Design, Implementation, and Validation of Embedded Software

Contract #F33615-00-C-1707

Quarterly Status Report

February – April 2002
Distribution: unlimited

Summary

The work on project is going according to the schedule outlined in the proposal. The main effort concentrates on the development of analysis techniques for hybrid systems models. The analysis techniques currently under development are reachability analysis based on predicate abstraction and automatic generation of test suites to be applied to implementations of the system to test their compliance with the CHARON model. All work is being performed within the context of the CHARON development toolkit that has been implemented during the last year.

In other developments, work on CHARON case studies continues. We are concentrating on the problems provided by the Automotive OEP.

No major problems have been encountered within this period.

Status of project tasks

We describe the activities performed for each of the tasks in the project. Each item listed below corresponds either to a technical paper, published or submitted for publication, or an implemented piece of software.

1. Design language.

The language syntax and semantics have been defined during the project first year. During the summer 2001, a visual language for CHARON models has been added. Semantics of the textual and visual language are compatible and translations between the two languages have been defined. The language has been used to construct many large models, including models of soccer games using Sony robot dogs, biological cells, and embedded medical devices such as an infusion pump. The language was found adequate for these tasks.
2. Programming environment and software toolkit.

· The basic components of the CHARON software toolkit have been designed and implemented. These components include parser, type checker, GUI front-end, and a global simulator.

· A preliminary version of the CHARON toolkit has been released for evaluation. The tool, implemented in Java, can be downloaded as a Java package from http://www.cis.upenn.edu/mobies/charon/implementation.html.

· Implementation of the efficient event detection algorithm is under way. The algorithm will substantially improve efficiency of CHARON simulation. It can also be used in various analysis techniques for CHARON.

· A custom simulator GUI has been implemented and integrated into the CHARON toolkit. The new interface gives the user an easier-to-use access to all features of CHARON simulation. The implementation uses the plotting routines from the Ptolemy project. We expect that this will make integration between MoBIES-related tools easier.

· A visual editor for CHARON models has been implemented. The visual format uses a flexible XML representation. The tool can produce regular CHARON specifications from visual models, establishing interoperability with all other CHARON tools.

· The CHARON simulator has been extended with the capability to check assertions within a CHARON model. If a violation is found, the simulation is stopped and the last simulation state in the trace illustrates the violation. The assertion-checking capability effectively turns the simulator into a light-weight analysis tool.

· A predicate abstraction reachability analysis tool has been designed and implemented. The tool is integrated with the CHARON toolkit by means of an automatic translation.

3. Methodology and algorithms.

a. Abstraction techniques

· Simulation Relations for Constrained Discrete-Time Linear Systems
In our previous work [1] (outlined in the previous quarterly report), we considered abstraction of linear control systems based on the notion of simulation. Different characterizations of simulation between two linear control systems are defined that give rise to abstractions of one system to the other that differ in the amount of timing information that is abstracted away. We extend that work by investigating the suitable simulation relations in the presence of constraints on the states and the inputs of the system. In this case, not only the dynamics, but the constraint sets as well need to be abstracted. The question then becomes, what is the “correct” abstraction of the input and state sets so that the simulation relation between the systems still holds. That question is answered by stating necessary and sufficient conditions for this kind of simulation under constraints. The conditions can be checked efficiently when the constraint sets are expressed as polyhedra, using a linear programming formulation.
The constrained simulation relation framework turns out to be very well suited for analysis of practical control problems. In particular, we used it in the analysis of the ETC challenge problem.

[image: image1.emf]1

6

4

2

3

7 5

9 8

Figure 1: Leader-follower interconnections
b. Analysis techniques

· Stability of Formations based on ISS
We define a new notion of stability for interconnected systems that is based on input-to-state stability (ISS) [3]. The analysis exploits the properties of a large class of interconnections to preserve the input-to-state stability properties of the subsystems from which they are composed. We focus on leader-follower interconnections (Figure 1) and provide quantitative bounds for the interconnection errors within a formation that depend on the input of the leaders. Thus, we are able to characterize the sensitivity of the formation shape to variations of its leader’s motion.

