NETS 412: Algorithmic Game Theory April 11, 2017

Lecture 20
Lecturer: Aaron Roth Scribe: Aaron Roth

Dynamic Pricing: Profit Maximization From “Bandit” Feedback

In the last lecture, we thought about running an auction in the “online” setting, in which buyers arrive one
at a time, and report their valuations. We came up with a dominant strategy truthful allocation/payment
rule that we thought of as offering fixed price “take it or leave it” offers, and we proved that we could
compete with the best fixed price in hindsight. However, we weren’t really offering fixed prices, in the
sense that we still required buyers to report “bids” by specifying their valuation. In this lecture, we
will think about one way to simplify the process so that we can actually just offer a fixed price at every
round, which the buyer is free to take or leave. The difficulty will be that in this model, we will get
only limited feedback at each round. If we offer some price p;, and the offer is taken, we learn only
that v; > p;. Similarly, if the offer is not taken, we learn only that v; < p;. In both cases, we lack the
counter-factual information about what would have happened had we offered different prices, which is
needed in order to update the polynomial weights algorithm.

To simplify things, we will assume in this lecture that the valuations of arriving buyers are not
arbitrary, but are drawn from some unknown distribution (although similar results are possible without
this assumption).

Definition 1 In a dynamic pricing setting, there are n buyers, each with valuation v; € [0,1] drawn
independently from some unknown distribution D.

1. At time t, the seller sets some price p; € [0,1].

2. Buyer t arrives with vy ~ D. If vy > pg, the buyer purchases the good, and the seller gets revenue
pt. Otherwise, the buyer declines to purchase the good, and the seller gets revenue 0.

Our goal is to dynamically set prices so as to obtain revenue competitive with the best fixed price. In
this case, since we have assumed buyers are drawn from a distribution, this is: OPT = max, p - Prjv >
p] - n. Just as we used the polynomial weights algorithm as our work-horse in the last lecture, to solve
this problem, we will design a general technique for obtaining no-regret solutions in a generic “bandit
feedback!” setting.

Definition 2 In the multi-armed bandit problem, there are k “arms” i, each of which is associated with
a payoff distribution D; over [0, 1] with mean ;. In rounds t, the algorithm chooses arm iy and receives
reward rft ~ D;.

The expected reward of the algorithm after T days is Zthl Wi, . The regret of the algorithm is:

T
Regret(T) =T - py» — Zﬂit
t=1

where 1* = arg max; u; is the arm with highest expected reward.

The idea will be to be “optimistic in the face of uncertainty”. The algorithm we propose will quantify
its uncertainty about the mean payoff of each arm i, by maintaining a confidence interval around its
empirical estimate. It will then behave greedily — but not by playing the arm with the highest empirical
mean so far, but rather by playing the arm with the highest upper confidence bound. Think of this
as being optimistic — pretending that each arm is as good as it could possibly be, consistent with the
evidence — and then playing greedily. Before we describe the algorithm, we will recall a useful fact about
how to compute confidence intervals.

¢

1The problem we are studying is colloquially called the “multi-armed bandit problem”. The terminology comes from
Vegas — a slot machine is a “one-armed bandit”. In the multi-armed bandit problem, imagine a slot-machine with k arms,
each with a different reward distribution. The goal is to find a policy for pulling the arms that is competitive with pulling
the best fixed arm in hindsight.

20-1

Theorem 3 (Chernoff-Hoeffding Bound) Let D be any distribution over [0,1] with mean u, and let
Xi1,..., X, ~ D be independent draws. Then for any 0 < § < 1:

1 In (2)
Pr||=) X, —ul< 0/ >1-§
g n Zz:; pr= 2n -
We are now ready to describe the algorithm.
UCB(4,T):
n(2L
Define w(n) = % Initialize empirical means /i + 1/2 and upper and lower confidence bounds

ud « 1,69 < 0 for each arm i. Initialize play counts n! < 0 for each arm i.
fort=1toT do
Pick an arm i; € argmaxu!~'. Observe reward T

. L Nt gt ot ft—1 =1 gt—1 -1
Update: For each i # iy, set (ui,uti,ﬂwni) — (o7 u 0)
. . t—1 ~ n;—1t—1 1 ~ ~
For i =iy, nf « n} +1,u§<—n—§ui +n—§r§,u§<—u§+w(n§)7€§<—u§—u)(n§)

end for

Theorem 4 For any set of k arms, with probability 1 — 0, the UCB algorithm obtains regret:

Regret(T) < O (kT -In (?))

Proof We start by observing that the widths of the confidence intervals w maintained by the UCB
algorithm are defined such that by a Chernoff-Hoeffding bound, for each ¢ and ¢, with probability 1—4/T,
Wi € [ut, £]. Since there are T confidence intervals constructed over the run of the algorithm, by a union
bound we know that with probability 1 — §, simultaneously for all i and ¢, p; € [ul,¢]. For the rest of
the argument, we will assume that this is the case.

Now suppose at day t we play action i;, obtaining expected payoff p;,. How much worse is this than
i+, the expected payoff of the optimal arm? Since by definition i; = arg max; uffl, and because all of
the confidence intervals are valid, we have:

pi, 2 0 =gt = 2w(ng) > wnt = 2wng) > e — 2w(ng)

20-2

So the regret incurred at round ¢ is at most 2w(nft_1) Thus, we can bound the total cumulative regret:

Regret(T) < QZw(nﬁfl)

IN

b
.MR‘

g

S

O(,/k~T~ln<§)>

Ok — so lets use this tool to design a revenue maximizing auction. We will pick a set k£ “arms”, asso-
ciating each one with a price from K = {«,2a,3q,...,1}. Note that k = |K| = 1/a. The distribution
on rewards for each arm p is simply the distribution on revenue when deploying a price p — realizing
reward r, = p with probability Pr[v > p| and reward r, = 0 otherwise. Note also that because for every
price p € [0,1], there is another price p’ € K such that p — o < p’ < p, in a setting with n buyers, we
have:

IN

maxp - Prlv > p]-n > max p-Prlv > p|-n—an
pEK p€[0,1]

Combining this guarantee with the guarantee of the UCB algorithm, we have that except with probability
0:

n n n
R UCB) > P > -n—0 .n - — > OPT — — 0 — . —
evenue(C) =z plleaKXp I'[U = p} n (k-n-ln (5)) = an (In (5)>

Choosing

n

1 1/3
- [t
yields:
Revenue(UCB) > OPT — O (n2/3 log(n/6)1/3)
What this means is that if OPT = w (n?/3log(n/§)'/3), then Revenue(UCB) > (1 —o(1))OPT. We

would typically expect this to be the case, because if a constant fraction of buyers purchase the good,
the revenue should grow linearly with n.

20-3

