain similar kinds of protection through more extensive use of the PUMP’s tagging features.

The general structure of our proofs is similar to [15]; in particular, that work also proves refinement between a concrete machine and an abstract one, using a “symbolic IFC rule machine” as an intermediate step; also, as we do here for CFI, it proves a generic preservation theorem that non-interference can be carried to the lowest level. The rule machine in [15], however, is merely a reformulation of an IFC abstract machine to factor a “rule table” (written in a simple IFC-specific domain-specific language) out of the semantics. In contrast, our symbolic machine is generic and is reused by all micro-policies. Moreover, with the exception of dynamic sealing, the symbolic machine instances we study are not just reformulations of (in a sense degenerate) abstract machines that expose low-level tags; indeed, devising these instances is by and large the hardest and most creative part of designing micro-policies, and the refinement between the symbolic and abstract machines is generally challenging. The rest of our end-to-end refinement proof (the concrete to symbolic part) can be obtained from a generic theorem that holds for all micro-policies.

\(^{1}\text{Disclaimer: We have implemented and tested this concrete sealing micro-policy as a sanity check on our framework, but we have not formally proved the sealing-specific assumptions supporting Theorem 9.4.}\)
On the other hand, the proofs in [15] include the verification of an IFC monitor at the machine code level using a framework for structured code generators and a verified DSL compiler, both specially crafted for the simple architecture used there. Here, we chose to focus on designing a generic micro-policy framework and on building and verifying the symbolic machine instances for a diverse set of micro-policies, leaving concrete-level implementation and verification for later.

Another paper on the PUMP [39] proposes implementation optimizations for its hardware architecture and experimentally evaluates their overhead for a set of micro-policies including CFI and memory safety, plus a taint-tracking micro-policy. Our work here is complementary, focusing on formal specification and verification of micro-policies. Also, the micro-policies for compartmentalization and dynamic sealing, as well as the mechanisms for monitor services and monitor self-protection described here, are new.

Reference Monitors  Reference monitors [16], [17], [19], [26], [42], [44], [74] have been around since the early seventies [11]. However, building low-overhead enforcement mechanisms for a broad set of policies has proved challenging. Besides low overhead, Anderson’s seminal work [11] mentions a set of security requirements for reference monitors:

“(a) The reference monitor must fully mediate all operations relevant to the enforced security policy. (b) The integrity of the reference monitor must be protected, either by the reference monitor itself or by some external means. (c) The correctness of the reference monitor must be assured, in part by making the reference monitor be small enough to analyze and test.”

Micro-policies meet all these requirements: (a) they provide complete mediation at the level of individual instructions; (b) they include mechanisms for using tags to protect the integrity of monitor code and data structures (39) (the usual ways to protect the integrity of monitors are either address space isolation using memory protection hardware, which has high performance and expressiveness costs, or for inline reference monitoring program analysis and rewriting to protect the integrity of the inserted checks [43], [44]); and (c) the TCB of micro-policy monitors is generally quite small. Moreover, we achieve high confidence in the their correctness by formal verification of symbolic policies in Coq; in the future we hope also to verify low-level concrete implementations. Finally, while precisely characterizing the class of properties that can be expressed as micro-policies and efficiently enforced by the PUMP is an interesting open problem, we know for sure that it includes very important security properties: IFC, CFI, compartmentalization, and memory safety. Inspiration for attacking the expressiveness question formally may come from the work of Schneider et al. [47], [74] on execution monitors and program rewriting.

11 Conclusions and Future Work

We have presented a generic verification framework for a rich class of low-level, hardware-accelerated, tag-based security enforcement mechanisms. The micro-policies we verify target a wide range of critical security properties, illustrating the power of a simple but flexible hardware mechanism.

Our Coq development runs to about 17.7k lines of code, out of which 4.8k lines are generic (2.8k for the symbolic machine and the generic symbolic-concrete refinement proof) and the rest specific to our four micro-policies (4.9k for compartmentalization, 4.7k for CFI, 1.9k for memory safety, and 2.2k for dynamic sealing). Our Coq development is available at https://github.com/micro-policies/micro-policies-coq.

