Design, Implementation, and Validation of Embedded Software

Contract #F33615-00-C-1707

Quarterly Status Report

August 2001 – October 2001

Distribution: unlimited

Summary

The work on project is going according to the schedule outlined in the proposal. The main effort concentrates on the development of analysis techniques for hybrid systems models. The analysis techniques currently under development are reachability analysis based on predicate abstraction and automatic generation of test suites to be applied to implementations of the system to test their compliance with the CHARON model. All work is being performed within the context of the CHARON development toolkit that has been implemented during the last year.

In other developments, work on CHARON case studies continues. We are concentrating on the problems provided by the Automotive OEP.

No major problems have been encountered within this period. The work on test generation has been progressing slower than we expected. However, we think that the premises for this work are still valid, and expect to report results in the coming months.

Status of project tasks

We describe the activities performed for each of the tasks in the project. Each item listed below corresponds either to a technical paper, published or submitted for publication, or an implemented piece of software.

1. Design language.

The language syntax and semantics have been defined during the project first year. During the summer 2001, a visual language for CHARON models has been added. Semantics of the textual and visual language are compatible and translations between the two languages have been defined.
We have added the capability to specify invariant assertions in CHARON models. An assertion can be added to any mode or agent. It is a predicate over the variables of the mode or agent. Assertions do not affect behavior of a CHARON model, but rather represent the understanding of the model designer about the way the model should perform. An assertion of an agent should be satisfied at any time during the execution, while an assertion of a mode should be satisfied any time that the mode is active. Checking of assertions is an important way of model analysis.
2. Programming environment and software toolkit.

· The basic components of the CHARON software toolkit have been designed and implemented. These components include parser, type checker, GUI front-end, and a global simulator.

· A preliminary version of the CHARON toolkit has been released for evaluation. The tool, implemented in Java, can be downloaded as a Java package from http://www.cis.upenn.edu/mobies/charon/implementation.html.

· Implementation of the efficient event detection algorithm is under way. The algorithm will substantially improve efficiency of CHARON simulation. It can also be used in various analysis techniques for CHARON.

· A custom simulator GUI has been implemented and integrated into the CHARON toolkit. The new interface gives the user an easier-to-use access to all features of CHARON simulation. The implementation uses the plotting routines from the Ptolemy project. We expect that this will make integration between MoBIES-related tools easier.

· A visual editor for CHARON models has been implemented. The visual format uses a flexible XML representation. The tool can produce regular CHARON specifications from visual models, establishing interoperability with all other CHARON tools.

· The CHARON simulator has been extended with the capability to check assertions within a CHARON model. If a violation is found, the simulation is stopped and the last simulation state in the trace illustrates the violation. The assertion-checking capability effectively turns the simulator into a light-weight analysis tool.

3. Methodology and algorithms.

a. Abstraction techniques

· Simulation Relations for Constrained Discrete-Time Linear Systems

We consider discrete time linear control systems that are subject to input and state constraints:

[image: image1.png]Ayt X =Ax,+Bu, xeXcR,ueUcCR"

Ayt 2y =Fz, +Gv,, zeZCcR,veVC R’

Simulation relations are the means to obtain abstractions of high dimensional linear control systems (r ((n), which are consistent in terms of preserving some properties of interest. These properties are captured in a surjective linear map of the form:

[image: image2.wmf]n

r

H

,

x

H

z

´

Â

Î

=

,

which induces a partition of X, based on the image of its elements under H.

In order to define simulation relations for linear control systems, we embed them into a particular class of transition systems that share the same set of transition labels:

[image: image3.wmf])

,

,

Z

(

T

)

,

,

X

(

T

2

2

1

1

®

S

=

®

S

=

Then we say that the linear control systems are similar whenever the corresponding transition systems are similar. In the transition function of the related transition systems control input is abstracted away, in the sense that we are not interested in the particular control that is responsible for the transition from xk to xk+1. Furthermore, the transition function can capture different amounts of timing information concerning the evolution of the linear systems, thus giving rise to different characterizations of simulation between the linear systems.

