
Network Event Recognition

for Packet-Mode Surveillance

Karthikeyan Bhargavan

University of Pennsylvania

bkarthik@seas.upenn.edu

Carl A. Gunter

University of Pennsylvania

gunter@cis.upenn.edu

March 2002

Abstract

Surveillance of packet-mode communications can
draw on ideas from �rewalls and network intrusion
detection systems but has features that raise distinct
software engineering challenges. We propose an ar-
chitecture, CSF, for composable separation functions
that can enhance privacy, clarity of speci�cations,
and assurance. We introduce a language, NERL, for
network event recognition and use it to build an open-
source surveillance system, OpenWarrants, based on
CSF. We demonstrate how NERL can be used as a
basis for formally analyzing privacy protections and
how CSF can be used to provide new capabilities
within formally-speci�ed privacy policies.

1 Introduction

Use of packet-mode communication technologies is
pervasive and rising quickly. Increasing amounts of
information, including much of what was once deliv-
ered by telephone voice communication, is now pass-
ing over packet-mode networks, particularly the In-
ternet. Law Enforcement Agencies (LEAs) have used
surveillance based on information from telephone cir-
cuit voice communications to gather evidence for a
wide range of suspected criminal activities. There is a
desire to extend these means of evidence-gathering to
packet-mode communications. This has raised a va-
riety of legal and privacy concerns, but it also entails
a variety of serious software engineering challenges.
The aim of this paper is to present an architec-

ture, which we call the Composable Selection Func-
tion (CSF) architecture, for addressing some of these
software engineering challenges in the context of the
TCP/IP protocol suite used on the Internet. To do
so, we exploit ideas from Network Event Recogni-
tion (NER), a technique for passive analysis of IP
packet streams. In particular, we propose a formal

language, the Network Event Recognition Language
(NERL), that can be used to precisely de�ne and an-
alyze general multi-layer �lters capable of eÆciently
extracting speci�c data from packet streams. NERL
is derived from the authors' experience with analyz-
ing routing protocol simulation traces [2] and trans-
port layer monitoring in�delities [1]. The CSF archi-
tecture is based on four aspects of processing: aggre-
gation (of packets associated with a speci�ed proto-
col), identi�cation (of the `owner' of these packets),
abstraction (of information to protect privacy), and
delivery (of the abstracted information to an LEA or
other monitoring party). An additional element of
our architecture is a concept of escrowed data, which
is held in storage without being abstracted or deliv-
ered, but can later be used for further �ltering.
We demonstrate NERL and CSF by using them

to address one of the more controversial aspects of
warrants for packet-mode communications, namely
the generalization to packet-mode surveillance of the
pen register and trap and trace devices for circuit-
switched networks. Such devices are used to col-
lect the numbers called (pen register) or calling (trap
and trace) a given suspect telephone number. Access
to such information can be obtained with fewer ap-
provals than access to the content of the phone calls
for the suspect number. Generalizing this concept
to packet-mode communications based on IP over
the Internet is subtle since analogies between Inter-
net packet streams and circuit-based telephone calls
are diÆcult to make. (We use the term pen mode
for pen register and trap and trace for packet data
from here on.) To illustrate the diÆculty, consider
an email message from a suspect person to a corre-
spondent. What is the analogy to the phone num-
ber of the suspect? Is an IP address, a Network Ac-
cess Identi�er (NAI), an email address, a Public Key
Certi�cate (PKC), a Ethernet address, or something
else? Assuming it is an email address, what infor-
mation should be delivered as part of a pen-mode