The existing policies should give a useful template for formalizing other micro-policies on the symbolic machine. We are currently working on a micro-policy for call-stack protection, as well as extensions of the current policies, such as memory protection for stack-allocated data and unboxed structs. An obvious question at the level of the framework itself is how to compose micro-policies. Certain micro-policies are known to compose sensibly, and micro-architectural optimizations ensure that they perform well on practical workloads [39], but the general picture remains unclear. Another obvious target for future work is formalizing the symbolic rule language that we used informally here for exposition.

Our framework currently targets a simplified ISA with a limited instruction set, a single core, no hardware concurrency or interrupts, etc. An interesting challenge is to scale our formalization to a more realistic RISC architecture such as MIPS, Alpha, RISC-V, or ARM extended with a PUMP.

Also, we have not explicitly considered the role of the compiler or loader here, although in reality their support is crucial for some policies. For example, CFI relies on having a control-flow graph, which would naturally come from a compiler, and on the initial tags on instructions, which would have to be added or at least vetted by the loader.

We have not formalized the operating system or its interaction with micro-policy monitoring. Indeed, micro-policies might even live below an OS, and could then help protect the OS itself from attacks. Another alternative (discussed in [39]) is to only protect user-level code and trust the OS, but this would lead to a larger TCB.

Acknowledgments  We are grateful to Delphine Demange, Udit Dhawan, André DeHon, Yannis Juglaret, Greg Morrisett, Steve Zdancewic, and the anonymous reviewers for helpful discussions and thoughtful feedback on earlier drafts. This material is based upon work supported by the DARPA CRASH program through the US Air Force Research Laboratory (AFRL) under Contract No. FA8650-10-C-7090. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. Tolmach was partly supported by a DigiTeo Chair at Laboratoire de Recherche en Informatique, Université Paris-Sud.
Appendix

A Additional Symbolic Machine Rules

Here are the remaining rules for the symbolic machine:

\[
\begin{align*}
\text{Choice} & : \text{Base} \\
\text{mem}[w_{pc}] & = i \circ t_i \quad \text{decode } i = \text{Nop} \\
\text{transfer}(\text{Nop}, t_{pc}, t_i, t_i, t_i, t_i, t_i) & = (t'_{pc}, t') \quad \text{(Nop)} \\
\text{mem}[w_{pc}] & = i \circ t_i \quad \text{decode } i = \text{Mov } r d_r \\
\text{reg}[r] & = w \circ t_t \quad \text{reg}[r_d] = \circ t_d \\
\text{transfer}(\text{Mov}, t_{pc}, t_i, t_i, t_i, t_i, t_i) & = (t'_{pc}, t') \quad \text{(Mov)} \\
\text{mem}[w_{pc}] & = i \circ t_i \quad \text{decode } i = \text{Jump } r \\
\text{reg}[r] & = w' \circ t_t \quad \text{reg}[r_d] = \circ t_d \\
\text{transfer}(\text{Jump}, t_{pc}, t_i, t_i, t_i, t_i, t_i) & = (t'_{pc}, t') \quad \text{(Jump)} \\
\text{mem}[w_{pc}] & = i \circ t_i \quad \text{decode } i = \text{Bnz } r n \\
\text{reg}[r] & = w \circ t_t \quad \text{reg}[r_a] = \circ t_a \\
\text{transfer}(\text{Bnz}, t_{pc}, t_i, t_i, t_i, t_i, t_i) & = (t'_{pc}, t') \quad \text{(Bnz)} \\
\text{mem}[w_{pc}] & = i \circ t_i \quad \text{decode } i = \text{Jal } r \\
\text{reg}[r] & = w' \circ t_t \quad \text{reg}[r_a] = \circ t_a \\
\text{transfer}(\text{Jal}, t_{pc}, t_i, t_i, t_i, t_i, t_i, t_i) & = (t'_{pc}, t') \quad \text{(Jal)} \\
\text{mem}[w_{pc}] & = i \circ t_i \quad \text{decode } i = \text{load } r d_r \\
\text{reg}[r] & = w \circ t_t \\
\text{transfer}(\text{Load}, t_{pc}, t_i, t_i, t_i, t_i, t_i) & = (t'_{pc}, t') \quad \text{(Load)} \\
\end{align*}
\]

B Details of the CFI Micro-Policy

CFI Property and Attacker Model We give a generic CFI definition that can be instantiated to all three levels of machine, adapting the original definition by Abadi et al. [6] to our setting. The two main technical differences are that (1) at the symbolic level, the tag-based mechanism detects a CFI violation on the step after it has occurred (i.e., when checking the instruction following an illegal control transfer, rather than the instruction that caused the transfer) and (2) at the concrete level, detecting a violation and halting the machine is a nontrivial process involving missing in the hardware rule cache and running the software mislabel handler, which eventually halts. These differences do not affect security (at both levels, the machine halts before it does anything externally visible), but they lead to a slightly more complex CFI definition.

