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Lecture 15-16
Lecturer: Aaron Roth Scribe: Aaron Roth

Polynomial Weights I and II

In the next two lectures, we will develop algorithms for prediction problems that must be solved in an
adversarial, sequential setting. These algorithms operate in an environment that we haven’t studied
before in this class: rather than having a problem instance fully described up front, that we must solve,
we will have an environment in which our algorithm must interact dynamically. The algorithms we
derive will be interesting in their own right, and are fundamental building blocks in machine learning,
but as we will see, they are also useful and powerful tools for solving other algorithmic problems in a
more standard setting.

As a simple example to keep in mind, consider the following toy model of predicting the stock market:
every day the market goes up or down, and you must predict what it will do before it happens (so that
you can either buy or short shares). You don’t have any information about what the market will do,
and it may behave arbitrarily, so you can’t hope to do well in an absolute sense. However, every day,
before you make your prediction, you get to hear the advice of a bunch of experts, who make their
own predictions. These “experts” may or may not know what they are talking about, and you start off
knowing nothing about them. Nevertheless, you want to come up with a rule to aggregate their advice
so that you end up doing (almost) as well as the best expert (whomever he might turn out to be) in
hindsight. Sounds tough.

Lets start with an even easier case:

• There are N experts who will make predictions in T rounds.

• At each round t, each expert i makes a prediction pti ∈ {U,D} (up or down).

• We (the algorithm) aggregate these predictions somehow, to make our own prediction ptA ∈ {U,D}.
Then we learn the true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e. ptA 6= ot), then we
made a mistake.

• To make things easy, we will assume at first that there is one perfect expert who never makes a
mistake (but we don’t know who he is).

Can we find a strategy that is guaranteed to make at most log(N) mistakes?
We can, using the simple halving algorithm!

Algorithm 1 The Halving Algorithm

Let S1 ← {1, . . . , N} be the set of all experts.
for t = 1 to T do

Let St
U = {i ∈ S : pti = U} be the set of experts in St who predict up, and St

D = St \ St
U be the set

who predict down.
Predict with the majority vote: If |St

U | > |St
D|, predict ptA = U , else predict ptA = D.

Eliminate all experts that made a mistake: If oT = U , then let St+1 = St
U , else let St+1 = St

D

end for

Its not hard to see that the halving algorithm makes at most logN mistakes under the assumption
that one expert is perfect:

Theorem 1 If there is at least one perfect expert, the halving algorithm makes at most logN mistakes.
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Proof Since the algorithm predicts with the majority vote, every time it makes a mistake at some
round t, at least half of the remaining experts have made a mistake and are eliminated, and hence
|St+1| ≤ |St|/2. On the other hand, the perfect expert is never eliminated, and hence |St| ≥ 1 for all t.
Since |S1| = N , this means there can be at most logN mistakes.

Not bad – logN is pretty small even if N is large (e.g. if N = 1024, logN = 10, if N = 1, 048, 576,
logN = 20), and doesn’t grow with T , so even with a huge number of experts, the average number of
mistakes made by this algorithm is tiny.

What if no expert is perfect? Suppose the best expert makes OPT mistakes. Can we find a way to
make not too many more than OPT mistakes?

The first approach you might try is the iterated halving algorithm:

Algorithm 2 The Iterated Halving Algorithm

Let S1 ← {1, . . . , N} be the set of all experts.
for t = 1 to T do
If |St| = 0 Reset: Set St ← {1, . . . , N}.
Let St

U = {i ∈ S : pti = U} be the set of experts in St who predict up, and St
D = St \ St

U be the set
who predict down.
Predict with the majority vote: If |St

U | > |St
D|, predict ptA = U , else predict ptA = D.

Eliminate all experts that made a mistake: If oT = U , then let St+1 = St
U , else let St+1 = St

D

end for

Theorem 2 The iterated halving algorithm makes at most log(N)(OPT + 1) mistakes.

Proof As before, whenever the algorithm makes a mistake, we eliminate half of the experts, and so
the algorithm can make at most logN mistakes between any two resets. But if we reset, it is because
since the last reset, every expert has made a mistake: in particular, between any two resets, the best
expert has made at least 1 mistake. This gives the claimed bound.

We should be able to do better though. The above algorithm is wasteful in that every time we reset,
we forget what we have learned! The weighted majority algorithm can be viewed as a softer version of
the halving algorithm: rather than eliminating experts who make mistakes, we just down-weight them:

Algorithm 3 The Weighted Majority Algorithm

Set weights w1
i ← 1 for all experts i.

for t = 1 to T do
Let W t

U =
∑

i:pt
i=U wi be the weight of experts who predict up, and W t

D =
∑

i:pt
i=D wi be the weight

of those who predict down.
Predict with the weighted majority vote: If W t

U > W t
D, predict ptA = U , else predict ptA = D.

Down-weight experts who made mistakes: For all i such that pti 6= ot, set wt+1
i ← wt

i/2
end for

Theorem 3 The weighted majority algorithm makes at most 2.4 (OPT + log(N)) mistakes.

Note that log(N) is a fixed constant, so the ratio of mistakes the algorithm makes compared to OPT is
just 2.4 in the limit – not great, but not bad.
Proof Let M be the total number of mistakes that the algorithm makes, and let W t =

∑
i w

t
i be the

total weight at step t. Note that on any round t in which the algorithm makes a mistake, at least half of
the total weight (corresponding to experts who made mistakes) is cut in half, and so W t+1 ≤ (3/4)W t.
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Hence, we know that if the algorithm makes M mistakes, we have WT ≤ N · (3/4)M . Let i∗ be the best
expert. We also know that wT

i = (1/2)OPT, and so in particular, WT > (1/2)OPT. Combining these two
observations we know: (

1

2

)OPT

≤W ≤ N
(

3

4

)M

(
4

3

)M

≤ N · 2OPT

M ≤ 2.4(OPT + log(N))

as claimed.

We’ve been doing well; lets get greedy. What do we want in an algorithm? We might want:

1. It to make only 1 times as many mistakes as the best expert in the limit, rather than 2.4 times...

2. It to be able to handle N distinct actions (a separate action for each expert), not just two (up and
down)...

3. It to be able to handle experts having arbitrary costs in [0, 1] at each round, not just binary costs
(right vs. wrong)

Formally, we want an algorithm that works in the following framework:

1. In rounds 1, . . . , T , the algorithm chooses some expert it.

2. Each expert i experiences a loss `ti ∈ [0, 1]. The algorithm experiences the loss of the expert it
chooses: `tA = `tit .