1

surveillance order? Should it be the headers of the
IP packets used in the email, the header of the email,
or something else? The answer is surely `something
else'. We will describe protocols later, but, to see the
problem, the header of an email TO �eld may not be
the recipient of the message since the destination of
an email is determined by the Simple Mail Transfer
Protocol (SMTP), not by the email header. Thus a
client with a custom Mail Transfer Agent (MTA) can
send messages in which the message header is highly
misleading.
We do not attempt to address legal issues in any

depth in this paper, but instead focus on software en-
gineering challenges. A few brief comments are worth
noting, however. Privacy can be enhanced by ad-
vances in the software engineering of monitoring sys-
tems. Current challenges include the desire to avoid
sending large amounts of data to LEAs and trusting
them to sort out the data to which they are enti-
tled. Dually, LEAs are concerned about obtaining too
much data because cases can be compromised by ex-
clusion of evidence based on a `fruit of the poison tree'
argument. (There are indications [12] that a problem
with mis-collection did lead to diÆculties for an inves-
tigation using an early version of an FBI packet-mode
monitoring system.) More advanced monitoring ar-
chitectures can allow judges to grant �ner-tuned war-
rants to better protect privacy while expediting jus-
ti�ed investigations. Recent law also drives better
analysis of monitoring architectures. In particular,
the USA Patriot Act (passed in October 2001 after
the destruction of the World Trade Centers) speci�-
cally calls1 for procedures to deploy and audit pen-
mode monitors. The question of how to de�ne and
carry out this kind of surveillance is still not fully
determined.2

In this paper we address the following questions.

1. How does one precisely specify the contents of a
surveillance order that covers `abstracted' infor-
mation like pen mode?

2. How can a monitoring architecture be made ex-
tensible enough to deal with changing require-
ments and modular enough to be used in con-
junction with other monitoring systems and de-
livery requirements?

3. How can a suitable architecture be used to en-

1Uniting and Strengthening America by Providing Appro-
priate Tools Required to Intercept and Obstruct Terrorism
(USA Patriot Act) Act, Pub. L. 107-56, 115 Stat. 272 (2001),
at 115.

2There are also some questions about the constitutional-
ity of the new laws; see www.research.att.com/~smb/talks/

Wiretaps/index.htm for example.

hance privacy protections, accountability, and ef-
fectiveness by exploiting improved semantic clar-
ity, extensibility, and composability?

4. Is it possible to build an eÆcient, open-source
system to meet legal and other requirements for
packet-mode surveillance?

Our discussion is given in six sections. In the sec-
ond section we provide background on the history
of packet-mode surveillance, enumerate some of the
challenges involved, and describe the FBI Carnivore
system. In the third section we describe the concept
of a bu�ering �rewall as a hybrid of stateful �ltering
�rewalls and Network Intrusion Detection Systems
(NIDSs). We then describe the CSF architecture.
In the fourth section we describe NERL. In the �fth
section we describe our OpenWarrants implementa-
tion of a email surveillance system with pen mode
and escrow capabilities. We also describe how we
used SPIN to derive privacy protection de�ciencies
in existing NIDSs (viewed as surveillance monitors)
and prove that these errors do not arise in Open-
Warrants. The sixth section provides conclusions.
We have included three appendices, one for readers
unfamiliar with the Internet email protocol, SMTP,
and the other for readers wanting more details about
NERL, including examples of most of the language
constructs, and a third for readers who want to see
details of the recognizers. The paper can be under-
stood without the appendices.

2 Background

2.1 A Little History

In 1994 the US federal government passed a bill
known as CALEA3 calling for public telecommuni-
cations carriers to provide LEAs with the ability to
carry out certain forms of surveillance. The Telecom-
munications Industry Associate (TIA) coordinated
the creation of a technical standard to be used by the
more than 1000 carriers a�ected by CALEA. This
standard, known as J-STD-025 [19] was created in
its �rst version by 1998, but did not fully satisfy the
Federal Communication Commission (FCC), which
indicated the following concern about privacy pro-
tections:

We �nd that the approach taken with regard
to packet-mode communications in J-STD-
025 raises signi�cant technical and privacy
concerns. Under this standard, LEAs would

3Communications Assistance for Law Enforcement Act,
Pub. L. No. 103-414, 108 Stat. 4279 (1994).

