Design, Implementation, and Validation of Embedded Software

Contract #F33615-00-C-1707

Quarterly Status Report

August – October 2002

Distribution: unlimited

Summary

The work on project is going according to the schedule outlined in the proposal. The main effort concentrates on the development of analysis techniques for hybrid systems models. The analysis techniques currently under development are reachability analysis based on predicate abstraction and automatic generation of test suites to be applied to implementations of the system to test their compliance with the CHARON model. Automatic code generation for embedded systems directly from CHARON models is another important research direction currently under investigation. All work is being performed within the context of the CHARON development toolkit. We are also investigating the use of CHARON language for the construction of models in other problem domains, namely models of biochemical reactions in biological cells.

In other developments, work on CHARON case studies continues. We are concentrating on the problems provided by the Automotive OEP. We are also actively participating in the development of the HSIF interchange format. We have defined the new semantics for HSIF models based on discussions at the July PI meeting. Converters between CHARON and HSIF models are being developed.

No major problems have been encountered within this period.

Status of project tasks

We describe the activities performed for each of the tasks in the project. Each item listed below corresponds either to a technical paper, published or submitted for publication, or an implemented piece of software.

1. Design language.

We are have made changes to the CHARON language syntax and semantics to make it easier for the users to create models with predictable behaviors and to facilitate translations to and from HSIF format. The following changes are introduced:

· Variables in a CHARON model are partitioned into signals and shared variables. Signals can be updated continuously or discretely and have the functional semantics; that is, in every execution, the value of the signal is a function of time and all agents have a consistent view of the signal value. Only a single agent can update the signal value. Shared variables, on the other hand, are updated only in a discrete manner and do no enjoy the single-writer property that signals have. Therefore, different agents reading a shared variable at the same time during an execution can obtain different values, depending on the chosen execution order.

· Dependencies between signals are assumed to be acyclic so that it is always possible to find an execution order that will ensure the functional view of each signal. Evaluation of agents proceeds in the order imposed by the signal dependencies.

· The distinction between analog and discrete variables is eliminated, superceded by the signals/shared variables dichotomy.

The changes are implemented as the version 2.0 of the CHARON language.

2. Programming environment and software toolkit.

· The basic components of the CHARON software toolkit have been designed and implemented. These components include textual and visual editors, a parser, type checker, GUI front-end, reachability analyzer, and a global simulator.

· A version of the CHARON toolkit, implementing language version 1.0, has been released. The tool, implemented in Java, can be downloaded as a Java package from http://www.cis.upenn.edu/mobies/charon/implementation.html.

· A version of the toolkit for CHARON language version 2.0 is being implemented.

· The CHARON simulator has been upgraded to include an improved integration routines with adaptive integration steps. An efficient event detection algorithm has been implemented. The algorithm substantially improves efficiency of CHARON simulation, usually offering performance improvements between 60% and 100%.

· The CHARON simulator has been extended with the capability to check assertions within a CHARON model. If a violation is found, the simulation is stopped and the last simulation state in the trace illustrates the violation. The assertion-checking capability effectively turns the simulator into a light-weight analysis tool.

3. Methodology and algorithms.

a. Abstraction techniques and reachability analysis

· Improvements to the predicate abstraction-based reachability tool

We have made major improvements to the reachability analysis tool based on predicate abstraction. The improvements fall into two main categories:

1. Counterexample analysis and counterexample-driven selection of predicates.

2. Optimizations to the search strategies used during reachability analysis.

The details of these improvements are presented below.

Counterexample analysis. Whenever a bad region is found to be reachable from an initial state, a counterexample is generated by the tool. The counterexample shows what sequence of steps takes the model into the region. However, since the predicate abstraction scheme is an overapproximation, it is possible that the counterexample is spurious, that is, it occurs only in the abstract model, but is infeasible in the concrete model. Counterexample analysis allows us to detect spurious counterexamples. Furthermore, the success of our scheme crucially depends on the choice of the predicates used for abstraction. We identify additional predicates automatically by analyzing spurious counterexamples further. Counter-example guided refinement of abstractions for hybrid systems is also being independently explored by the MoBIES team at CMU.

The abstract counter-example consists of a sequence of abstract states leading from an initial state to a state violating the property. The analysis problem, then, is to check if the corresponding sequence of modes and discrete switches can be traversed in the concrete system. We perform a forward search from the initial abstract state following the given counter-example in the abstract state-space. The analysis relies on techniques for polyhedral approximations of the reachable sets under continuous dynamics. To speed up the feasibility analysis, we have also implemented a local test that checks for feasibility of pair-wise transitions, and this proves to be effective in many cases. If the counter-example is found to be infeasible, then we wish to identify one or more new predicates that would rule out this sequence in the refined abstract space. This reduces to the problem of finding one or more predicates that separate two sets of polyhedra. We developed a greedy strategy for identifying the separating predicates. After discovering new predicates, we then include these predicates to the set of predicates used before, and rerun the search in the refined abstract state-space defined by the enriched predicate set.