It is then shown that the necessary and sufficient conditions in order for system (2 to simulate (1 can be expressed in a set inclusion relation of the form:

[image: image4.wmf]V

G

U

B

H

X

)

H

F

A

H

(

Í

+

-

,

provided that there can be no transitions that can lead outside X and Z. This latter requirement can also be posed as a set inclusion relation representing invariance:

[image: image5.wmf]Z

V

G

Z

F

,

X

U

B

AX

Í

+

Í

+

.

Under the reasonable assumption that the sets X, U, V and Z are described as polyhedra, the above conditions can be checked efficiently using a linear programming formulation (see Figure 1). This formulation reveals the natural game theoretic semantics of simulation between linear systems since it involves the solution of a min-max optimization problem.

The methodology is applied to the problem of verification of a property in a high dimensional linear system, resulting from modeling a deformable beam using finite elements (Figure 2). It is demonstrated how this system with 48 dimensions can be reduced for the purpose of verification to a manageable 4-dimensional system, which still preserves the property of interest thanks to being able to simulate the original high dimensional model.

[image: image20.wmf]U

X

´

 Figure 1: Polyhedra containment checking using linear programming formulation

[image: image6.jpg]end point

Figure 2: Finite element model of a deformable beam

b. Efficient simulation techniques

· Multiagent simulation of hybrid systems

In simulating hybrid systems, the most overhead is caused by the computation for the numerical integrations. For more efficient numerical integration, various numerical integrators are combined with adaptive integration steps. Multiagent hybrid systems are sets of interacting hybrid systems. In the case of the automated highway example, each vehicle may be modeled as an individual agent, however one may like to consider the dynamics of an entire group of vehicles collectively to see how they interact. The continuous dynamics of each vehicle is physically decoupled from that of the other agents and typically they operate independently. However, certain important discrete events may depend on the state of two or more agents. Examples of this would be when two cars come dangerously close, one car informs a group of vehicles that it is merging into the platoon, etc. Most multi-agent systems of this form have the following mathematical structure:

[image: image21.wmf],

0

)

,

(

)

(

)

(

2

1

2

2

2

1

1

1

£

=

=

x

x

g

x

f

x

x

f

x

&

&

where
[image: image7.wmf]n

R

x

Î

1

 and
[image: image8.wmf]m

R

x

Î

2

 are the states of agent 1 and agent 2, respectively, and the dynamics of agents are given by
[image: image9.wmf]n

n

R

R

f

®

:

1

 and
[image: image10.wmf]m

m

R

R

f

®

:

2

. The function
[image: image11.wmf]R

R

R

g

m

n

®

´

:

 is the guard for the event that depends on the states of both agents. Note that the differential equations in each agent are decoupled. However, coupling is introduced through the guards.

From the point of view of simulating the continuous dynamics, it is not necessary to synchronize the integration rates of two cars since they are decoupled. Each set of ODEs should maximize the trade-off between accuracy and efficiency by selecting the largest possible integration step size that is able to recreate that agents dynamics within some acceptable user-specified error tolerance. Unfortunately, properly detecting the occurrence of events,
[image: image12.wmf]0

)

,

(

2

1

=

x

x

g

, requires that the value of the state be reported in a synchronized fashion. Traditionally, simulators compute the best step size for each agent then take the minimum as a global step size. This can result is significant inefficiencies.

Our goal is to simulate each agent with a different step size while still insuring proper event handling. The idea is to allow the simulation for each agent proceed synchronously when no events are about to occur. Only when events seem likely do we adaptively select the step sizes to bring all of the agents into synchronization to properly detect the event.