2

be provided with both call-identifying infor-
mation and call content even in cases where
a LEA is authorized only to receive call-
identifying information (i.e., under a pen
register). ... We believe that further e�orts
can be made to �nd ways to better protect
privacy by providing law enforcement only
with the information to which it is lawfully
entitled.4

The FCC nevertheless accepted the J-STD-025 ap-
proach on a tentative basis and invited TIA to
study the issue of packet-mode communications and
CALEA further and provide a report. The TIA re-
port [18] was completed in September of 2000 after
a pair of Joint Experts Meetings (JEMs) convened
by TIA. The TIA JEM report raised a number of
questions about the feasibility of packet-mode surveil-
lance; we review some of these issues shortly. The sec-
ond TIA JEM meeting was the forum in which the
FBI gave the �rst public demonstration of its packet-
mode surveillance system, Carnivore. This system
received considerable public attention, including calls
for the release of the system for public review. The
FBI allowed the system (including its source code)
to be reviewed by the Illinois Institute of Technology
Research Institute (IITRI) and Chicago-Kent College
of Law. A draft IITRI report was released in Novem-
ber 2000. A number of comments were written on
this draft report from legal and technical perspec-
tives.5 The �nal version of the IITRI report [17] was
released in December 2000. The current version of
the TIA standard, J-STD-025-A [20], was completed
prior to the JEM report and does not include tech-
nical standards for functionality addressing the con-
cerns of the FCC as quoted above. The Department
of Justice recently released a guide [6] for CALEA-
conformance on packet-mode communication indicat-
ing that packet-mode surveillance capabilities must
be provided by carriers even in the absence of a tech-
nical standard.

2.2 Challenges

It is useful to begin with some of the context of
packet-mode surveillance. To monitor a phone con-
versation roughly involves creating a conference call
that adds the LEA to a suspect call. This is illus-
trated in Figure 1. This is known legally as an inter-

4FCC 99-230, CC Docket No. 97-213, Third Report and
Order, at 26-27

5The Center for Democracy and Technology (CDT) has
a useful reference page at www.cdt.org/security/carnivore

with links to many of these reports as well as news reports on
Carnivore.

1 2 3

4 5 6

7 8 9

* 8 #

1 2 3

4 5 6

7 8 9

* 8 #

Suspect

Monitoring Organization

Telephone Network

Circuit
Switches

Voice

Circuit

Storage

Figure 1: Telephone Wiretaps

ception and requires a warrant from a judge. A pen
register is the lawful acquisition of certain outgoing
dialing or signaling information. A trap and trace is
the lawful acquisition of the originating number of
any wire or electronic communication. Authority for
pen registers and trap and trace are given in 18 USC
3123 and 50 USC 1842. Access to this information is
based on a lower standard than interception. The ap-
plication of these concepts to packets is controversial,
especially when it is interpreted to mean access to the
sender and the recipient(s) of an Internet email mes-
sage. For this paper we will put aside the legal ques-
tions about whether the sender and recipient(s) of an
email, for instance, are really covered by these laws.
We focus on the technical feasibility of building a sys-
tem that treats them as such. There are at least six
problems in monitoring of packet data: �delity and
vantage point, identi�cation and abstraction, stan-
dardization and maintenance, eÆciency, and encryp-
tion.
Fidelity and Vantage Point. Packet-mode commu-

nication breaks a transmission into a collection of
packets that are routed independently to their des-
tination. In the Internet, these packets can proceed
along di�erent paths and may be dropped, re-ordered,
duplicated, or even corrupted. Hence the sequence of
packets seen by a monitor may be di�erent form the
sequence seen by either of the communicating par-
ties. This is the �delity problem. A closely related
problem is that of vantage point. Since the packets
may travel on di�erent paths, �delity problems may
be exacerbated by missed packets.
Fidelity is a problem more for unreliable protocols

than reliable ones. In reliable protocols like TCP
a packet is resent if it is not acknowledged. Thus