As usual [6], the definition is given with respect to an extended step relation →, which is the union of normal machine steps →_n and attacker steps →_a. The →_a relation is much simpler: it represents an overapproximation of the attacker’s capabilities, allowing the attacker to change any user-level data in the system but none of the code. At the concrete and symbolic levels, the attacker will also be prevented from directly changing the tags. This models an attacker that can mount buffer-overflow attacks but has no built-in capability for subverting our NWC, NXD, or CFI protections (e.g., no hardware backdoor).

We start by defining when a trace has CFI with respect to a set of allowed indirect jumps J (a binary relation on code addresses). From J we can construct the complete CFG, a relation on machine states written cfg J. This involves adding all direct CFG edges that are clear in the code (e.g., a Nop or Bnz can reach the next instruction; a Bnz can reach its target).

**Definition A.1.** We say that an execution trace s_0 → s_1 → … → s_n has CFI if (s_i, s_{i+1}) ∈ cfg J for all i ∈ [0, …, n) such that s_i →_a s_{i+1}.

The above definition additionally requires that an attacker step which happens to be a valid normal step must also be in the CFG, which is helpful for proving CFI preservation. This definition is slightly stronger than Abadi et al.’s; however, we instead use the following incomparable definition, which allows a single violation in a trace, as long as the machine is “stopping” afterwards.

**Definition A.2 (CFI).** We say that the machine (State, init, →_n, →_a, cfg, stopping) has CFI with respect to the set of allowed indirect jumps J if, for any execution starting from initial state s_0 and producing a trace s_0 → … → s_n, either:

1) the whole trace has CFI according to Definition A.1, or else
2) there is some i such that s_i →_a s_{i+1}, and (s_i, s_{i+1}) ∉ cfg J, where the sub-traces s_0 → … → s_i and s_{i+1} → … → s_n both have CFI and the sub-trace s_{i+1} → … → s_n is stopping.

At the abstract and symbolic levels a trace is stopping if it is formed only of attacker steps (→_a) between states that are all stuck with respect to normal steps (→_n). This definition expresses the fact that the attacker can take steps even after a violation has occurred and the machine has halted with respect to normal steps. At the concrete level the attacker can even take steps while the machine is halting; this is discussed together with the concrete machine for CFI.

**Abstract CFI Machine** The abstract machine has CFI by construction. It has separate instruction and data memories (im and dm); the instruction memory is fixed (NWC), and all executed instructions are fetched from this memory (NXD):
im[pc] = i  decode i = Store r_p, r_s  reg[r_p] = p

\[
\begin{align*}
\text{reg}[r_s] &= w \\
\text{dm}' &= \text{dm}[p-w]
\end{align*}
\] (STORE)

\[(im, dm, reg, pc, true) \rightarrow_n (im, dm', reg, pc + 1, true)\]

Machine states contain an additional bit ok. The machine executes instructions only when this bit is true; otherwise it gets stuck with respect to normal steps (the attacker can take steps at any time). Indirect jumps are checked against the allowed set J; if the control flow is invalid the jump is taken but the violation is recorded by setting ok to false so that the machine will now be stuck with respect to normal steps. This behavior is designed to match rule-based enforcement at lower levels, thus simplifying the proofs (we can prove a 1-backward SA-simulation instead of a \{0, 1\} one).

\[
\text{im}[pc] \uparrow, \text{dm}[pc] \uparrow, \text{get_service pc} = (f, t_i)
\]

f \((im, dm, reg, pc, true) = (im, dm', reg', pc', true)\) (SVC)

As in all other step rules, we proceed only when the ok bit is true, which prevents monitor service calls outside the allowed CFG.

