We study a two-stage model, in which students are 1) admitted to college on the basis of an entrance exam which is a noisy signal about their qualifications (type), and then 2) those students who were admitted to college can be hired by an employer as a function of their college grades, which are an independently drawn noisy signal of their type. Students are drawn from one of two populations, which might have different type distributions. We assume that the employer at the end of the pipeline is rational, in the sense that it computes a posterior distribution on student type conditional on all information that it has available (college admissions, grades, and group membership), and makes a decision based on posterior expectation. We then study what kinds of fairness goals can be achieved by the college by setting its admissions rule and grading policy. For example, the college might have the goal of guaranteeing equal opportunity across populations: that the probability of passing through the pipeline and being hired by the employer should be independent of group membership, conditioned on type. Alternately, the college might have the goal of incentivizing the employer to have a group blind hiring rule. We show that both goals can be achieved when the college does not report grades. On the other hand, we show that under reasonable conditions, these goals are impossible to achieve even in isolation when the college uses an (even minimally) informative grading policy.