Formation ISS provides insight in the way the errors within a formation propagate from one agent to another through leader-follower interconnections, without requiring error attenuation. It therefore imposes less stringent conditions on the dynamics of the individual agents than existing stability notions. In that sense, formation ISS can be thought of as a weaker notion of stability compared to string or mesh stability.

Several kinds of basic interconnections have been investigated in this framework. We have derived bounds for the interconnection errors in cases of cascades of leader-follower, interconnections with single leader and multiple followers, multiple leaders as well as cyclic interconnections. In the latter case, we have shown that stability is ensured when a small gain condition is satisfied. These basic interconnections can then serve as building blocks for constructing a large class of formation interconnection topologies.

Although applicable to both nonlinear and linear control systems, the linear case has been shown to offer computational and analytical advantages. When the formation topology is expressed in graph theoretic terms, computation of the stability gains is given by formulas where the topology of the network appears explicitly in the form of the adjacency matrix of the corresponding formation control graph. The approach can then be applied to formations with arbitrary number of agents.

The leader-follower architecture considered is decentralized, in the sense that the controller of each agent uses only feedback information from its leaders. Preliminary results show that overall system stability can benefit from the use of additional information conveyed through communication between the agents, and indicate that some communication links can provide more vital information than others. We are currently investigating the effect of information flow to stability performance.

Formation ISS can serve both as an analysis and design tool in formation control. As an analysis tool, it can be used to compare different formation interconnections and characterize them in terms of stability. As a design tool, it provides insight in the way the topology of the interconnected system affects its stability and can suggest ways in which a modification in the architecture can significantly improve the performance of the system.

· Exploiting Behavioral Hierarchy for Efficient Model Checking
Inspired by the success of model checking in hardware and protocol verification, model checking techniques for software have been the focus of much research in the last few years. Model checking can be applied only to relatively small models due to its inherently high computational requirements, and there are two complementary trends to address scalability. The model extraction approach, exemplified by projects such as Bandera and SLAM, involves constructing inputs to model checkers by abstracting programs written in languages such as C and Java. The model-based design approach, exemplified by modeling notations such as Statecharts, promotes design using high-level models that are compiled into code. Our research agenda is to develop model checking techniques for model-based design of software.
Modern software design languages promote hierarchy as one of the key constructs for structuring complex specifications. The input language to our model checker is based on hierarchical reactive modules [4]. This choice was motivated by the fact that, unlike Statecharts and other languages, in hierarchic reactive modules the notion of hierarchy is semantic with an observational trace-based semantics and a notion of refinement with assume-guarantee rules. We implemented the Hermes toolkit based hierarchic reactive modules modeling paradigm [5]. Our implementation has a visual front-end and XML-based back-end, consistent with modern software design tools, and is in written in Java.

There are two basic techniques for reachability analysis. Enumerative model checkers such as SPIN perform an on-the-fly exploration of the state-space using a depth-first search, while symbolic model checkers such as SMV perform a breadth-first search by manipulating sets of states, rather than individual states, encoded typically by ordered binary (or multi-valued) decision diagrams. Since the two approaches are incomparable, and both have been shown to be successful, Hermes supports both enumerative and symbolic reachability analysis. More information about the tool is available at http://www.cis.upenn.edu/sdrl/hermes/.
Hierarchical Modeling in Hermes. Hierarchical Reactive Modules (HRM) is a graphical language for describing and analyzing systems. Our goal in using HRM is to find verification algorithms that leverage the modularity that is present in so many modern designs.