3. The total loss of expert i is LT
i =

∑T
t=1 `

t
i, and the total loss of the algorithm is LT

A =
∑T

t=1 `
t
A.

The goal of the algorithm is to obtain loss not much worse than that of the best expert: mini L
T
i .

The polynomial weights algorithm can be viewed as a further smoothed version of the weighted
majority algorithm, and has a parameter ε which controls how quickly it down-weights experts. Notably,
it is randomized : rather than making deterministic decisions, it randomly chooses an expert to follow
with probability proportional to their weight.

Algorithm 4 The Polynomial Weights Algorithm (PW)

Set weights w1
i ← 1 for all experts i.

for t = 1 to T do
Let W t =

∑N
i=1 w

t
i .

Choose expert i with probability wt
i/W

t.
For each i, set wt+1

i ← wt
i · (1− ε`ti).

end for

Theorem 4 For any sequence of losses, and any expert k:

1

T
E[LT

PW ] ≤ 1

T
LT
k + ε+

ln(N)

ε · T

In particular, setting ε =
√

ln(N)
T we get:

1

T
E[LT

PW ] ≤ 1

T
min
k
LT
k + 2

√
ln(N)

T
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In other words, the average loss of the algorithm quickly approaches the average loss of the best expert
exactly, at a rate of 1/

√
T . Note that this works against an arbitrary sequence of losses, which might

be chosen adaptively by an adversary. This is pretty incredible. And it will be the source of the power
of this framework in applications: we (the algorithm designer) can play the role of the adversary to get
the results that we want.

Ok, on to the proof:
Proof Let F t denote the expected loss of the polynomial weights algorithm at time t. By linearity of
expectation, we have E[LT

PW ] =
∑T

t=1 F
t. We also know that:

F t =

∑N
i=1 w

t
i`

t
i

W t

How does W t change between rounds? We know that W 1 = N , and looking at the algorithm we see:

W t+1 = W t −
N∑
i=1

εwt
i`

t
i = W t(1− εF t)

So by induction, we can write:

WT+1 = N

T∏
t=1

(1− εF t)

Taking the log, and using the fact that ln(1− x) ≤ −x, we can write:

ln(W t+1) = ln(N) +

T∑
t=1

ln(1− εF t)

≤ ln(N)− ε
T∑

t=1

F t

= ln(N)− εE[LT
PW ]

Similarly (using the fact that ln(1− x) ≥ −x− x2 for 0 < x < 1
2 ), we know that for every expert k:

ln(WT+1) ≥ ln(wT+1
k )

=

T∑
t=1

ln(1− ε`tk)

≥ −
T∑

t=1

ε`tk −
T∑

t=1

(ε`tk)2

≥ −εLT
k − ε2T

Combining these two bounds, we get:

ln(N)− εLT
PW ≥ −εLT

k − ε2T

for all k. Dividing by ε and rearranging, we get:

LT
PW ≤ min

k
LT
k + εT +

ln(N)

ε
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One final observation: we have described the algorithm so far as if it is randomly selecting some

action i at each round, and have been measuring its expected loss at each round:
∑N

i=1
wt

i

W t `
t
i. This

makes sense if the algorithm must choose an expert to play at every round. But in some settings, it
makes sense for the algorithm to play a vector in ∆[n] = {p ∈ [0, 1]N :

∑n
i=1 pi = 1} at every round. For

example, it might be interacting in the following setting, called online adversarial linear optimization:

1. In rounds 1, . . . , T the algorithm chooses a vector wt ∈ ∆[N ].

2. The adversary chooses a loss vector `t ∈ [0, 1]N .

3. The algorithm experiences loss `tA = 〈wt, `t〉.

4. The goal of the algorithm is to guarantee that:

1

T

T∑
t=1

〈wt, `t〉 ≤ min
w∗∈∆[n]

1

T

T∑
t=1

〈w∗, `t〉+ o(1).

In this case, we can view the exact same algorithm we have derived and analyzed as a deterministic

algorithm for choosing such a vector — at round t is plays the vector wt = { wt
i

W t }ni=1.

Algorithm 5 The Polynomial Weights Algorithm for Online Linear Optimization

Set weights w1
i ← 1 for all experts i.

for t = 1 to T do
Let W t =

∑N
i=1 w

t
i .

Play vector wt = { wt
i

W t }ni=1

For each i, set wt+1
i ← wt

i · (1− ε`ti).
end for

Our existing analysis proves the following theorem:

Theorem 5 Setting ε =
√

ln(N)
T , for any sequence of losses `t ∈ [0, 1]N :

1

T

T∑
t=1

〈wt, `t〉 ≤ min
w∗∈∆[n]

1

T

T∑
t=1

〈w∗, `t〉+ 2

√
ln(N)

T

Proof The left hand side is exactly the expected loss of the polynomial weights algorithm we analyzed
in the experts setting. Continuing the translation, the “loss of expert i” corresponds to 1

T

∑T
t=1〈ei, `t〉,

where ei is the i’th standard basis vector (with a 1 in the i’th coordinate and a 0 in every other
coordinate). Finally observe that we always have that for every sequence of losses:

min
w∗∈∆[n]

T∑
t=1

〈w∗, `t〉 =

T∑
t=1

〈ei∗ , `t〉

where i∗ = arg mini∈[N ]

∑T
t=1 `

t
i. Hence regret to the best basis vector ei∗ (i.e. the best expert) implies

regret to the best vector w∗ ∈ ∆[N ].

Finally, we observe that there if we are using polynomial weights for online linear optimization, there
is no reason to restrict attention to vectors w∗ whose coordinates sum to 1, or losses that lie in the range
[0, 1]. We simply have to pay for the scale of the vectors we are optimizing over. Lets see how we could
use the polynomial weights algorithm to solve the online linear optimization problem over the set of
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non-negative vectors w that sum to at most R1: BN (R1) = {w ∈ RN
≥0 :

∑n
i=1 ≤ R1}, for loss functions

that take values in the range `ti ∈ [−R2/2, R2/2].
First lets deal with the issue of having coordinates of w that sum to at most some value R1 rather

than exactly R1. We can simply add an extra N + 1’st coordinate that always has loss `tN+1 = 0.
Running our algorithm in this augmented N + 1 dimensional space means that if the N + 1 dimensional
vector wt has coordinates summing to exactly R1 at every round, the first N coordinates of w (the “real
ones”) sum to at most R1 — and the algorithm experiences the same loss as if it played in only the real
N dimensional space.

