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Profit Maximization, Digital Goods, and the Random Sampling Auction

In previous lectures, we have extensively studied auction design for welfare maximization. In this lecture,
we consider a different objective: profit maximization for the auctioneer. As a case study, we will consider
a particular setting (digital goods auctions) in which the two objectives are in dramatic conflict.

Informally, digital goods auctions (also known as unlimited supply auctions) model the setting in
which a single seller is selling goods that have zero marginal cost of production (think software, which
can be copied for free once produced). Hence, there is no natural constraint on how many individuals
can be selected to “win” the auction.

Definition 1 A digital goods auction is a single parameter domain with a set of alternatives A = {S ⊆
[n]} – i.e. any set of bidders is a feasible outcome, because there is no supply constraint. For a ∈ A we

write ai =

{
1, if i ∈ S;
0, otherwise.

. Since it is a single parameter domain, each bidder’s valuation function is

parameterized by vi ∈ R≥0, and vi(a) := vi · ai.

First, lets observe that truthful welfare maximization and profit maximization are in conflict here.
The VCG mechanism maximizes social welfare while making truth-telling a dominant strategy. What
would it do?

Note that since supply is unlimited, the social welfare maximizing outcome (i.e. the one always
chosen by the VCG mechanism) sets S = {1, . . . , n} – i.e. everyone is a winner! Since everybody wins
no matter what, no bidder has any negative externality on any other, and so the VCG payments are
pi = 0 for all bidders i. The welfare maximizing auction obtains zero revenue!

So if we want to maximize revenue, we need to do something else – in particular, we’ll need to
artificially limit supply. Before we think about how to do that though, lets think about what our
benchmark should be. What is the “optimal” revenue?

Certainly no individually rational mechanism can obtain revenue higher than the welfare it obtains,
so
∑n

i=1 vi is an upper bound on the revenue we can obtain. But its not a reasonable upper bound – no
truthful mechanism can obtain full welfare extraction. Instead, we focus on a simple benchmark (that
turns out can be theoretically justified as the “optimal” benchmark in some sense) – the revenue we
could obtain with the best fixed price.

If se set a price of p, everyone with value vi ≥ p will buy. Hence, the revenue of price p is p · |{i : vi ≥
p}|. Its not hard to see that the best fixed price in hindsight is always p ∈ {v1, . . . , vn}. (why?) Hence,
we can define the revenue of the best fixed price as:

OPT(v) = max
i

vi · |{j : vj ≥ vi}| = max
i

(i · v(i))

where v(i) is the i’th highest valuation in sorted order.
However, even this benchmark is not achievable by a truthful mechanism if the optimal profit is

obtained with i = 1 – i.e. by setting the price equal to the value of the highest bidder. To see this,
consider the case of just a single bidder – to obtain this benchmark, we would have to charge him his
value exactly. But observe that a truthful mechanism can’t charge any bidder a price that depends on
his own bid, so this is impossible.

Instead, we focus on a relaxed benchmark – the revenue of the best fixed price that sells to at least 2
people. Note that we shouldn’t think of this as a very serious restriction in large markets, since typically
the optimal revenue is not obtained by having only 1 buyer... We write:

OPT≥2(v) = max
i≥2

(
i · v(i)

)
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Our first thought might simply be to take in the bids v, compute the best fixed price vj , and charge
that – but this won’t yield a truthful mechanism, because bidder j could change the price he has to pay
by manipulating his bid.

Our next thought might be to offer each i he price pi corresponding to OPT≥2(v−i) – i.e. the best
fixed price excluding agent i. This yields a truthful mechanism, but does terribly compared to our
benchmark. Consider the following example:

Example 1 Suppose we have 90 “low value” agents with vi = 1, and 10 “high value” agents with vi = 10.
OPT≥2(v) = 100, achieved by charging either p = 10 or p = 1. But for vi = 1, OPT≥2(v−i)↔ pi = 10,
and for vi = 10, OPT≥2(v−i) ↔ pi = 1. So this auction gets profit only 10... (And the ratio to
OPT≥2(v) can be made arbitrarily bad.)

Profit Extractors We will start with an intermediate goal. Given a target profit R, we want a
mechanism that will obtain profit R if OPT≥2(v) ≥ R. Otherwise we won’t require any revenue
guarantee for the mechanism. We call such a mechanism a profit extractor.

Definition 2 The digital goods profit extractor with target profit R, which we write as Extract(R, v),
does the following: it finds the largest value k such that v(k) ≥ R/k, and then sells to the top k bidders
at price R/k. If there is no such k, it sells to nobody.

Lemma 3 Extract(R, v) is dominant strategy truthful.

