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Privacy as a Tool for Mechanism Design (for arbitrary objective functions)
Without Money

1 Introduction

Today we return to the idea of differential privacy as a tool to be wielded in mechanism design. We
will prove a simple, but remarkable theorem that deviates from our normal intuition as mechanism
designers. Typically, we think of social welfare as a special objective function – we can always use the
VCG mechanism to optimize social welfare, but in general, there do not exist truthful mechanisms to
optimize arbitrary objective functions. Even with the welfare objective, we require mechanisms which
can extract payments.

In this lecture we give a strictly dominant strategy truthful mechanism which can optimize arbitrary
objective functions, and without payments. This is not in contradiction with known impossibility results,
because we pay for this remarkable result – we do not optimize the objective exactly, but instead only
approximately, with some additive loss. Nevertheless, this loss will generally become negligible in large
economies.

Let us recall two features of the exponential mechanism from Lecture 1, one of which we have already
remarked on, and one of which we have not:

1. Although we used the exponential mechanism to optimize for revenue in the first lecture and social
welfare in the second lecture, it can equally well optimize for arbitrary low sensitivity objective
functions. (Although it was important that it optimized for welfare in Lecture 2 to pair it with
VCG payments).

2. The generic approximate truthfulness guarantee that it inherits by virtue of being differentially
private does not require payments. Note that in the last two lectures, we used payments in different
ways. In Lecture 1, we used payments to a) collect revenue, and b) guarantee that not every
report was an approximate dominant strategy. In Lecture 2, we used payments to guarantee exact
truthfulness. But there is more than one way to skin a cat1...

This combination makes it tempting to ask: can the exponential mechanism be used as a tool to
design (exactly) truthful mechanisms for approximately optimizing arbitrary objective functions, without
the use of money? Such general tools are rare in mechanism design: the Gibbard-Satterthwaite theorem
tells us that in general settings, the only non-trivial deterministic truthful mechanisms are constant
functions and dictator functions (in which the outcome is chosen as a function of only a single agent’s
report). In the lucky case when our objective is social welfare, we saw the VCG mechanism is a general
tool, but it requires payments! In general, this is necessary.

In this lecture, however, we will give a general technique for truthfully optimizing arbitrary objective
functions without payments. The tradeoff, as always, will be that we do not exactly optimize these
functions, but only approximately, with some additive loss. However, the additive loss will generally
become a diminishing fraction of the optimal objective value as the size n of the society grows large.

2 Making the Exponential Mechanism Exactly Truthful With-
out Money

We will work in the following setting:

1Non-native speakers: This is an odd English language idiom. Cat torture will not be essential to the content of this
lecture.
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Definition 1 (The Environment) An environment is determined by:

1. A set N of n players.

2. A set of types Ti for each player i ∈ N .

3. A finite set S of social alternatives

4. A set of reactions Ri for each player i ∈ N .

5. A utility function ui : Ti × S ×Ri → [0, 1] for each agent i.

We write T−i for
∏
j 6=i Ti and t−i ∈ T−i. Write ri(t, s, R̂i) ∈ arg maxr∈R̂i ui(t, s, r) to denote i’s optimal

reaction to type t and alternative s among choices R̂i ⊆ Ri.

A direct revelation mechanism M defines a game which is played as follows:

1. Each player i reports a type t′i ∈ Ti.

2. The mechanism chooses an alternative s ∈ S and a subset of reactions for each player R̂i ⊆ Ri.

3. Each player chooses a reaction ri ∈ R̂i and experiences utility ui(ti, s, ri).

Note that this setting is slightly unusual in the following sense: agents interact with the mechanism
twice: first, they report their type. Then, the mechanism chooses not just a set of outcomes, but also a
feasible set of reactions, and then the players choose a reaction from among that set. A player’s utility
depends on just on the outcome, but on what reaction he takes in response to it. Importantly, here, the
mechanism has the power to limit the set of reactions that the player may choose from.

This isn’t unreasonable though, nor as different from the standard setting as it seems at first. In
fact, standard auction settings can be phrased in this way. For example, in the first lecture, we gave
a differentially private mechanism that picks a sales price p as a function of player reports. Then, as
is usually the case in auctions, we obligated any player who reported a value greater than this price to
actually follow through with the purchase of the item at price p. If you like, the price p was the outcome
chosen by the mechanism. Given the outcome, each agent had two possible reactions: buy the good,
or not buy it – and their utility was a function both of the outcome (the purchase price), and whether
or not they decided to buy (their chosen reaction). Finally, by obligating agents to buy the item if the
price was below their reported valuation, the mechanism used its ability to restrict the set of allowable
reactions. Restricted reaction sets are relevant in other settings as well. For example (related to an
application we will see), suppose a local government is deciding where to build a collection of schools, as
a function of reported citizen addresses. After the schools are open, the city can restrict each citizen to
be able to use only the school that is closest to his reported address, and not a school that may instead
be closer to his actual address.