In the case of n agents our approach to this problem, reported in [1], is to define N local clocks,
[image: image13.wmf]n

t

t

,...,

1

 and N step sizes
[image: image14.wmf]n

h

h

,...,

1

, one for each agent. The step sizes are selected based on the system dynamics in such a way as to simultaneously synchronize the local clocks and detect the event using the control theoretic technique of Input-Output Linearization.

Figures 3 and 4 illustrate how the simulation for twoagents might proceed. In the upper left panel the trajectories of two cars are shown. The simulation tries to detect when the cars collide. In the upper right panel, the value of the guard (i.e., the distance between the two cars) is shown as a function of the simulation step number. One can see that near the event, the step sizes are selected in such a way as to force the guard to exponentially converge to zero. The lower right panel displays how the step sizes are selected independently throughout most of the simulation; while the lower left panel displays by how much the two local time clocks are out of phase. When the system nears the event, the local clocks automatically synchronize.

Note that while this method is asynchronous, this is different than distributed simulation because all the dynamics are simulated on the same processor. Thus, concerns do not arise about how to best share state information since it assumed the global state vector is completely observable.

[image: image15.jpg]Y —axis

15

0

START- CAR1

coLusion

START- CAR2

>~

X il

 [image: image16.jpg]EY

))

Region of Exponential
Convergence

Sien Number

ED

E

Figure 3. left the trajectory of the two cars in the plane. Distance is small enough that they collide. right The value of the constraint as a function of step number. The constraint converges to zero exponentially.
[image: image17.jpg]h2

hi

035,

03)

025

sozig daig

o4

o0s|

E

70

Time

 [image: image18.jpg]001

001

Synchronization

o7
oo

110

20

0

T B0 w0 m m

S Nuirber

0

)

Figure 4. left Step sizes for used in the first example. h1 and h2 are selected independently away from the constraint but are brought into synchronization when an event is impending. right The value of τ, which is a measure of how out of synchronization the two local time clocks are.
c. Abstraction and analysis techniques

· Test generation for reactive systems
Testing has always been an essential activity for validating the correctness of software and hardware systems. Although testing cannot provide an absolute guarantee on correctness as is possible with formal verification, a disciplined use of testing can greatly increase the effectiveness of system validation, especially when performed by suitable tools. In our recent work, we studied the problem of test coverage and generation of test cases from specifications written in hierarchical concurrent extended finite state machines (EFSMs). Results of this work are presented in [2]. While we did not consider any continuous dynamics in this work, it is highly relevant in the context of the design of embedded hybrid systems. Indeed, a hybrid system usually consists of a continuous or hybrid plant and a purely discrete controller. The controller is implemented in software and has to be tested for compliance with the controller in the model. Since the controller model is purely discrete, we can use our techniques to generate tests for it.

Because an EFSM specification typically allows an infinite number of executions, it is not possible to determine whether an implementation under test conforms to its specification by considering all executions of the specification. We show that the problem of test generation from EFSMs based on control flow and data flow oriented coverage criteria can be formulated as a model checking problem. Given a system model and a temporal logic formula, model checking establishes whether the model satisfies the formula. If so, model checkers are capable of supplying a witness that explains the success of the formula. Conversely, if the model fails to satisfy the formula, a counterexample is produced. In our approach, each coverage criterion is expressed as a set of temporal logic formulas and the problem of test generation satisfying the criterion is formulated as finding witnesses for every formula in the set with respect to a given EFSM. The capability of model checkers to construct witnesses and counterexamples allows test generation to be automatic. Each formula is defined such that the formula is satisfied by the EFSM if and only if the EFSM has an execution that covers the entity described by the formula, such as a specific state, transition, or definition-use association. If the entity can be covered in the EFSM, a witness for the corresponding formula is constructed. A test suite of an EFSM specification is a set of finite executions in the EFSM such that for every formula, the test suite includes a finite execution which is a witness for the formula. In addition to the coverage criteria that cover states, transitions, and definition-use associations, we also consider more complex ones that are based on the affect relation in program slicing and are applied to protocol conformance testing. They deal with data flow from input variables to output variables through an arbitrary number of definition-use associations between local variables.
Status of challenge problems

Work on challenge problems from both automotove and avionics OEP proceeds according to schedule. Students and staff members have been assigned to study the models provided by the OEPs. We are preparing for the midterm experiments.