3

a monitor with a vantage point on a bottleneck in
the physical or logical network topology between the
sender and the receiver can see any acknowledged
packet and therefore reconstruct the entire TCP ses-
sion. However, in�delities can be introduced deliber-
ately too [15]. For instance a trick to confuse moni-
tors is to send a packet with a limit (IP Time To Live
bound) that ensures it will be received by the mon-
itor but not the apparent destination and then send
another packet with the same sequence number but
di�erent contents and adequate resource bound. A
monitor not prepared for this trick is likely to record
the �rst packet and discard the second.
Identi�cation and Abstraction. IP packets have

source and destination addresses, but these can be
misleading about the actual `owner' of the packet
as well as the actual (high level) source and desti-
nation. Thus it is a problem to identify the owner
and abstract the source and destination. Protocols
like DHCP assign IP numbers dynamically to sources
and Network Address Translators (NATs) hide actual
source addresses behind proxy addresses. Protocols
like IP email do not typically send messages directly
from the email sender machine to the email recipi-
ent machine but rather through a sequence of email
relay machines. Thus the destination IP address in
the original email dispatch is typically not that of
the ultimate recipient, and the IP source address in
the �nal email delivery is typically not that of the
initial sender. Moreover, many aspects of IP can be
forged or made misleading. We mentioned already
the problem that there is some subtlety in de�ning
to whom an email is addressed. A key issue here is
that the identity associated with the packet is diÆ-
cult to determine from any one level of analysis. IP
protocols are layered, and this layering is represented
by encapsulated packet headers. Thus information
about the identity associated with a packet may not
be represented at the IP (network) layer but instead
at any of several application layers that are meaning-
ful to the endpoints but not necessarily the network.
To carry out whatever identi�cation is possible re-
quires a system that can analyze these layers. This
challenge was considered at the TIA JEM and the fol-
lowing options were considered: send nothing or all
of the packet; send headers or the whole packet; or
`Peel the onion' on a packet to examine multiple lay-
ers. Given the protocol layering, `peeling the onion'
is necessary to determine which packets contain the
proper data. For example, to determine the parties
to whom the suspect sent email, it is useless to look
only at the IP headers.
Standardization and Maintenance. A signi�cant

problem with any complex speci�cation of informa-

tion to be collected is the need to manage these speci-
�cations in the implementations in hundreds of sites.
If an error is detected or a new capability must be
added, a tedious standards process followed by an
expensive upgrade process may be necessary. More-
over, the TCP/IP protocols are organized to place
signi�cant amounts of processing on hosts rather than
network elements (`intelligence at the edge'). For ex-
ample, end-to-end reliability is handled by endpoints
with routers performing `best e�ort' transmission of
packets. If the endpoints of a communication are us-
ing a protocol that is unfamiliar to a monitor than
it will be unable to interpret high-level features of
the protocol to carry out steps like identi�cation and
abstraction. It is therefore essential to have an ex-
tensible and modular monitor platform that allows
changes to be added incrementally with as little fuss
as possible.
EÆciency. Routers are designed to do a compara-

tively simple task very quickly. A surveillance mon-
itor that must `peel the onion' must perform a far
more computationally complex task. It is essentially
impossible for a monitor to keep up with the fastest
routers. Fortunately monitors can be often be placed
near the edge of the network where performance de-
mands are less stringent. Also, as we will discuss
later, the technology for surveillance monitors can
track advances in �rewalls and intrusion detection
systems, which have many of the same performance
challenges.
Encryption. `Peeling the onion' is diÆcult or im-

possible if encryption is used. In most cases a mon-
itoring system can only log packets that contain
encrypted data. Email encryption like PGP and
S/MIME is done at application layer so the sender
and recipients of the email can be determined with-
out decryption. However, if a client accesses email
over a transport layer tunnel (viz. SSL), then noth-
ing will be visible beyond the TCP header. Encryp-
tion at network layer using IPSEC ESP in transport
mode will leave nothing but the IP header exposed to
examination, and in tunnel mode even the (original)
IP header is encrypted. Link layer encryption is pre-
sumably not a problem since the monitor is assumed
to have access to the link layer or a network element
used by it.