[image: image2.wmf]
Figure 2: The building blocks of the HRM language and a simple Mode diagram.
A simple HRM diagram resembles a finite state machine (FSM); it consists of states, called points in HRM, and transitions between points (see Figure 2). HRM extends FSM by adding variables which can be read and updated as in normal programming languages. Each transition is enabled when its guard, a boolean expression over the diagram's variables, evaluates to true. Transitions can be annotated with actions which update the values of variables. A set of points and transitions can be grouped into a mode. A mode's interaction with its surroundings is mediated by two interfaces: a control interface and a data interface. The control interface is a set of entry and exit points on the boundary of a mode. A mode can be embedded in other modes.

We have implemented a toolkit, called Hermes, which allows users to create, edit, type-check, and verify HRM diagrams. The toolkit is implemented in Java and has a graphical user interface (GUI) for editing HRM diagrams. The GUI also acts a front-end to the model checking algorithms (Figure 3). Hermes also has command-line and scripting front-ends for environments where a GUI is impractical. The Hermes toolkit uses an XML file format to store HRM diagrams.

Enumerative Checker. The enumerative checker performs a depth first search of all reachable states of an HRM diagram. The search will check for states that are deadlocked or that violate the specified assertions or invariants. When the checker finds a bad state it outputs the sequence of steps that led to the bad state. The enumerative checker uses the structure and hierarchy of an HRM diagram to save time and memory while exploring the state space.

Symbolic Checker. The symbolic checker represents the transition relation of the system using multi-valued decision diagrams (MDD). The transition relation is a map from control points to a list of pairs containing destinations of edges along with MDDs encoding guarded commands. Typing and scoping information of the original model is maintained during compilation of the transition relation using MDDs. Like transition relations, the reachable state-sets in Hermes are not represented by a single MDD. A state region represented by an MDD is associated with each control point. Such a representation allows us to partition the state space intuitively with each region containing all the states with the same control point.

[image: image3]
Figure 3: Hermes GUI

Status of challenge problems

We are concentrating primarily on the automotive OEP problems. Work on the ETC challenge problem is going slower than we expected, in part because existing abstraction methods had to be extended to handle the model. Students and staff members have been assigned to study the models provided by the OEPs.

1. In the vehicle-to-vehicle coordination problem, we have constructed a simplified version of the problem and implemented it in CHARON. We have performed simulations of the model and reachability analysis of the model, proving that it satisfies the property that two cars never collide. A detailed report has been presented at the PI meeting at the end of January.
2. An abstraction of the ETC model provided by the OEP has been constructed (see below). A CHARON model of the abstraction is developed. Currently, we are performing reachability analysis of the model. At the same time, we are have applied test generation techniques to the ETC controller of the original (non-abstracted) OEP model. A test generation report has been submitted to the OEP for evaluation.
HSIF design and implementation

The Hybrid Systems Interchange Format (HSIF), intended to serve as a common interface between different MoBIES tools, is currently under development. The primary contribution of our team is to define semantics for HSIF to ensure a solid common understanding of the format. Semantics for Version 1.0 of HSIF have been developed and sumitted for comments to the MoBIES researchers. The comments are being incorporated into the semantic definition.
In addition, we have implemented a translator from CHARON models into HSIF format. Translation is currently supported for the models that conform with the HSIF structure (i.e. no hierarchy of either modes or agents). Tools that will convert arbitrary CHARON models into flat models are currently under development and will allow us to produce HSIF format for arbitrary CHARON models.

Future plans

The immediate plans include:

· Continue the implementation of the modular and distributed simulators.

· Extend and refine the reachability tool for hybrid systems. The current effort is to implement the generation and manipulation of counterexamples when the state space exploration is complete. Automatic generation of predicates through the analysis of counterexamples will be the next step.

· Develop algorithms for compositional controller synthesis and implement them in the CHARON toolset.

· Work on challenge problems. We are working on the technology transition of the DIVES tools to the automotive OEP team.
· We are working on the semantics for the new release of the Hybrid Systems Interchange Format. Formal semantics will provide for unambiguous translations between HSIF and MoBIES tools.

· Translation from CHARON to HSIF and back will begin as soon as the new release of HSIF is finalized.
More distant plans can be summarized as follows:

· Develop further verfication techniques for CHARON. They will utilize the results on predicate abstraction, and will also require other abstraction and approximation techniques.