The step rules above capture the intuition of a machine that has CFI by construction. With the exception of the rule for Load, the remaining rules are straightforward; we show just the ones for Load and Bnz:

\[
\begin{align*}
\text{im}[pc] &= i \\
\text{decode i = Load r_p, r_s} \\
\text{reg}[r_p] &= w_p \\
\text{im}[w_p] &= w \\
\text{dm}[w_p] &= w \\
\text{reg'} &= \text{reg}[r_s - pc + 1, ok] \\
\text{ok} &= (pc, pc') \in J
\end{align*}
\] (LOAD)

\[
\text{mem[pc] = i} \\
\text{decode i = Bnz r n} \\
\text{reg}[r] &= w \\
\text{pc'} &= \text{pc} + 1 \\
\text{if w = 0 then pc + 1 else pc + n}
\] (BNZ)

Notice that the Load rule allows loading a word from either the instruction or the data memory, capturing the intuition that instructions can be loaded as data. The disjointness of the two memories (and thus the fact that the rule is deterministic) is guaranteed by the simulation relation between the symbolic and the abstract machine. The step rule for Bnz demonstrates the fact that we only check indirect jumps, not direct ones, for control-flow violations.

Proving CFI for this abstract machine is straightforward. We capture the attacker’s capabilities by the following relation:

\[
\text{dom dm} = \text{dom dm'} \\
\text{dom reg} = \text{dom reg'}
\] (DOM)

This allows the attacker to arbitrarily change the data memory and registers at any time. Finally, the only requirement on initial states is that the ok bit starts out true.

**Theorem A.3 (Abstract CFI).** This abstract machine has CFI.

**Symbolic CFI Machine** The symbolic micro-policy for CFI was described in §6. For completeness, we present the rest of the symbolic rules. The case for Jump is identical to Jal. For the other operators (besides Jump, Jal or Store), we again have one rule to deal with the case of a jump target...

\[(src, dst) \in J\]

and a different one when execution did not take a jump:

\[(op : \text{(Code \_\_)} \rightarrow (Code \_\_, \_\_))\]

We capture the symbolic-level attacker by the relation

\[
\begin{align*}
\text{mem} &\rightarrow_a^{S} \text{mem'} \\
\text{reg} &\rightarrow_a^{S} \text{reg'}
\end{align*}
\]

where the \(\rightarrow_a^{S}\) relation on memories and registers is the point-wise extension of the following inductive relation on atoms:

\[
\begin{align*}
\text{w}_1 \otimes \text{Data} &\rightarrow_a^{S} \text{w}_2 \otimes \text{Data} \\
\text{w} \otimes \text{(Code id)} &\rightarrow_a^{S} \text{w} \otimes \text{(Code id)}
\end{align*}
\]

This allows attackers to change words tagged Data but not words tagged Code and not the tags themselves.

Two properties are invariant under execution: all words in memory tagged Code addr are indeed located at address addr, and all sources and destinations in J are tagged Code addr. A symbolic machine state is initial if it satisfies these invariants and the pc is tagged Data (no jump in progress).

**Concrete Machine** To obtain a useful result about CFI on the concrete machine, it is not enough to simply instantiate the generic refinement result from §9, as we do for other policies; we must first define concrete versions of each concept used in the statement of the CFI property. The concrete attacker is only allowed to take steps when the machine is in user mode. It can change memory and registers but not the contents of the cache, the pc, or the fpc.

\[
\begin{align*}
\text{mem} &\rightarrow_c^{C} \text{mem'} \\
\text{reg} &\rightarrow_c^{C} \text{reg'}
\end{align*}
\]

The attacker relation for memories and registers directly extends the symbolic one to the additional low-level tags

\[
\begin{align*}
\text{w}_1 \otimes \text{ut}_1 &\rightarrow_a^{S} \text{w}_2 \otimes \text{ut}_2 \\
\text{decR}(m, c_t) &= ut_i \\
\text{w} \otimes \text{ct} &\rightarrow_c^{C} \text{w} \otimes \text{ct}
\end{align*}
\]

and similarly for decM. This allows the concrete attacker to change tags of some symbolic tag ut under the same conditions as at the symbolic level, but prevents it from changing any other atoms (in particular monitor code, data, and registers) or any tags. This attacker model relies on the correctness of the monitor self-protection mechanism from §9.