Search strategy optimizations. We implement the following three optimizations. The first optimization eliminates some spurious counter-examples in the abstract state-space by requiring that a counter-example is not permitted to consist of two or more consecutive continuous transitions in the abstract state-space. The optimization is based on the fact that you can always find an equivalent valid path in the concrete state-space, where discrete and continuous steps strictly alternate. In the abstract state-space, however, two consecutive continuous transitions to not necessarily have an encompassing single continuous transition in the concrete state-space. Therefore, if the abstract state t can be reached only by transitions due to continuous flow, we will not explore its continuous successors by the same continuous dynamics. In the example illustrated in Figure 1, the abstract state u will not be regarded as reachable from s. On the other hand, v is reached by continuous flow directly from s and will also be reachable in the concrete space.

[image: image1.png]

Figure 1. Search strategy optimization

The second optimization is applied during the construction of the abstract state-space. Since the predicates decompose the continuous state-space into polyhedral regions, instead of computing a polyhedron for each abstract state independently, we can use the Binary Space Partition (BSP) technique to incrementally construct the abstract state-space. The polyhedra resulting from partitioning the continuous state-space by one predicate after another are stored in a BSP tree, the leaves of which correspond to non-empty abstract states. Using the search strategy, the tree is built on-the-fly, based on the decision which abstract state to explore next. This construction allows fast detection of empty abstract states and saves a significant amount of polyhedral computations.

The third optimization implements a guided search strategy. Since initial abstraction is typically coarse, the abstract search is likely to reach the target (i.e. bad states). During depth-first search, after computing the abstract successors of the current state, we choose to examine the abstract state whose distance to the target is the smallest according to an easily computable metric. We have experimented with a variety of natural metrics that are based on the shortest path in the discrete location graph of the hybrid system as well as the Euclidean shortest distance between the polyhedra corresponding to the abstract states. Such a priority-based search improves the efficiency significantly in the initial iterations. Another strategy allows a location-specific choice of predicates for abstraction. Instead of having a global pool of abstraction predicates, each location is tagged with a relevant set of predicates, thereby reducing the size of the abstract state-space. Again, this strategy is shown to be effective in speeding up the computation in our case studies. The final optimization uses qualitative analysis of vector fields to rule out reachability of certain abstract states from a given abstract states a priori before applying the continuous reachability computation.

HSIF design and implementation

The Hybrid Systems Interchange Format (HSIF), intended to serve as a common interface between different MoBIES tools, is currently under development. The primary contribution of our team is to define semantics for HSIF to ensure a solid common understanding of the format. Following the discussions at the MoBIES PI meeting in July, we have modified the HSIF semantics to ensure a better predictability of executions in HSIF models and a closer connection to the Smiulink/Stateflow modeling approach.

We also participated in all biweekly HSIF teleconferences in September and October. As a result of the discussions, the new HSIF semantics has been accepted as the basis for the export/import converters that will allow to exchange models between various modeling and analysis tools.

In addition, we have implemented a translator from CHARON models into HSIF format. Translation is currently supported for flat models. Flat CHARON models have the same structure as HSIF models (i.e. no hierarchy of either modes or agents), making the translation easier. Tools that will convert arbitrary CHARON models into flat models are currently under development and will allow us to produce HSIF format for arbitrary CHARON models. We are also implementing the reverse translator, from HSIF format into CHARON. This will allow us to apply CHARON analysis tools to models developed by other groups.

Future plans

The immediate plans include:

· Continue the implementation of the modular and distributed simulators.

· Extend and refine the reachability tool for hybrid systems by implementing additional search heuistics and conduct evaluations of the tool on larger case studies.

· Develop algorithms for compositional controller synthesis and implement them in the CHARON toolset.

· Work on challenge problems. We are working on the technology transition of the DIVES tools to the automotive OEP team.

· Implement converters between HSIF and CHARON.
· Complete the conversion of the CHARON toolkit for the version 2.0

More distant plans can be summarized as follows:

· Develop further verfication techniques for CHARON. They will utilize the results on predicate abstraction, and will also require other abstraction and approximation techniques.

· Implement the new verification algorithms in the CHARON toolkit.

· Perform extensive case studies of hybrid systems in CHARON to demostrate the effectiveness of the methodology and the toolkit.

References

[1] R. Alur, T. Dang, F. Ivancic, “Reachability Analysis of Hybrid Systems using Counter-Example Guided Predicate Abstraction,” Technical Report MS-CIS-02-34, Department of Computer and Information Science, University of Pennsylvania, November 2002.

This report was prepared by Oleg Sokolsky, (215) 898-4448, and Insup Lee, (215) 898-3532.

Appendix. Progress chart

[image: image2.png]uarters after contract award

Task

45|67

Lo

[T

Task L. Design language

2 CHARON syntax o}

b. Domain—specific extensions

Task 2. Software toolkit
2. CHARON programming env.
b. CHARON simulator
c. Ecrortrace generation
d. Mode checking
&. Code generation

f.Gut [

Task 3. Methodology and algorighms
. Compositional semantics
b. Event detection
¢ Modular sioulation
4. Disteibuted simulation
e. Controller synthesis
£. Abstraction techniques
& Runtime monitoring
& Test generation

Task 4. CHARON case studies

Task 5. OEP coordination
2 OEP challenge problems
b. HSIF development

O techrical report published
© product integration and version release