Note that since there is no further interaction after the 3rd step, rational agents will always pick the
reaction that maximizes their utility at the 2nd step:

ri = ri(ti, s, R̂i),

and so we can ignore this as a strategic step.
Let Ri = 2Ri and let R =

∏n
i=1Ri. Then a mechanism is a randomized mapping M : T → S ×R.

We denote agents expected utilities for reporting a type t′i when all other agents report type t′−i as:

u(ti,M(t′i, t
′
−i)) = Es,R̂i∼M(t′i,t

′
−i)

[u(ti, s, ri(ti, s, R̂i))]

We want to design mechanisms that incentivize truthful reporting, but don’t require payments...
We will say that:
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Definition 2 A mechanism M is η-strictly dominant strategy truthful if for all i ∈ N , ti ∈ Ti and
t′−i ∈ T−i:

u(ti,M(ti, t
′
−i)) ≥ u(ti,M(t′i, t

′
−i)) + η

Finally, we will be interested in maximizing arbitrary objective functions F : T × S × R → R. We
will normalize these objective functions to take values in [0, 1] For example, our old favorite – social
welfare – is:

F (t, s, r) =
1

n

n∑
i=1

ui(ti, s, ri)

Definition 3 A mechanism M α-approximates an objective F if for all t:

Es,R̂∼M[F (t, s, r(t, s, R̂))] ≥ max
t,s,r

F (t, s, r)− α

Ok! Now we can set about designing mechanisms. First lets consider unrestricted mechanisms that
always output R̂i = Ri. We’ve already got a terrific one – the exponential mechanism.

Recalling the theorem:

Theorem 4 Mε is ε-approximately truthful and α-approximates any objective F for:

α = O

(
GS(F ) · log |S|

ε

)
We want to make the exponential mechanism truthful – but recall we can’t use payments. The idea

will be simple. Using the exponential mechanism, we get a good approximation to our objective – and
agents have at most a small incentive to deviate. Suppose we had some other mechanism that perhaps
did not get a good approximation to our objective, but gave agents a strict incentive to truth-tell. Then,
there exists some lottery between the two mechanisms such that their resulting combination is exactly
dominant strategy truthful! If the lottery still puts substantial weight on the exponential mechanism,
then we will inherit much of its objective guarantee.

Here is one such strictly truthful mechanism which is very simple, but not necessarily the best for a
given problem:

Definition 5 The commitment mechanism MP (t′) selects s ∈ S uniformly at random and sets R̂i =
{ri(t′i, s, Ri)}. i.e. it picks a random outcome, and then forces everyone to react as if their reported type
is their true type.

Define the gap of an environment as:

γ = min
i,ti 6=t′i,t−i

max
s∈S

(ui(ti, s, ri(ti, s, Ri))− ui(ti, s, ri(t′i, s, Ri)))

i.e. γ is a lower bound over players and types of the worst-case cost (over s) of mis-reporting. Note
that for each player, this worst-case is realized with probability at least 1/|S|. Therefore we have the
following simple observation:

Lemma 6 For all i, ti, t
′
i, t−i:

u(ti,MP (ti, t−i)) ≥ u(ti,MP (t′i, t−i)) +
γ

|S|
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Proof For any player i, let s∗ = arg mint′i 6=ti,t−i maxs∈S (ui(ti, s, ri(ti, s, Ri))− ui(ti, s, ri(t′i, s, Ri))).
Then for any deviation t′i:

u(ti,MP (ti, t−i)) =
∑
s∈S

1

|S|
· u(ti, s, ri(ti, s, Ri))

=
1

|S|

∑
s6=s∗

(u(ti, s, ri(ti, s, Ri))) + u(ti, s, ri(ti, s
∗, Ri))


≥ 1

|S|

∑
s6=s∗

(u(ti, s, ri(t
′
i, s, Ri))) + u(ti, s, ri(t

′
i, s
∗, Ri)) + γ


= u(ti,MP (t′i, t−i)) +

γ

|S|

In other words, the commitment mechanism is strictly truthful: every individual has at least a γ
|S|

incentive not to lie.
This suggests a way to achieve an exactly truthful mechanism that also gets good objective guarantees:

Definition 7 The punishing exponential mechanism MP
ε (t) defined with parameter 0 ≤ q ≤ 1 is:

1. With probability (1− q) return Mε(t)

2. With probability q return MP (t).

We can calculate for which values of q MP
ε (t) is truthful:

Theorem 8 If ε ≤ qγ
(1−q)|S| then MP

ε is strictly truthful.