2.3 Carnivore

Carnivore is a system implemented on behalf of the
FBI for the surveillance of packet-mode communica-
tions over Ethernet. The description here is based
on the IITRI Report, which considered version 1.3.4.
A Carnivore-like monitoring system is illustrated in

4

Ethernet
The Internet

Monitor

Remote
Station

Tap

Ethernet
Switch

Hub

Networked Terminals

Gateway

Telephone
Link

Monitored Network

Monitoring Organization

Correspondent

Suspect

Correspondent

Ethernet
Switch

Storage

Storage

Figure 2: Carnivore-Like Monitoring System

Figure 2. Packets from one or more networked ter-
minals including the one being used by the suspect
are routed over an Ethernet link toward other parts
of the Internet. A tap is placed in an Ethernet link
that may bear some or all of the suspect's packets.
All packets on this link are copied through a hub to a
monitor machine. The hub is con�gured so that pack-
ets can
ow only from the network into the monitor;
the monitor cannot a�ect traÆc on the monitored
link. The monitor is connected to a remote station
by a modem link; remote terminal software is used to
control the monitor. The monitor copies packets into
local storage. Data of interest is collected from the
monitor and stored on the remote station where it
can be viewed through a user interface and processed
with software for parsing and statistical analysis.
In order to protect privacy and manage the amount

of data collected, Carnivore carries out two `mini-
mizations' (abstractions). First, packets that are not
intended for surveillance, such as those sent by parties
other than the suspect, are dropped. Second, only a
limited view of the data is allowed at the remote sta-
tion. Certain personnel protocols are followed to help
ensure that the data abstraction is not threatened.
For instance, a Technically Trained Agent (TTA) who
sets up the monitor is not allowed to view the data.
Carnivore provides a variety of modes for data col-

lection, including data from FTP, SMTP (email),
HTTP (web) protocols identi�ed as belonging to the

suspect by �xed IP address, an address dynamically
assigned by Radius or DHCP, and Ethernet MAC
address. For each of TCP, UDP, and ICMP there
is an option for pen mode collection. For example,
if email is collected in pen mode using SMTP (TCP
port 25) and POP3 (TCP port 110), then Carnivore
was tested to collect only addresses appearing in the
FROM and TO �elds. The IITRI report indicates that
Carnivore collects the SMTP RCPT-TO �elds. Find-
ing ways to specify these details is a central part of
our e�ort in this work. When pen mode is used for
HTTP (TCP port 80) Carnivore collects the source
and destination IP addresses not the URL or its con-
tents.

3 Architecture

3.1 Bu�ering Firewalls

Despite the daunting list of problems with packet-
mode surveillance, much of the technology needed
to do parts of it already exists in products for sale
to the public and even open source systems. The
IITRI report reviews EtherPeek, a popular monitor-
ing (`sni�er') system from Wild Packets, Inc. Ether-
Peek is able to collect Ethernet frames from a spe-
ci�c IP address, for example. After the IITRI re-
port, NetworkICE, a vendor of intrusion detection
systems, released an open source system called Alti-

5

vore with most of the features of Carnivore. Altivore
was built by cutting and pasting functionality from
existing code. A number of parties have suggested
that the FBI provide an open source version of Car-
nivore. The FBI declined to do this for a variety of
reasons we will not review here.
Firewalls are network elements that act something