Next lets deal with the issue of negative losses. This is also easy: simply shift them by adding
R2/2 to every coordinate. Now we have `ti ∈ [0, R2], and note that the regret to any target w∗ remains
unchanged under this shift, because:

〈wt, `t +R2/2〉 − 〈w∗, `t +R2/2〉 =
(
〈wt, `t〉 − 〈w∗, `t〉

)
+
(
〈R2/2, `

t〉 − 〈R2/2, `
t〉
)

= 〈wt, `t〉 − 〈w∗, `t〉

So regret bounds for the shifted space hold also for the original losses.
We’re almost done. We simply have to scale down everything, apply our bounds, and then remember

to scale back up. Suppose we divide the coordinates of wt by R1 and the coordinates of `t by R2. We
are now in the setting for which we have proven the regret bound for the polynomial weights algorithm,
and so we have that the polynomial weights algorithm can obtain the regret bound:

1

T

T∑
t=1

〈w
t

R1
,
`t

R2
〉 ≤ min

w∗∈∆[n]

1

T

T∑
t=1

〈w
∗

R1
,
`t

R2
〉+ 2

√
ln(N)

T

Multiplying this bound through by R1 ·R2 we obtain:

Theorem 6 For any sequence of losses `t ∈ [−R2/2, R2/2]N , the polynomial weights algorithm can be
used to play vectors wt ∈ BN (R1) and obtain:

1

T

T∑
t=1

〈wt, `t〉 ≤ min
w∗∈BN (R1)

1

T

T∑
t=1

〈w∗, `t〉+ 2R1R2

√
ln(N)

T
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CIS 320: Algorithms November 3, 2021

Lecture 17
Lecturer: Aaron Roth Scribe: Aaron Roth

Linear Programs

One of the most powerful optimization paradigms that have worst-case efficient solvers are so-called
“Linear Programs”.

A linear program is defined by a set of d variables to optimize over, a linear function of those variables
to optimize, and constraints on how we can set the variables, specified as linear inequalities.

Definition 1 A linear program is an optimization problem defined over n non-negative decision variables
x1, . . . , xn ≥ 0, a linear objective function, and d linear constraints. It takes the form:

Maximize

n∑
i=1

cixi

such that for each constraint j ∈ [d] :
n∑

i=1

ai,jxi ≤ bi

We start by observing that linear programs are somewhat more general than they appear at first
glance. For example, because the constants ai.j , bi can be negative, they can also encode inequality
constraints in the other direction: If we want to express the inequality

∑n
i=1 ai,jxi ≥ bi, we can write it

as
∑n

i=1−ai,jxi ≤ −bi instead. Similarly, if we want to minimize some objective rather than maximize it,
we can express that by multiplying the coefficients ci by −1. Finally, we can express equality constraints
as pairs of inequality constraints:

∑n
i=1 ai,j = b can be represented by two constraints,

∑n
i=1 ai,j ≤ b

and
∑n

i=1 ai,j ≥ b
Lots of things can be represented as linear programs. Classically, linear programs were used to

express production problems. For example:

A lumber company can produce either pallets or high quality lumber. It cannot produce
more than 200 units (thousand board feet) of lumber per day, which maxes out usage of
their kiln, and it cannot produce more than 600 pallets per day. Its main saw can process at
most 400 logs per day. 1 unit of lumber requires 1.4 logs, and one pallet requires 0.25 logs.
High quality logs used for lumber cost $200 per log, and low quality logs used for pallets cost
$4 per log. Processing lumber costs $200 per unit, and processing pallets costs $5. A unit
of lumber sells for $490 per unit, and a pallet sells for $9. How many pallets and units of
lumber should the lumber company produce?

We can directly represent this as a linear program Say that xL represents the units of lumber to produce,
xP represents the number of pallets, yH represents the number of high quality logs purchased, and yL
represents the number of low quality logs. Then the problem is to solve:

Maximize 290 · xL + 4 · xP − 200yH − 4 · yL

such that:
xL ≤ 200 xP ≤ 600 1.4 · xL ≤ yH 0.25xP ≤ yL yL + yH ≤ 400

But observe that we can also write the max-flow problem as a linear program. Suppose we have a
flow network C = (V,E) with costs ce (recall without loss of generality we assume there are no incoming
edges to e and no outgoing edges from t). The max flow problem can be expressed as:

Maximize
∑

e out of s

f(e)
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such that:

For every e ∈ E : f(e) ≤ ce and for every v 6∈ {s, t} :
∑

e into v

f(e) =
∑

e out of v

f(e)

We could also write down linear programs for the bipartite matching, min-cut, minimum spanning tree,
and other problems we’ve studied in this course (although sometimes some cleverness would be needed
to argue that they have integer optimal solutions).

It turns out that we can solve linear programs efficiently and in time polynomial in the number of
variables and constraints! The story is a little complicated — some of the most efficient algorithms
in practice (Simplex) are not polynomial time in the worst case, and some of the polynomial time
algorithms (Ellipsoid) are not efficient in practice. In this lecture, we’ll show how to use the polynomial
weights algorithm we derived last lecture to give approximate solutions to linear programs. A benefit of
this approach is that we never need to enumerate all of the constraints, we only need to find violated
constraints when they exist. So this lets us efficiently approximate the solutions to linear programs
with exponentially many constraints, so long as we can efficiently identify violated constraints given a
candidate solution.

To do so, we’ll first convert a linear program into a linear feasibility problem, which is just a linear
program without the objective

Definition 2 A linear feasibility problem is defined over n non-negative decision variables x1, . . . , xn ≥ 0
and d linear constraints. It is the problem of finding values for the xi such that for each constraint j ∈ [d]:

n∑
i=1

ai,jxi ≤ bi

We first observe that if a linear program has a solution x with optimal objective value OPT, then
we can write it as a linear feasibility problem simply by adding the constraint that the objective take
its optimal value:

n∑
i=1

−cixi ≤ −OPT

Of course we don’t know OPT, but if we had the ability to solve linear feasibility problems, then we
could find it via binary search. So from here on out, we’ll focus on solving linear feasibility problems.