The initial states at the concrete level are defined as the image under \(\approx_i^{CS}\) of symbolic initial states that additionally
satisfy our symbolic invariants. This ensures that concrete initial states satisfy both the generic low-level conditions from §9 (\(I_w\)) and that they respect the symbolic invariants.

A concrete trace is stopping if it has a (possibly empty) prefix formed only of attacker steps between user states that are all stuck with respect to user steps, followed by a (possibly empty) suffix of monitor states. This captures either immediately getting stuck with respect to normal steps or missing in the rule cache, faulting into the monitor, and eventually halting without returning from monitor mode. This definition also deals with the fact that we allow the attacker to take steps even after a violation has occurred but before the machine is halt (right before the fault into the miss handler).

The \(\text{cfg}\) function, extending the set \(J\) of allowed jumps to a relation on concrete states is defined so that, when the machine is in monitor mode, all control flows are allowed. We assume that monitor code is correct, so we do not need to enforce CFI there.

Formal Results We prove CFI for the concrete machine running a CFI monitor by transporting CFI from the abstract machine to the symbolic and then to the concrete one using a general CFI-preservation result.

**Theorem A.4 (CFI Preservation).** Given a high-level machine \(M^H = (\text{State}^H, \text{initial}^H, \rightarrow^H, \text{cfg}^H, \text{stopping}^H)\), a low-level machine \(M^L = (\text{State}^L, \text{initial}^L, \rightarrow^L, \text{cfg}^L, \text{stopping}^L)\), a simulation relation between states \(s^L \sim s^H\), a predicate \(\text{checked} s^L_1 s^L_2\) indicating which low-level steps need to be checked for CFI, and a set of allowed indirect jumps \(J\), if \(M^H\) has CFI, then \(M^L\) also has CFI under the following additional assumptions:

1. 1-backward simulation with respect to \(\sim\) for checked steps in \(-\rightarrow^L_n\);
2. \(\{0, 1\}\)-backward simulation with respect to \(\sim\) for unchecked steps in \(-\rightarrow^L_n\);
3. 1-backward simulation with respect to \(\sim\) for attacker steps \((-\rightarrow^L_a)\);
4. if \(\text{initial} s^L\), then \(\exists s^H\) so that initial \(s^H\) and \(s^L \sim s^H\);
5. if \(s^L_1 \sim s^L_2\), \(s^L_1 \sim s^H\), \(\text{checked} s^L_1 s^L_2\) then \(\text{cfg}^L J = \text{cfg}^H J\);
6. if \(s^L_1 \sim s^H, s^L_1 \rightarrow s^L_2\) and \(\text{checked} s^L_1 s^L_2\), then \((s^L_1, s^L_2) \in \text{cfg}^L J\);
7. and \(s^H_1 \sim s^L_2, (s^H_1, s^H_2) \not\in \text{cfg}^H J\), and \(s^H_1 \rightarrow s^H_2\) then \(\neg(s^H_1 \rightarrow a s^H_2)\);
8. if \(s^H \rightarrow s^L_2\), \(\text{checked} s^H_1 s^H_2\), \((s^H_1, s^H_2) \not\in \text{cfg}^H J\), and \(s^H_1 \rightarrow s^H_2\), and the trace \(s^H_2 \vdash t^H\) refines the trace \(s^L_2 \vdash t^L\) with respect to simulation relation \(\sim\), and stopping \((s^L_2 \vdash t^L)\), implies that also stopping \((s^L_2 : t^H)\).

Assumption A3 states that low-level attacker steps \((-\rightarrow^L_a)\) are simulated by corresponding high-level attacker steps, which ensures that the low-level attacker is at most as strong as the high-level one. A4 enforces that all low-level initial states can be mapped to related high-level initial states. A5 ensures that for checked low-level steps the two cfg functions completely agree. A6 states that all unchecked low-level steps are allowed by \(\text{cfg}^L\) (e.g., monitor steps are allowed by the CFG). A7 states that CFG violations are not simultaneously attacker steps. Finally, A8 ensures that a high-level stopping trace can only be mapped by the simulation relation to a stopping low-level trace.