Proof We can view the profit extractor as running the following process: It starts with i = n, and
offers a price of p = R/i to the top i bidders. If the i’th highest bidder rejects the offer (i.e. v(i) < Ri),
then it sets i ← i − 1 and repeats the offer (now a higher offer, to 1 fewer bidders). If the i’th highest
bidder accepts the offer, then the top i bidders receive the good and pay the last offer price. Note that
if any bidder rejects the offer, she can never win in any future round, so rejecting any offer of p < vi is
a dominated strategy. Similarly, accepting an offer of p > vi is a dominated strategy since it ends the
auction and forces everyone to pay pi. Hence the dominant strategy for every bidder i is to report their
true value.

Lemma 4 Extract(R, v) obtains revenue R if OPT≥2(v) ≥ R, and otherwise obtains revenue 0.

Proof Recall that OPT≥2(v) = k · v(k) for some k ∈ {2, . . . , n}. If OPT≥2(v) ≥ R then v(k) ≥ R
k .

Hence, the profit extractor finds some k′ ≥ k such that v(k′) ≥ R/k′, and obtains profit k′ ·R/k′ = R.

On the other hand, if R > OPT(2)(v) = maxk k · v(k), then by definition there is no k such that
v(k) ≥ R/k, and so the mechanism halts without selling to anybody (and hence obtains 0 revenue).

Ok – so we now have a useful tool. With a profit extractor, we can always obtain revenue R if we know
that it is possible to obtain revenue R with a fixed price. But we’re not done, since we don’t know R.
But what we have done is reduced our problem to finding a good estimate of the true optimal revenue
R∗. Recall however that it is important that R be defined independently of the bidders we run the profit
extractor on – it was only truthful assuming R was independent of their bids.

This is the idea behind the random sampling auction – we will try and estimate R∗ from a ran-
dom sample of the bidders, and then run the profit extractor parameterized with this estimate on the
remaining bidders. First we observe that the random sampling auction is truthful:

Theorem 5 The random sampling auction is dominant strategy truthful.

Proof This follows because Extract(R, v) is truthful whenever it is run with a value R computed
independently of the bidders it is run on.

Now on to the revenue:
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Algorithm 1 The Random Sampling Auction

RS(v):

Randomly partition the agents by assigning each agent uniformly at random to one of two sets: S′

or S′′.
Calculate R′ = OPT≥2(vS′) and R′′ = OPT≥2(vS′′).
Run Extract(R′, vS′′) on S′′ and Extract(R′′, vS′) on S′.

Lemma 6 The revenue of the random sampling auction is at least min(R′, R′′).

Proof It must be that either R′ ≥ R′′ or R′′ ≥ R′ (or possibly both). So at least one copy of Extract
succeeds.

So to bound the revenue of the auction, we only need to understand the quantity min(R′, R′′) as a
function of R := OPT≥2(v).

Lets start with some simple math:

Theorem 7 If we flip k ≥ 2 coins, then E[min(#heads,#tails)] ≥ k/4.

Proof Let Mi be E[min(#heads,#tails)] after i coin flips. Some direct calculations show: M1 = 0
and M2 = 1/2.

Now define Xi := Mi−Mi−1 to be the expected change to min(#heads,#tails) after we flip the i’th
coin. Note that by linearity of expectation:

Mk =

k∑
i=1

Xi

so we are done if we can compute Xi for all i. We have two cases:

Case 1: i is even In this case, i− 1 is odd, and we have #heads 6= #tails after i− 1 coin flips. Hence
Xi = 1/2, since with probability 1/2, the coin flip contributes to the smaller of the two quantities.

Case 2: i is odd In this case, i − 1 is even, so it could be that #heads = #tails. Still, at the very
least we can say Xi ≥ 0. So:

Mk =

k∑
i=1

Xk ≥
k

2
· 1

2
=

k

4

which completes the proof1.

We’re now ready to prove our main theorem:

Theorem 8 Let Rev be the expected revenue of the random sampling auction. Then:

Rev ≥ OPT≥2(v)

4
.

Proof Recall that we have shown:

Rev ≥ E[min(R′, R′′)]

1Actually, we were a little sloppy... we only showed that Mk ≥ b k2 c ·
1
2

, which might be a little less than k/4. To be
fully rigorous, we have to directly verify that X3 = 1/4 (i.e. not 0), which makes up the difference
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and we know that OPT≥2(v) = k · p for some k ≥ 2 and some price p. Of the k winners when using
price p, let k′ be the number in S′ and k′′ be the number in S′′. Observe that R′ ≥ k′ · p and R′′ ≥ k′′ · p
(they could be higher if better prices are available). Hence:

Rev

OPT≥2(v)
≥ E[min(R′, R′′)]

k · p

≥ E[min(k′ · p, k′′ · p)]

k · p

≥ E[min(k′, k′′)]

k
≥ 1

4

which completes the proof.
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