· Implement verification algorithms in the CHARON toolkit.

· Perform extensive case studies of hybrid systems in CHARON to demostrate the effectiveness of the methodology and the toolkit.

References

[1] H. G. Tanner and G. J. Pappas, “Simulation Relations for Discrete-Time Linear Systems”, 15th IFAC World Congress on Automatic Control, May 2002.

[2] H. G. Tanner and G. J. Pappas, “Simulation Relations for Constrained Discrete-Time Linear Systems,” submitted for publication, May 2002.

[3] H. G. Tanner, V. Kumar and G. J. Pappas, “The effect of Feedback and Feedforward on Formation ISS”, Proceedings of the 2002 International Conference on Robotics and Automation, Washington DC, May 11-15, 2002, pages 3448-3453.

[4] R. Alur and R. Grosu. “Modular refinement of hierarchic reactive machines”. In Proceedings of the 27th Annual ACM Symposium on Principles of Programming Languages, pages 390-402, 2000.
[5] R. Alur, M. McDougall, and Z. Yang, “Exploiting Behavioral Hierarchy for Efficient Model Checking.” To appear in 14th International Conference on Computer-Aided Verification (CAV), July 2002.
This report was prepared by Oleg Sokolsky, (215) 898-4448, and Insup Lee, (215) 898-3532.
Appendix. Progress chart

[image: image4.png]uartes after contract award

Task

45|67

[T

Task L. Design language

2 CHARON syntax o}

b. Domain-—specific extensions

Task 2. Software toolkit
2 CHARON programming env.
b. CHARON simulator
c. Errortrace generarion
d. Mode checking
&. Code generarion

f.Gut [

& Run-time monitor generation

Task 3. Methodology and algorighms
. Compositional semantics
b. Event detection
¢ Modular sioularion
4. Disuibuted simulation
e. Controller syrthesis
£. Abstraction techniques
& Runtime monitoring
& Test generation

Task 4. CHARON case smdies

Task 5. OEP coordination
2 OEP challenge problems
b. HSIF development

O techrical eport published
© product integration and version release

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

[image: image5.png]I

recv = nulimsg;

[image: image6.png][Messages

Checking invariant.
Nurm of states:231
Check passed

INurm of states:276

[image: image7.png][bvaianis
j0an 4 2000
IMutual Exclusion implemeriation

gt = false : bool;
lag2 = false - bool;
false < hool;

mode Wain is pt [p2 | clock

This invariant should be true in 276
invariant foo is (~(er1 & cr2))

This invariant should be false

g

[image: image8.png][-[o0x]

s Run Help

[image: image9.png]tep Jurm.

Hermes

Edt_View Options Run Help

[-[o0x]

[now [open|[save] [zoom-Jzooms ot oo/ arrow wackprop] [2 |

BoxMode

Guardrecv= syn Actionrecy=nullmsg; send

=synack;

DI

<]

[image: image10.png]tep Jurm.

Hermes

Edt_View Options Run Help

[-[o0x]

[now [open|[save] [zoom-Jzooms ot oo/ arrow wackprop] [2 |

BoxMode

Guardrecv= syn Actionrecy=nullmsg; send

=synack;

DI

<]

[image: image11.png][-[o0x]

s Run Help

[image: image12.png][bvaianis
j0an 4 2000
IMutual Exclusion implemeriation

gt = false : bool;
lag2 = false - bool;
false < hool;

mode Wain is pt [p2 | clock

This invariant should be true in 276
invariant foo is (~(er1 & cr2))

This invariant should be false

g

[image: image13.png][Messages

Checking invariant.
Nurm of states:231
Check passed

INurm of states:276

[image: image14.png]I

recv = nulimsg;

_1086162123

_1086162124

_1086162121

_1086162122

_1085907761.vsd
�

1�

6�

4�

2�

3�

7�

5�

9�

8�

_1086162120