**Theorem A.5 (CFI Concrete).** The concrete machine running a CFI monitor satisfying the assumptions described in §9 has CFI.

C Details of the Compartmentalization Micro-Policy

Compartmentalization Property In §5, we outlined the compartmentalization property and abstract machine invariant used at a high level. The detailed versions of these are as follows.

**Definition A.6 (Good abstract compartmentalization states).** An abstract state \((\text{mem}, \text{reg}, pc, C, F, \text{prev})\) is good if:
1. \(\text{prev} \in C\);
2. the address spaces of the compartments in \(C\) are pairwise non-overlapping;
3. all jump and store targets in \(C\) lie inside some address space in \(C\);
4. each monitor service address lies in its own compartment; and
5. all non-monitor-service address spaces contain only defined addresses.

**Theorem A.7 (Goodness is preserved).** Suppose that the abstract machine state \(M\) steps to \(M'\). If \(M\) is good, then so is \(M'\).

**Theorem A.8 (Compartmentalization).** Let \((\text{mem}, \text{reg}, pc, C, F, \text{prev})\) be a good abstract machine state that steps to the state \((\text{mem}', \text{reg}', pc', C', F', \text{prev}')\), and suppose that the initial \(pc\) lies in the compartment \((A, J, S)\). Then (a) if the resulting state isn’t stuck, then \(pc' \in A \cup J\); and (b) for any address \(a\) such that \(\text{mem}[a] \neq \text{mem}'[a]\), we have \(a \in A \cup S\).

Abstract Machine In §5, we presented only one rule for the compartmentalization abstract machine, namely the rule for Store. This rule contains most of the details of the abstract machine—it handles the compartmentalization check that ensures the step from the previous machine was legal, as well as an additional check for write-correctness—but is rather complicated and also does not demonstrate the rules for jumps. In order to see how the basic machine rules are extended to arrive at the abstract machine rules, consider Nop:

\[
\text{mem}[pc] = i \quad \text{decode } i = \text{Nop} \\
(A, J, S) \in C \quad pc \in A \\
(A, J, S) = (A_{\text{prev}}, J_{\text{prev}}, S_{\text{prev}}) \cup (F = \text{Jumped } \wedge pc \in J_{\text{prev}}) \\
\rightarrow (\text{mem}, \text{reg}, pc, C, F, (A_{\text{prev}}, J_{\text{prev}}, S_{\text{prev}})) \\
\text{Nop}
\]

In the Nop rule, there are two basic compartmentalization checks added to the basic machine, which are present for every rule on the abstract machine. First, we check that \(pc\) currently lies within some compartment \((A, J, S)\) with the \((A, J, S) \in C\) and \(pc \in A\) checks. Second, we check the validity of the previous machine step with respect to compartments. To execute while respecting compartment boundaries, we must currently be
in the same compartment we were in the previous state, which is checked by \((A, J, S) = (A_{\text{prev}}, J_{\text{prev}}, S_{\text{prev}})\), or we must have arrived here from a permitted jump, which is checked by 
\(F = \text{Jumped} \land pc \in J_{\text{prev}}\).

Similarly, Nop propagates the auxiliary state of the machine is propagated in a way that is common to almost all instructions; the set of compartments \((C)\) is not updated, this is unconditionally marked as an FallThrough step, and the compartment the pc is currently in \((A, J, S)\) is recorded.

While all rules perform the basic compartmentalization checks, the jumps (and only the jumps) propagate their auxiliary state slightly differently, as can be seen in the rule for Jump:

\[
\begin{align*}
\text{mem}[pc] &= i \quad \text{decode}\; i = \text{Jump}\; r \\
\text{reg}[r] &= pc'
\end{align*}
\]

\((A, J, S) = (A_{\text{prev}}, J_{\text{prev}}, S_{\text{prev}}) \lor (F = \text{Jumped} \land pc \in J_{\text{prev}})
\]
\[(\text{mem}, \text{reg}, pc, C, F, (A_{\text{prev}}, J_{\text{prev}}, S_{\text{prev}})) \implies (\text{mem}, \text{reg}, pc', C, \text{Jumped}, (A, J, S))\]

This step was not FallThrough; the auxiliary state instead records that the machine Jumped. We can also see that Jump unconditionally updates the pc, since the control flow will be checked on the next instruction by the basic compartmentalization checks.