In this quarter, most of the effort concentrated on the automotive challenge problems, both in the vehicle-to-vehicle coordination and the powertrain domains. In preparation for the mid-term MoBIES experiment, we are pursuing the following activities:

1. In the vehicle-to-vehicle coordination problem, we have constructed a simplified version of the problem and implemented it in CHARON. We have performed simulations of the model and reachability analysis of the model, proving that it satisfies the property that two cars never collide.
2. A translation of the ETC model provided by the OEP into CHARON has been constructed. Currently, we are performing reachability analysis of the model. At the same time, we are applying test generation techniques to the ETC controller based on the CHARON model.

3. Event dependency analysis of the Boeing application is being performed. Since we do not currently have any tool support, analysis of this large application is slow. We hope that manual analysis will help us identify the necessary tool support for dependency analysis.

Future plans

The immediate plans include:

· Continue the implementation of the modular and distributed simulators.

· Extend and refine the reachability tool for hybrid systems. The current effort is to implement the generation and manipulation of counterexamples when the state space exploration is complete. Automatic generation of predicates through the analysis of counterexamples will be the next step.

· Develop algorithms for compositional controller synthesis and implement them in the CHARON toolset.

· Work on challenge problems. We are applying our analysis techniques to the simplified model of the automotive OEP challenge problems.

· In the preparation for the midterm experiments, we will be working on the integration of different tools via the HSIF format, which will be finalised in the current quarter.

More distant plans can be summarized as follows:

· Develop further verfication techniques for CHARON. They will utilize the results on predicate abstraction, and will also require other abstraction and approximation techniques.

· Implement verification algorithms in the CHARON toolkit.

· Perform extensive case studies of hybrid systems in CHARON to demostrate the effectiveness of the methodology and the toolkit.

References

[1] Joel Esposito, George Papas, and Vijay Kumar, “Multi-agent hybrid system simulation,” IEEE Conference on Decision and Control, December 2001.

[2] H. S. Hong, I. Lee, O. Sokolsky, and H.Ural, “A Temporal Logic Based Theory of Test Coverage and Generation,” to appear in TACAS ’02, April 2002.
This report was prepared by Oleg Sokolsky, (215) 898-4448, and Insup Lee, (215) 898-3532.

Appendix. Progress chart

[image: image19.png]Task

Quarters after contract award

4 |56 |7

e

Task L. Design language
2. CHARON synax
b. Domain-specific extensions

Task 2. Software toolkit
2. CHARON programming env.
b. CHARON simularor
c. Ecror trace generation
4. Model checking
e. Code generation
£.6UL
& Run-time monitor generation

Task 3. Methodology and algorighs
2. Compositional semantics
b. Event detection
¢ Modular simulation
4. Distributed simulation
e. Controller synthesys
£. Abstraction techniques
g Runtime monitoring
g Test generation

Task 4. CHARON case studies

Task 5. OEP coordination

==
=

O technical report published

© product integration and version release

V

� EMBED Equation.3 ���

[HA-FH HB]

G

� EMBED Equation.3 ���

[image: image22.wmf]U

X

´

[image: image23.wmf],

0

)

,

(

)

(

)

(

2

1

2

2

2

1

1

1

£

=

=

x

x

g

x

f

x

x

f

x

&

&

_1071584601.unknown

_1071648654.unknown

_1071648943.unknown

_1071649423.unknown

_1071649444.unknown

_1071649021.unknown

_1071648691.unknown

_1071648289.unknown

_1071648560.unknown

_1071648226.unknown

_1071585452.unknown

_1071583874.unknown

_1071584032.unknown

_1071582606.unknown