First let us recall the final guarantee we derived last lecture for using the polynomial weights algorithm
for online linear optimization:

Theorem 3 For any sequence of losses `t ∈ [−R2/2, R2/2]N , the polynomial weights algorithm can be
used to play vectors wt ∈ BN (R1) and obtain:

1

T

T∑
t=1

〈wt, `t〉 ≤ min
w∗∈BN (R1)

1

T

T∑
t=1

〈w∗, `t〉+ 2R1R2

√
ln(N)

T

Our goal is to leverage this theorem to solve linear programs. Our plan will be to run the polynomial
weights algorithm, which maintains a vector wt that we will treat as a candidate solution x to our
linear feasibility problem. At every round, we will check whether it (approximately) satisfies all of the
constraints. If it does, we’re done, and we’ll return the solution x = wt. Otherwise, we’ll run the
polynomial weights algorithm for another round, by feeding it a loss vector `t+1 defined by one of the
constraints that is violated. The algorithm is as follows:
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Algorithm 1 Solve({a, b}dj=1, R1, R2)

Initialize the polynomial weights algorithm, parameterized to produce vectors w ∈ Bd(R1) and
receive losses in [−R2/2, R2/2].
Let t = 1, and w1 ∈ Rn be the vector representing the state of the PW algorithm.
while There exists a constraint jt such that

∑n
i=1 ai,jtw

t
i ≥ bi + α do

Run the PW algorithm for another iterate using loss function `t ∈ Rn defined so that `ti = ai,jt .
Let t← t+ 1 and wt be the updated state of the PW algorithm.

end while
Output x = wt.

Note that we need to pass to this algorithm an upper bound R1 on the scale of a feasible solution,
and an upper bound R2 on the quantities ai,j , but we can do this — we’ll quickly work out how to do it
for the max flow problem at the end. It will not exactly solve feasibility problems, but rather will return
α-approximate solutions:

Definition 4 Given a linear feasibility problem {a, b}dj=1, x is an α-feasible solution if for all constraints
j, we have:

n∑
i=1

xiai,j ≤ bi + α

The analysis turns out to be very direct and simple (which is to say, we already did most of the work
when we analyzed the polynomial weights algorithm):

Theorem 5 Let {a, b}dj=1 be a linear feasibility problem that has a feasible solution x∗ ∈ Bn(R1), and

such that max |ai,j | ≤ R2/2. Then Solve({a, b}dj=1, R1, R2) returns an α-feasible solution after at most

T ≤ 4R2
1R

2
2 ln(n)

α2

many iterations.

Proof First, observe that by construction, if the algorithm returns a solution x = wt for some t, it
is an α-feasible solution, so it only remains to argue that the algorithm halts and returns something
after at most T iterations. By assumption, there exists x∗ ∈ Bn(R1) such that for every constraint
j,

∑n
i=1 x

∗
i ai,j ≤ bj . We will consider the polynomial weights algorithm regret to x∗i and derive a

contradiction if the algorithm has not returned a solution after T iterations.
By construction, the loss function `t is defined so that at every round, `t = ajt for some constraint

jt. On the one hand, we know that
∑n

i=1 x
∗
i `

t
i ≤ bjt by the feasibility of x∗. On the other hand, we

know that by construction,
∑n

i=1 w
t
i`

t
i ≥ bjt + α by definition of the algorithm. Hence the regret of the

polynomial weights algorithm is at least:

1

T

T∑
t=1

〈wt, `t〉 − 1

T

T∑
t=1

〈x∗, `t〉 ≥ 1

T

T∑
t=1

(bjt + α− bjt) ≥ α

On the other hand, the regret bound of the polynomial weights algorithm implies:

α ≤ 1

T

T∑
t=1

〈wt, `t〉 − 1

T

T∑
t=1

〈x∗, `t〉 ≤ 2R1R2

√
ln(n)

T

Hence it must be that:

2R1R2

√
ln(n)

T
≥ α
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Solving for T gives the theorem.

Lets briefly return to the max-flow problem. How can we bound R1 the norm of a feasible solution?
We can upper bound this by observing that a feasible flow in the worst case saturates the capacity of
every single edge, and so we have R1 ≤ C ≡

∑
e∈E ce. Note that this is the same quantity C that we

used to bound the running time of the specialized algorithm we derived for max-flow. By inspection, we
have that maxi,j |ai.j | = 1, and so we can take R2 = 2.
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CIS 320: Algorithms November 8, 2021

Lecture 18
Lecturer: Aaron Roth Scribe: Aaron Roth

The Minimax Theorem and Equilibria of Zero Sum Games

In this lecture we’ll take a brief interlude from linear programs — we’ll get back to them in a couple
of lectures. We will prove the fundamental minimax theorem for zero sum games, which turns out to be
closely related to linear programming duality. We’ll also show how to actually compute equilibria of zero
sum games. Remarkably, all of this will follow once again from our analysis of the polynomial weights
algorithm.

First, what is a “zero-sum game”? It is a model of a strictly adversarial interaction, in which
one player’s sole objective is to minimize some cost function, and their opponent’s sole objective is to
maximize it. The players have the ability to choose amongst a set of actions, which jointly determine
the cost. One can define this somewhat more generally, but it will suffice for us to talk about players
with finite sets of actions who are allowed to choose probability distributions over those actions (i.e. to
randomize)

Definition 1 A zero sum game is defined by an action set A1 = {1, . . . ,m} for the minimization player,
an action set A2 = {1, . . . , n} for the maximization player, and a cost function C : A1 ×A2 → R.

We can represent a zero sum game by thinking of C as a matrix, in which the rows correspond to
actions of the minimization player (lets call her Min), columns correspond to actions of the maximization
player (lets call him Max), and the entries record the costs that result from the corresponding choices
of actions by Min and Max. For example, you might recognize the following zero sum game as “Rock
Paper Scissors”:

Rock Paper Scissors
Rock 1 2 0
Paper 0 1 2

Scissors 2 0 1

A (mixed) strategy for Min corresponds to a probability distribution over her actions: p ∈ ∆[m].
Similarly, a mixed strategy for Max corresponds to a probability distribution over his actions: q ∈ ∆[n].
When players randomize, we compute the expected cost of the resulting outcome:

C(p, q) =

m∑
i=1

n∑
j=1

C[i, j]piqj = qTCp

If one of the players plays a pure strategy — i.e. does not randomize — for example, Max might
deterministically play y ∈ [n] we will abuse notation and write:

C(p, y) =

m∑
i=1

C[i, y]pi = eTy Cp

Normally, Rock Paper Scissors is played as a simultaneous move game. But what if Min were forced
to play at a disadvantage, by having to first announce her strategy to Max, who would then get to best
respond? If she played the strategy p = (2/3, 1/3, 1/3), Max would exploit the fact that Min was playing
Rock too frequently, and play paper in response, resulting in cost 2/3 ·2+1/3 ·1+1/3 ·0 = 5/3. Instead,
she should play so as to minimize the cost that results after Max best response. Similarly, if Max is
handicapped by the need to go first and announce his strategy before Min gets an opportunity to best
respond, what he should do is play so as to maximize the cost after Min best responds by choosing the
action with minimum cost. We can define the corresponding MinMax and MaxMin values of the game:
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Definition 2 For an n×m matrix C:

max min(C) = max
q∈∆[n]

min
x∈[m]

n∑
j=1

qi · C[x, i]

min max(C) = min
p∈∆[m]

max
y∈[n]

m∑
i=1

pi · C[i, y]

Here note that we have the player who goes second playing a single action, rather than a distribution over
actions — but this is without loss of generality, since a player’s best response need never be randomized.
(because an average over a bunch of numbers can never be smaller than the minimum or larger than
the maximum) Of course, in Rock Paper Scissors it doesn’t matter who goes first: either player will
randomize uniformly across Rock Paper and Scissors if they go first, which will make their opponent
indifferent between their options: optimal play obtains cost 1/3 · 1 + 1/3 · 2 + 1/3 · 0 = 1 in both cases.

This turns out to be more generally true in zero-sum games: it doesn’t matter who goes first. This
is a surprisingly deep (and useful) fact known as Von Neumann’s minimax theorem. For Min, going
first is clearly only a disadvantage, since she is revealing information to Max, and so we know that
min max(C) ≥ max min(C). The minimax theorem says that this inequality is in fact an equality:

Theorem 3 (Von Neumann) In any zero sum game C:

min max(C) = max min(C)

The theorem is not obvious... Von Neumann proved it in 1928, and said “As far as I can see, there could
be no theory of games . . . without that theorem . . . I thought there was nothing worth publishing
until the Minimax Theorem was proved”. Previously, Borell had proven it for the special case of 5 × 5
matrices, and thought it was false for larger matrices.

However. Now that we know of the polynomial weights algorithm, we can provide a very simple,
constructive proof. In fact, what we’ll do is give an algorithm that explicitely constructs strategies
p, q for Min and Max respectively such that (p, q) form an ε-approximate minimax equilibrium. Von
Neumann’s minimax theorem will follow as a corollary.

Definition 4 Vectors p ∈ ∆[m], q ∈ ∆[n] form an ε-approximate minimax equilibrium with respect to
a game C if:

max
y∈[n]

C(p, y)− ε ≤ C(p, q) ≤ min
x∈[m]

C(x, q) + ε

Algorithm 1 ComputeEQ(C, ε)

Let T ← 4 logm
ε2

Initialize a copy of polynomial weights to run over wt ∈ ∆m.
for t = 1 to T do

Let yt = arg maxy∈[n] C(wt, y)
Let `t ∈ [0, 1]m be such that `ti = C[i, yt].
Pass `t to the PW algorithm.

end for
Let x̄ = 1

T

∑T
t=1 w

t and ȳ = 1
T

∑T
t=1 eyt .

Return (x̄, ȳ).

In the algorithm above, ei ∈ [0, 1]n refers to the i’th standard basis vector — i.e. it has a 1 in its i’th
index and a 0 in every other index.
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Theorem 5 For any ε > 0, and any n×m 0-sum game C, ComputeEQ(C, ε) returns vectors (x̄, ȳ) that
form an ε-approximate minimax equilibrium.

To see that Von Neumann’s theorem follows as a corollary, note that this implies that for any ε > 0, we
can find x̄, ȳ such that:

min max(C)− ε ≤ max
y∈[n]

C(x̄, y)− ε ≤ C(x̄, ȳ) ≤ min
x∈[m]

C(x, ȳ) + ε ≤ max min(C) + ε

Thus we have min max(C) ≤ max min(C)+2ε for every ε, so it must be that min max(C) = max min(C).
Now to prove the theorem:

Proof We begin with a useful observation coming from linearity. Let x∗ ∈ [m] be any fixed action.
Then:

1

T

T∑
t=1

C(x∗, yt) = C

(
x∗,

1

T

T∑
t=1

eyt

)
= C(x∗, ȳ)

Similarly, for any fixed y∗ 1
T C(wt, y∗) = C(x̄, y∗). Now suppose Min and Max are playing using x̄ and ȳ

respectively. Let x∗ = arg minx C(x, ȳ) and y∗ = arg maxy C(x̄, y) be their best responses. By definition:

C(x∗, ȳ) ≤ C(x̄, ȳ) ≤ C(x̄, y∗)

We also know that by the guarantee of the polynomial weights algorithm that on the one hand:

1

T

T∑
t=1

C(wt, yt) ≤ 1

T

T∑
t=1

C(x∗, yt) +

√
4 logm

T

= C(x∗, ȳ) +

√
4 logm

T

And on the other hand, by definition of the choice of the yt:

1

T

T∑
t=1

C(wt, yt) ≥ 1

T

T∑
t=1

C(wt, y∗)

= C(x̄, y∗)

Subtracting the second inequality from the first, we have:

0 ≤ C(x∗, ȳ)− C(x̄, y∗) +

√
4 logm

T
.

Adding and subtracting C(x̄, ȳ) and multiplying by −1 we get:

(C(x̄, ȳ)− C(x∗, ȳ)) + (C(x̄, y∗)− C(x̄, ȳ)) ≤
√

4 logm

T

Finally recall that by definition of x∗ and y∗, we have that both terms on the left hand side are non-
negative. Thus we have that individally:

(C(x̄, ȳ)− C(x∗, ȳ)) ≤
√

4 logm

T
(C(x̄, y∗)− C(x̄, ȳ)) ≤

√
4 logm

T

which implies that (x̄, ȳ) form a
√

4 logm
T -approximate minimax equilibrium. By our choice of T ,√

4 logm
T = ε.
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Lecture 19
Lecturer: Aaron Roth Scribe: Aaron Roth

Boosting

In this class we’ll derive a powerful family of machine learning algorithms, taking advantage of the
polynomial weights algorithm and the minimax theorem we proved last class. First some basic definitions:

Definition 1 A labeled datapoint is a pair (x, y) ∈ X × Y , where X is some space of features and Y
is some space of labels: for example, a common case is X = Rd, and Y = {0, 1}.