like a perimeter defense and are deployed at topolog-
ical choke points on IP internetworks [3]. They are
generally classi�ed according to the level at which
they process packets: �ltering �rewalls (network
layer), circuit �rewalls (transport layer), and applica-
tion �rewalls (application layer). A �ltering �rewall
uses a set of rules for which packet patterns to forward
or discard. Firewalls are also classi�ed as stateless or
stateful depending on whether or not they collect in-
formation from packets that creates state in
uencing
the processing of future packets. A salient feature of
�rewalls is that they forward or block screened pack-
ets. A stateful �ltering �rewall does this by examin-
ing packet patterns in the context of state created by
prior packets. Network Intrusion Detection Systems
(NIDSs) monitor network traÆc for unusual patterns
or signatures [7]. They typically create logs and raise
alarms if observed traÆc triggers rules that aim to
identify an attack. These alarms can sometimes be
used to stop an attack, perhaps by enlisting the aid
of a �rewall. NIDSs typically can be con�gured with
rule sets based on patterns associated with common
means of attack. A salient feature of NIDSs is that
they observe and create logs of packets as they pass
and raise alarms if they see undesirable patterns.
A surveillance system like Carnivore is a hybrid of

a �rewall and a NIDS. It observes and logs traÆc like
a NIDS, but �lters the observed traÆc like a �rewall
to prevent too much information from reaching the
LEA or other monitoring organization. The system
we describe in this paper is therefore like a new kind
of �rewall, a bu�ering �rewall, in which packets are
passively collected as if for analysis and logging, and
then forwarded (or not) depending on collection pol-
icy.

3.2 CSF Architecture

The TIA JEM report refers to the FBI Carnivore sys-
tem as a `Separation Function'. This is distinguished
from the Collection Function in J-STD-025 in the way
it prunes information to obtain only authorized con-
tent. In order to satisfy the FCC request it might be
possible to develop composable separation functions
that would allow carriers to �lter surveillance data
before handing them over to the LEA. The challenges
described earlier remain daunting, but we would like

to push forward the study of this direction by intro-
ducing the Composable Separation Function (CSF)
architecture. It is illustrated in Figure 3. Filtering

Aggregation Identification Abstraction Delivery

Source Sink

Escrow

Figure 3: Composable Separation Function Architec-
ture

is conceived as consisting of four conceptual steps of
processing. In the �rst step, aggregation, data are col-
lected according to the protocol of which they are a
part. A typical aggregation will be packets in a TCP
session, but other aggregations like audio transmis-
sions based on a UDP stream or application layer
entities like an email message are also likely. In the
second step, identi�cation, an aggregation is associ-
ated with an identity, which may be de�ned in a num-
ber of ways, many of them protocol-speci�c. In the
third step, abstraction, an abstraction is performed
to remove data that should not be forwarded. In the
fourth and �nal step, delivery, the data are rendered
in a form that allows it to be passed along to a similar
CSF module.
This sequence is conceptual and implementations

would not typically consist of four separate modules.
For example, it may be highly desirable to carry out
identi�cation at the same time as aggregation since
an aggregate that does not belong to the monitored
data can be recognized before they are fully collected.
The composition assumption could enable a carrier to
run a separation function `in front of' a system like
Carnivore or could simply aid the modular construc-
tion of surveillance systems. In particular, compos-
ability enables a simple concept of escrow (see Fig-
ure 3) in which data are with-held from immediate
delivery but may be delivered later under a new �l-
ter.
A particular illustration of CSF based on a stream

of packets is given in Figure 4. In the �rst column
are all packets from the packet stream Source. In
the second column are the packets that have passed
the aggregation and identi�cation steps, here called
the warranted packets. In this case it is all pack-
ets of Alice. In the third column are packets that
are directed to escrow. In the fourth column are the