Proof Observe that by linearity of expectation, we have for all ti, t
′
i, t−i:

ui(ti,MP
ε (ti, t−i)) = (1− q) · ui(ti,Mε(ti, t−i)) + q · ui(ti,MP (ti, t−i))

≥ (1− q) (ui(ti,Mε(t
′
i, t−i))− ε) + q

(
ui(ti,MP (t′i, t−i)) +

γ

|S|

)
= ui(ti,MP

ε (t′i, t−i))− (1− q)ε+ q
γ

|S|

Setting q γ
|S| > (1− q)ε and solving for ε gives the theorem.

Remark This condition is satisfied whenever we set q = |S|ε
γ+|S|ε .

Note that we also have utility guarantees for this mechanism. Setting the parameter q so that we
have a truthful mechanism:

Es,R̂∼MP
ε

[F (t, s, r(t, s, R̂))] ≥ (1− q) · Es,R̂∼Mε
[F (t, s, r(t, s, R̂))]

=

(
1− |S|ε

γ + |S|ε

)
· Es,R̂∼Mε

[F (t, s, r(t, s, R̂))]

=

(
1− |S|ε

γ + |S|ε

)
·
(

max
t,s,r

F (t, s, r)−O
(
GS(F ) · log |S|

ε

))
≥ max

t,s,r
F (t, s, r)− |S|ε

γ + |S|ε
−O

(
GS(F ) · log |S|

ε

)
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Picking ε to minimize this expression, we find:

Es,R̂∼MP
ε

[F (t, s, r(t, s, R̂))] ≥ max
t,s,r

F (t, s, r)−O

(√
GS(F ) · |S| log |S|

γ

)
Therefore, we have shown:

Theorem 9 There is a strictly dominant strategy truthful mechansim that does not use payments, and
for any objective function F , α-approximates F for:

α = O

(
GS(F ) ·

√
|S| log |S|

γ

)
e.g. if GS(F ) = 1/n (as it is for average social welfare:

α = O

(√
|S| log |S|

γn

)
which tends to zero as n→∞

We did of course need that γ > 0.

3 An application: Facility Location

Lets now consider an application of this framework: the problem of school location that we alluded to
earlier. Suppose that a city wants to build k schools to minimize the average distance between each
citizen and their closest school. To simplify matters, we make the mild assumption that the city is built
on a discretization of the unit line. Formally, for all i let:

L(m) = {0, 1

m
,

2

m
, . . . , 1}

denote the discrete unit line with step-size 1/m. |L(m)| = m+ 1. Let Ti = Ri = L(m) for all i and let
|S| = L(m)k. Define the utility of agent i to be:

ui(ti, s, ri) =

{
−|ti − ri|, If ri ∈ s;
−1, otherwise.

Note that ri(ti, s) is here the closest facility ri ∈ s.
We can instantiate Theorem 9. Note that in our case, we have: |S| = (m+ 1)k, and we can compute

the gap:
γ ≥ 1/m

This is because for any true type ti, and reported type t′i, if s is the outcome that places a single facility
at ti and all remaining facilities at t′i.

We can now use our tools to optimize over any objective function we want! For the social welfare
objective (or any other 1/n sensitive objective):

(ui(ti, s, ri(ti, s, Ri))− ui(ti, s, ri(t′i, s, Ri))) = 0 + |ti − t′i| ≥
1

m

Theorem 10 MP
ε instantiated for the facility location game is strictly truthful and α-accurate for:

α = O

(√
km(m+ 1)k logm

n

)
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In fact, we do not need this exponential dependence in k which we inherit from the general theorem.
Note that when we argued that γ ≥ 1/m, we only needed a single kind of outcome s: For every pair ti, t

′
i,

we needed an instance in which there are only schools on ti and t′i. Therefore, our punishment mechanism
does not need to randomize over all (m+ 1)k possible outcomes, but only over these m2 relevant ones.
Therefore, we get a punishment mechanism which is 1/m3-strictly truthful, and a correspondingly the
stronger theorem:

Theorem 11 MP
ε instantiated for the facility location game is strictly truthful and α-accurate for:

α = O

(√
k ·m3 logm

n

)

An even more careful analysis can remove another factor of
√
m.

In either case, the approximation quickly becomes exact as the population size n grows – and we
have strict dominant strategy truthfulness always.
Bibliographic Information The contents of this lecture are taken entirely from Nissim, Smorodinsky,
and Tennenholtz, “Approximately Optimal Mechanism Design via Differential Privacy” [NST12].
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