A dataset D ∈ (X × Y )n is a collection of n labeled datapoints.

Our goal will be to find some function f : X → Y for predicting labels from their features that has high
accuracy:

Definition 2 Given a predictor f : X → Y , its prediction accuracy on a dataset D is:

acc(f,D) =
1

n

n∑
i=1

1[f(xi) = yi]

The prediction accuracy as defined uniformly weights all of the points in the dataset. But we can also
define weighted prediction accuracy relative to any other weighting w ∈ ∆[n] of the n points:

acc(f,D,w) =

n∑
i=1

wi1[f(xi) = yi]

Note that acc(f,D) is simply the special case of acc(f,D) in which wi = 1/n for all i.

Remark We’re ignoring an important statistical aspect of machine learning here: our goal is typically
not actually to predict the labels of the points in our dataset D, but to predict the labels of new points
drawn from the same distribution as D that we have never seen before. Doing so requires making high
accuracy predictions using “simple” hypotheses. We’ll focus on the algorithmic aspect here, but the
“boosting” approach we discuss here also has good statistical generalization properties.

Definition 3 A hypothesis class H is a collection of predictors or hypotheses h : X → Y . A weighted
learning algorithm A with range H is a mapping from datasets and weight vectors to hypotheses in H.
A : (X × Y )n × [0, 1]n → H.

If (e.g.) Y = {0, 1} then it is generally uninteresting to find a hypothesis h that has acc(h,D) ≤ 1/2,
since we could obtain that just by randomly guessing or always predicting the most common label. But
what about if we could come up with a hypothesis that has just slightly better accuracy: acc(h,D) = 0.51.
Would that be interesting? This is often not hard: it might involve simply finding a single feature that
has a small correlation with the label. We’ll define a weak learning algorithm for a dataset D as one
that can always come up with a hypothesis with weighted accuracy better than random guessing, for
any weight vector:

Definition 4 A weighted learning algorithm A is a weak learning algorithm for D if for every distribution
w ∈ ∆[n], A(D,w) = h such that:

acc(h,D,w) ≥ 0.51
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Remark If the notion of a “weighted” learning algorithm seems odd, observe that one way to im-
plement a weighted learning algorithm is to construct a new dataset D′ by sampling from D under
the probability distribution specified by w, and then running a regular old (unweighted) learning al-
gorithm on D′. We’ll use weighted learning algorithms just because it avoids the need to argue about
subsampling.

A weak learning algorithm seems — well, weak. It only guarantees to beat random guessing by a
tiny amount. But remarkably, we will show that if there is a computationally efficient weak learning
algorithm for D, then there is also a computationally efficient strong learning algorithm for D — one
that can find a perfect predictor.

Definition 5 A is a strong learning algorithm for D if A(D) = h such that acc(h,D) = 1.

Theorem 6 For any dataset D, if there exists an efficient (polynomial time) weak learning algorithm
A for D, then there exists an efficient strong learning algorithm A′ for D.

Proof Our construction will involve applying the minimax theorem to analyze an appropriately defined
zero sum game, and then computing an approximate equilibrium strategy in the zero sum game.

Let H be the hypothesis class used by the weak learning algorithm A. We define a zero sum game
as follows:

1. The action space for the minimization player (the “Data Player”) is the set of datapoints in the
dataset: A1 = D.

2. The action space for the maximization player (the “Learner”) is A2 = H.

3. The cost function is C is defined as C((xi, yi), h) = 1[h(xi) = yi].

How well can the players do in this game? The assumption that there exists a weak learning algorithm
for D immediately lets us compute the min max value for the game — i.e. how well the learner could
do if she got to best respond to a fixed strategy of the data player:

min max(C) = min
w∈∆[n]

max
h∈H

n∑
i=1

wiC((xi, yi), h)

= min
w∈∆[n]

max
h∈H

wi1[h(xi) = yi]

= min
w∈∆[n]

max
h∈H

acc(h,D,w)

≥ 0.51

where the final inequality follows from the assumption that we have a weak learner that uses hypotheses
in H.

We can now apply the minimax theorem to conclude that the Learner can do just as well, even if she
is forced to commit to her strategy first:

min max(C) = max min(C) = max
p∈∆H

min
i∈[n]

∑
h∈H

ph1[h(xi) = yi] ≥ 0.51

In other words, there is some fixed distribution p∗ over hypotheses h ∈ H such that for every data point
(xi, yi) ∈ D, at least 51% of the probability mass under p is on hypotheses that correctly label (xi, yi).
How can we use this? Consider the following “majority vote” classification rule fp∗ :

fp∗(x) = 1

 ∑
h:h(x)=1

p∗h ≥ 0.5


fp∗ turns out to have perfect accuracy.
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Lemma 7 For the distribution p∗ = maxp∈∆H mini∈[n]

∑
h∈H ph1[h(xi) = yi], the hypothesis fp∗ satis-

fies acc(fp∗ , D) = 1

Proof We need to show that for every (xi, yi) ∈ D, fp∗(xi) = yi. From our minimax calculation, we
know that for every i,

∑
h∈H ph1[h(xi) = yi] ≥ 0.51. Hence if yi = 1, we have that∑

h∈H

ph1[h(xi) = 1] =
∑

h:h(x)=1

p∗h ≥ 0.51

and hence by definition fp∗(xi) = 1. Similarly, if yi = 0, we know that
∑
h:h(x)=1 p

∗
h < 0.49 and hence

by definition fp∗(xi) = 0, which completes the proof. So we know there exists a hypothesis (fp∗(xi))

with zero training error — to complete the proof of our theorem, we only need to give an efficient
algorithm for finding it. Note that in our proof of Lemma 7, the only property we used about p∗ is that
it was a distribution p which satisfied mini∈[n]

∑
h∈H ph1[h(xi) = yi] > 0.5. p∗ satisfied this with some

slack (0.01). But this means we would have the same result if we could compute p̂, an ε-approximate
max min strategy for our zero-sum game C will suffice, for ε < 0.01. Fortunately, we derived an algorithm
for computing approximate equilibria in zero sum games last class! Lets recall it here in our context.
Remember that we need one player (here we will choose the minimization/data player) to maintain a
distribution wt over their actions using the polynomial weights update algorithm. The maximization
player (the learner in our case) needs to be able to compute a cost maximizing action — an action that
obtains value at least v in the game against the minimization players current strategy wt, where v is
the max min value of the game that we are aiming to achieve. For us, v = 0.51, and the corresponding
computational task is exactly the weak learning problem. We assume we have access to a weak learner
A, and so we can use it in our algorithm as a subroutine.