**Simulation Relation** The relation \(\sim^{SA}\) is defined as follows:

\[
(\text{mem}^S, \text{reg}^S, \text{pc}^S \circ (F^S, \text{prev}^S), \text{next}, t_i, t_{AJ}, t_{AS})
\sim^{SA} (\text{mem}^A, \text{reg}^A, \text{pc}^A, C, F^A, \text{prev}^A)
\]

when \(1) \; \text{reg}^S = \text{reg}^A; \; \text{(2)} \; \text{pc}^S = \text{pc}^A; \; \text{(3)} \; F^S = F^A; \; \text{(4)} \; \text{mem}^S \text{ and } \text{mem}^A \text{ agree on all values, and } \text{mem}^S \text{ has only data tags; (5)} \; \text{prev}^S \text{ simulates } \text{prev}^A; \; \text{(6)} \; \text{all compartments in } C \text{ are simulated by something (explained below); (7)} \; \text{the symbolic state simulates } C \text{ (explained below); (8)} \; \text{the addresses of system calls are distinct and are undefined in both } \text{mem}^S \text{ and } \text{mem}^A; \) and \(9) \; \text{the symbolic auxiliary state satisfies the appropriate invariants. This requires a notion of simulation between a compartment id and a single abstract compartment, as well as between a symbolic state and a set of abstract compartments. The former guarantees that a compartment id represents the same thing as a particular compartment; the latter guarantees that the set of all data tags captures the same thing as the original set of compartments.}

A compartment id \(c^S\) simulates an abstract compartment \((A, J, S)\), relative to a symbolic state \(s^S\), when \(1)\) all addresses in \(A\) have the compartment id \(c^S\) in their data tag in \(s^S\); \(2)\) the compartment id \(c^S\) occurs in the set of incoming compartments in the tag on all addresses in \(J\) in \(s^S\); and \(3)\) the compartment id \(c^S\) occurs in the set of writer ids in the tag on all addresses in \(S\) in \(s^S\).

Simulation between a symbolic state \(s^S\) and a set \(C\) of abstract compartments is defined as follows. If a memory location \(p\) has a tag \(t\) in \(s^S\), we require three things. First, \(t\) must have the form \((c^S, I, W)\). Second, there must be some abstract compartment \((A, J, S) \in C\) with \(p \in A\). Third, the tags of other addresses \(p'\) in \(s^S\) must have the form \((c^S, I', W')\) and satisfy some additional constraints: \(c^S = c'^S\) iff \(p' \in A\); if \(c^S \in I'\), then \(p' \in J\); and if \(c^S \in W'\), then \(p' \in S\).

**D Details of the Memory Safety Micro-Policy**

**Abstract Machine** The monitor services beyond malloc and free are fully specified by the following rules:

\[
\begin{align*}
\text{reg}[\text{reg}] &= (b, o) \quad \text{mem}[b] = vs \\
\text{reg}' &= \text{reg}[\text{reg} \leftarrow \text{length}\; vs] \quad \text{reg}[\text{reg}] = \text{pc}' \\
\text{mem} \circ (\text{reg}, \text{size} \; \text{add}r) &= (\text{mem}, \text{reg}', \text{pc}') \\
\text{reg}[\text{reg}] &= (b, o) \quad \text{reg}' = \text{reg}[\text{reg} \leftarrow (b, 0)] \quad \text{reg}[\text{reg}] = \text{pc}' \\
\text{mem} \circ (\text{reg}, \text{base} \; \text{addr}) &= (\text{mem}, \text{reg}', \text{pc}') \\
\end{align*}
\]

The relation \(\sim^{SA}\) is defined as follows:

\[
\begin{align*}
\text{eq}\; w_1 \; w_2 &= w_1 = w_2 \\
\text{eq}\; (b_1, o_1) \; (b_2, o_2) &= b_1 = b_2 \land o_1 = o_2 \\
\text{eq}\; v_1 \; v_2 &= \text{error}\; \text{otherwise}
\end{align*}
\]

While Binop fails when \(eq\) returns \(error\), the equality monitor service simply returns false in this case. The behavior of Binop matches the one at the lower levels, where the monitor enforces that equality is typed and can only compare pointers to the same block.