Algorithm 1 Boost(D,A)

Let T ← 4 logn
ε2 for ε < 0.01.

Initialize a copy of polynomial weights to run over wt ∈ ∆n.
for t = 1 to T do

Let ht = A(D,wt)
Let `t ∈ [0, 1]m be such that `ti = 1[ht(xi) = yi].
Pass `t to the PW algorithm.

end for
Let p̂ = 1

T

∑T
t=1 eht . (Note that this is concisely representable even though H is large, because p̂ has

support over only the T models ht.)
Return fp̂(x).

It remains to examine the running time of our Boosting algorithm. Since ε is a constant, on a
dataset of size n, it runs for only O(log n) many iterations. At each iteration it makes a single call
to our weak learning algorithm A, which we assume is polynomial time. It then has to update the
polynomial weights distribution over the n datapoints, which takes time O(n). Thus the total running
time is O(log n(n+R(A)), where R(A) is the running time of our weak learning algorithm. Thus if our
weak learning algorithm runs in polynomial time, so does our strong learning algorithm. A couple of

remarks are in order:

1. First, as noted earlier, we have focused here on the problem of finding a hypothesis that correctly
labels the training set, and have ignored the statistical issue of “generalization” — how well the
learned hypothesis fits new data. This is a field of study in its own right, but by and large, for
“simple” hypothesis classes H, fitting the training data implies coming close to fitting new data
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drawn from the same distribution. Since H only needs to contain a weak learner, H can often
taken to be something very simple, like depth 2 decision trees.

2. The hypothesis fp̂ that we output is not in H itself — but it is not too much more complex,
in a way that can be formulated: namely, it is a threshold function that operates on a convex
combination of at most O(log n) models from H. Hence, if H is a “simple” class, then fp̂ is also
“simple” in a way that can be formalized to bound generalization error.

3. The assumption that there exists a weak learning algorithm is (as we have just shown!) much
stronger than it first appears — in particular, it implies that the data can be perfectly classified.
But recall that our analysis of our equilibrium computation algorithm last class made no assump-
tions on the action set of the maximization/best response player. Hence the analysis goes through
even if for the O(log n) iterations of the algorithm, our learning algorithm A happens to be able to
find models ht that perform better than random guessing — even if it is not guaranteed to be able
to do so for all possible distributions. Hence Boosting is a sensible – and popular — approach to
learning in practice, even when the strong assumption of the existence of a weak learning algorithm
does not technically hold.
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Lecture 21
Lecturer: Aaron Roth Scribe: Aaron Roth

Calibrated Prediction

Suppose you turn on your local morning show, and the weatherman tells you that tomorrow there is
a 10% chance of rain in your neighborhood. What does this mean? Tomorrow will only happen once,
so this is not a repeatable event. If it rains, this is not an indictment of the weatherman — he did
allow that there was some chance that it would. So how can you distinguish between a weatherman who
knows what he is doing, from one who does not?

Lets write down a simple model — the weather prediction game. In rounds t = 1 to T :

1. The prediction player predicts some probability pt of rain, for pt ∈ {1/m, 2/m, . . . , (m− 1)/m, 1}.

2. The outcome yt ∈ {0, 1} is revealed: it either rains (yt = 1) or it does not (yt = 0).

Lets think about devising a test to determine whether the weatherman knows what he is doing. First,
what should this mean? Suppose that there was really some true probabilistic process that governed
rain, that the weatherman was privy to: every day, a probability p∗t was revealed to the weatherman,
and then it rained with that probability: Pr[yt = 1] = p∗t . We would want that a weatherman who
predicted pt = p∗t every day should pass the test. Lets call this the oracular weatherman. It should also
be possible to fail the test.

Here is a first attempt:

Definition 1 (Average Consistency) A prediction strategy satisfies ε average consistency if for every
sequence of outcomes, the sequence of predictions it generates (p1, y1, . . . , pT , yT ) satisfies

E

[∣∣∣∣∣ 1

T

T∑
t=1

pt −
T∑

t=1

yT

∣∣∣∣∣
]
≤ ε

We say it satisfies average consistency if ε→ 0 as T →∞.

Certainly the oracular weatherman would pass this test, but its also clear that this is not stringent
enough, because the following strategy (“The yesterday weatherman”) also passes the test: “On day 1,
predict pt = 0, and on day t, predict pt = yt−1”. i.e. just always predict that what happened yesterday

will happen today. In this case we have
∣∣∣ 1
T

∑T
t=1 pt −

∑T
t=1 yT

∣∣∣ = yT /T ≤ 1/T .

But it is easy to differentiate the yesterday weatherman from the oracular weatherman. If the orac-
ular weatherman predicted a 100% chance of rain, it would always rain on such days. But the yesterday
weatherman frequently predicts a 100% chance of rain and is wrong. In other words, the yesterday
weatherman violates prediction conditioned average consistency. We’ll bucket the weatherman’s pre-
dictions into 100 buckets (i.e. by percentage points), and we’ll say that a prediction pt is in bucket i
(pt ∈ B(i)) if it is closer to i/100 than any other point j/100.

Definition 2 Given a sequence of predictions and outcomes (p1, y1, . . . , pT , yT ), let nT (i) = |{t : pt ∈
B(i)}| be the number of rounds on which the prediction was in bucket i. The sequence satisfies ε-prediction
conditioned average consistency for a bucket i if:∣∣∣∣∣

∑
t:pt∈B(i) yt − pt

nT (i)

∣∣∣∣∣ ≤ ε
In other words, conditioned on making a prediction of a≈ i/100 probability of rain, the weather forecaster
should have been right — i.e. on the days on which he predicted a ≈ i/100 probability of rain, it should
have rained roughly a i/100 fraction of the time.
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Thus suggests a stronger test: calibration. The idea is to ask for prediction conditioned average
consistency for all 100 buckets i. But if we think about this a bit harder we realize that the oracular
weatherman might not be able to satisfy this. Suppose there is only a single day for which p∗t ∈ B(30),
and that as luck would have it, on that day it actually rained? A single stroke of bad luck (that happens
30% of the time!) would ruin conditional average consistency for i = 30. However, we can ask that this
condition hold on average over the buckets i, weighted by their frequency:

Definition 3 A prediction strategy satisfies ε-average calibration if for all sequences of outcomes, the
sequence of predictions it generates (p1, y1, . . . , pT , yT ) satisfies:

E

[
100∑
i=1

nT (i)

T
·

∣∣∣∣∣
∑

t:pt∈B(i) yt − pt
nT (i)

∣∣∣∣∣
]

=
1

T
E

[
100∑
i=1

∣∣∣∣∣
T∑

t=1

1[pt ∈ B(i)](yt − pt)

∣∣∣∣∣
]
≤ ε

We say it satisfies average calibration if ε→ 0 as T →∞

It will be more convenient to instead work with a “Euclidean” metric of calibration error:

LT =

100∑
i=1

(
T∑

t=1

1[pt ∈ B(i)](yt − pt)

)2

You can confirm (this is the “Cauchy-Schwartz inequality”) that the average calibration loss ε of a
strategy is upper bounded by:

ε ≤ E

[
10

T

√
LT

]
≤ 10

T

√
E[LT ]

It turns out there is an algorithm that will let any weatherman pass the calibration test as well, even
without any knowledge of weather. To design the algorithm, lets suppose our weatherman has already
made predictions up through day s−1, and is considering what he should predict on day s. If he predicts
ps ∈ B(i) and the outcome turns out to be ys, then the increase in the loss function will be:

∆s(ps, ys) = Ls − Ls−1

=

(
s∑

t=1

1[pt ∈ B(i)](yt − pt)

)2

−

(
s−1∑
t=1

1[pt ∈ B(i)](yt − pt)

)2

=
(
V i
s−1 + (ys − ps)

)2 − (V i
s−1

)2
≤ 2V i

s−1 · (ys − ps) + 1

where V i
s−1 =

∑s−1
t=1 1[pt ∈ B(i)](yt−pt) is a fixed constant at the time that the weatherman must make

her decision on day s. Observe that |V i
s−1| ≤ T .

Now suppose we could show that the weatherman had a distribution over predictions that would
guarantee that E[∆s(ps, ys)] ≤ 2T/m+ 1 at every round. Then we would have that:

E[LT ] =

T∑
t=1

E[∆t(pt, yt)] ≤
2T 2

m
+ T = O

(
T 2

m
+ T

)
and our calibration loss would be bounded by ε ≤ 10

T

√
E[LT ] = O( 1√

m
+ 1√

T
). Hence if we chose m = T ,

we would have calibration loss on the order of O(1/
√
T ), and therefore a predictions strategy satisfying

average calibration.
So that’s the plan. To understand how our algorithm should make predictions at round s Define a

zero-sum game that has cost function taking value:

Cs(p, y) = 2V i
s−1 · (ys − ps) + 1
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for each p ∈ B(i). The minimization player (The Learner) has action set A1 = {1/m, 2/m, . . . , 1},
and the maximization player (The Adversary) has action set A2 = {0, 1}. We have by construction
that ∆s(ps, ys) ≤ Cs(ps, ys), so we need to bound the value of this game. This is easier to do if the
adversary moves first, because its much easier to make a prediction about something you already know!
This corresponds the max min value of the game, in which the adversary first commits to a distribution
q ∈ ∆{0, 1}.

Note that once the adversary commits to a distribution q, this fixes Ey∼q[y], which the Learner
knows. So in this ordering of moves, the Learner is actually in the role of the oracular weatherman!
To best respond, the Learner should set p = E[y], which would guarantee that E[Cs(p, y)] = 1. The
learner cannot necessarily quite do this (because his action set only contains multiples of 1/m), but he
can always find a p such that |p− Eq[y]| ≤ 1/m. Hence we have:

max
q∈∆A2

min
p∈A1

Ey∼q[Cs(p, y)] ≤ 2 ·
|V i

s−1|
m

+ 1 ≤ 2 · T
m

+ 1

Applying the minimax theorem, we can conclude that the value of the game remains the same if the
Learner moves first:

min
p̂∈∆A1

max
y∈A2

Ep∼p̂[Cs(p, y)] ≤ 2 · T
m

+ 1

In other words, at every round s, the learner has a distribution over predictions p̂s that guarantees
that no matter what the label ys is:

Eps∼p̂s
[∆s(ps, ys)] ≤ max

y∈A2

Ep∼p̂[Cs(p, y)] ≤ 2 · T
m

+ 1

Which is exactly what we have wanted. In other words, we have proven the following theorem:

Theorem 4 There exists a prediction strategy that against an arbitrary adversarially chosen sequence
of T outcomes satisfies ε-average calibration for ε = O(1/

√
T )

What is that strategy? It simply plays the minmax equilibrium strategy for the Learner in the zero-
sum game we derived above! We can always efficiently compute the equilibrium of a zero-sum game by
writing it as a linear program which explicitely finds the distribution over actions for the learner that
minimizes the maximum cost resulting from any action of the adversary:

Algorithm 1 Algorithm for Predicting at Round s

Let p̂ ∈ ∆[m] be the solution to the following linear program defined over variables p̂1, . . . , p̂T :

Minimize γ such that:

T∑
t=1

p̂t = 1,

T∑
t=1

p̂tCs

(
t

T
, 0

)
≤ γ,

T∑
t=1

p̂tCs

(
t

T
, 1

)
≤ γ

Select ps = t
T with probability p̂t.

There are only 3 constraints, and T variables in this linear program, so solving it takes time poly-
nomial in T . In fact, in this particular case, the minmax equilibrium strategy for the learner has a nice
closed form (that you may work out on the homework) that can be sampled from in time independent
of T , with no need to solve a linear program.

A couple of remarks are in order:

1. Here the minimax theorem gave us an existential proof of the existence of an algorithm! We only
needed to reason about the (easy) problem of predicting something about a distribution we already
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know, because the adversary (who in this thought experiment is forced to announce his strategy)
told us. The minimax theorem tells us we can do just as well in the actual case, in which we must
commit to an algorithm first, without knowledge of the adversary’s plans.

2. This argument was rather generic to any linear (i.e. based on bounding sums or averages) test
aimed at distinguishing the oracular weatherman from a fraud. This is because the minimax
theorem literally is allowing us to analyze the Learner as if she is the oracular weatherman!

3. We are able to mimic the oracular weatherman even if the truth is that outcomes are chosen
adversarially, without any probabilistic model at all. This should make you think critically about
how much we can learn from empirical tests of probabilistic models.
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