**Simulation Relation** The map \(\phi\) relates the two memory models by sending colors to pairs of an abstract block identifier and the base address of the corresponding block on the symbolic machine. The simulation relation on states \(\sim_{\phi}\) is defined in terms of the relation \(\sim_{\phi, t_v}\) between abstract values and symbolic words carrying the value tag \(t_v\) (of the shape \(w @ (c, t_v)\) in memory or \(w @ t_v\) in registers):

\[
\begin{align*}
w' &\sim_{\phi, t_v} w \\
(w + o) &\sim_{\phi, t_v} (b, o) = \phi(c) = (b, w) \\
w &\sim_{\phi, t_v} v
\end{align*}
\]

The notation \(t_v\) on the last line indicates that it is the default case. This relation is extended pointwise to register banks, whereas the relation between memories \(\text{mem}S \sim_{\phi}\; \text{mem}A\) says that whenever a memory location can be accessed on the symbolic machine, the corresponding location on the abstract machine can also be and that the two values found in these locations are in refinement:

\[
\begin{align*}
\text{mem}S[w_1] &= w_2 @ (c, t_v) \\
\phi(c) &= (b, \text{base}) \land \text{mem}A[b][\text{base} - w_1] = v \land w_2 \sim_{\phi, t_v} v
\end{align*}
\]
Since we want to preserve both spatial and temporal safety, the map \( \phi \) keeps track of both live and freed blocks. Hence, \( \phi \) is left unchanged if the two machines take corresponding steps, except for allocation, which extends the domain of \( \phi \) with the newly allocated block. The key property of \( \phi \) is (left) injectivity: two colors that are mapped to the same block are identical.

### E Further Concrete Machine Details

#### Instruction Set

We present here the complete instruction set for the concrete machine. These are mostly the common instructions for all machines, although the special tagging instructions are either missing (from the abstract machines) or not allowed to execute (for the symbolic machine).

\[
\text{inst} ::= \text{Nop} \mid \text{Const} i r_d \mid \text{Mov} r_s r_d \mid \text{Binop} \oplus r_1 r_2 r_d \mid \text{Store} r_g r_s \mid \text{Jump} r \mid \text{Jal} r \mid \text{Bnz} i r \mid \text{Halt} \mid \text{AddRule} \\
\]

**More Step Rules**

We present here a further representative set of rules for the concrete machine.

\[
\begin{align*}
\text{mem} [ w_{pc} ] &= i \oplus t_i \quad \text{decode } i = \text{Binop} \oplus r_1 r_2 r_d \\
\text{reg} [ r_1 ] &= w_1 \oplus t_1 \qquad \text{reg} [ r_2 ] &= w_2 \oplus t_2 \\
\text{reg} [ r_d ] &= \ominus t_d \\
\text{cache} &\vdash (\text{Binop}, t_{pc}, t_i, t_1, t_2, t_d) \rightarrow (t_{pc}', t_i') \\
\text{reg}' &= \text{reg} [ r_d'] := \ominus (w_1 \oplus w_2) \oplus t_d' \\
\end{align*}
\]

\[(\text{BINOP})\]

\[
\begin{align*}
\text{mem} [ w_{pc} ] &= i \oplus t_i \quad \text{decode } i = \text{Jal} r \\
\text{reg} [ r ] &= w'_{pc} \oplus t_1 \\
\text{reg} [ r ] &= \ominus t_r \\
\text{cache} &\vdash (\text{Jal}, t_{pc}, t_i, t_1, t_r, -) \rightarrow (t_{pc}', t_i', r') \\
\text{reg}' &= \text{reg} [ r_r' ] := \ominus (w_1 \oplus w_2) \oplus t_r' \\
\end{align*}
\]

\[(\text{JAL})\]

\[
\begin{align*}
\text{mem} [ w_{pc} ] &= i \oplus t_i \quad \text{decode } i = \text{JumpFpc} \\
\text{cache} &\vdash (\text{JumpFpc}, t_{pc}, t_i, t_{pc'}, -) \rightarrow (t_{pc}', -) \\
\end{align*}
\]

\[(\text{JUMP}\text{FC})\]

**References**


[21] M. Budiu, Ü. Erlingsson, and M. Abadi. Architectural support for software-