6

�

1 HTTP Alice

2 SMTP Bob

3 SMTP Alice

4 FTP Alice

5 FTP Alice

6 HTTP Eve

7 SMTP Alice

8 SMTP Bob

9 HTTP Alice

10 FTP Alice

11 HTTP Alice

��

��

����

�

�

All Packets
Warranted

Packets
Escrow
Packets

Delivered
Packets

1 HTTP Alice

3 SMTP Alice

4 FTP Alice

5 FTP Alice

7 SMTP Alice

9 HTTP Alice

10 FTP Alice

11 HTTP Alice

3 SMTP Alice

4 FTP Alice

5 FTP Alice

7 SMTP Alice

10 FTP Alice

1 HTTP Alice

3 SMTP Alice

7 SMTP Alice

9 HTTP Alice

11 HTTP Alice

����
Data Viewed

Data Hidden

Figure 4: First Stage Packet Processing

packets that are delivered to the Sink. These packets
have been modi�ed so that some data are removed.
This may consist of simply not delivering pieces or
by otherwise `blanking out' those portions. The re-
cipient may choose to apply its own abstraction and
only view portions of the delivered packets.
At a later point, if it is requested that all of the

SMTP (aggregate) / Alice (identity) traÆc be sup-
plied, then all of the escrow data can be routed back
through the �lters as illustrated in Figure 5.

All Packets
Warranted

Packets
Escrow
Packets

Delivered
Packets

3 SMTP Alice

4 FTP Alice

5 FTP Alice

7 SMTP Alice

10 FTP Alice

3 SMTP Alice

7 SMTP Alice

3 SMTP Alice

7 SMTP Alice

Figure 5: Packet Processing from Escrow

4 NERL

NERL is a language for programming network proto-
col monitors. Network protocols involve interactions
between two (or more) entities that exchange data in
a pre-arranged format. A protocol monitor has three
tasks: it collects the data exchanged between entities,
parses the data to identify the protocol events that

they represent, and follows the protocol state ma-
chines at the two ends to reconstruct the stage and
result of the interchange. For instance, SMTP [14, 10]
is a protocol for transferring email messages from a
client to a server. The data transferred in an SMTP
session consists of client commands and server re-
sponses, encoded as specially formatted strings. A
monitor must collect these strings, parse them into
commands and responses, and follow the client and
server state machines to �nd out which emails and
which recipients have been accepted by the server.
Collecting data exchanged by a protocol is not triv-

ial, because network protocols are layered. For in-
stance, SMTP uses a TCP stream to transfer its for-
matted strings reliably across the network. TCP in
turn splits each string into datagrams, which are de-
livered by IP. To collect SMTP data, we must recog-
nize IP packets, and then TCP streams. Therefore a
realistic monitoring setup must have a stack of mon-
itors, one for each protocol layer, up to the protocol
of interest.
Parsing protocol data is a simple but tedious and

error-prone task. For instance, packet formats have
to deal with endian-ness issues of storing 32-bit val-
ues, which causes a lot of errors. We advocate us-
ing languages such as PacketTypes [11] that can be
used for automatically generating parsers from packet
speci�cations. However, for string formatted data,
such as the commands used in SMTP, it is most eÆ-
cient to write the parser in C using string matching
libraries. Such parsers are typically short functions,
but they must still be inspected carefully for errors.
The bulk of the protocol monitoring e�ort is in re-

constructing the state at the protocol participants,
in order to extract meaningful information from the
captured protocol data. NERL programs consist of
recognizer modules that carry out this analysis. Each
protocol event recognizer takes input events that trig-
ger a state machine. When a high-level event is rec-
ognized, it is triggered as an output event. A NERL
program composes several layers of recognizers, feed-
ing outputs of one layer to the inputs of the one above
it. In addition to recognizer modules, it may include
parser modules that impart additional structure to
captured events.
The SMTP recognizer takes as input several com-

mand events, such as Hello and MailFrom, and re-
sponse events such as ResponseOk and ResponseErr.
(See Figure 10 in Appendix A for the full SMTP
state machine.) State variables store the sender and
recipients' email addresses, and the email message
data sent to the server. A typical SMTP session
may have up to 10 intermediate states; the current
state is stored in an integer variable (state). When

7

a sender and recipient are accepted by the server,
a high-level event EnvelopeAccepted is generated.
Similarly, when an email is successfully sent, the high-
level event MailAccepted is generated. This is rep-
resented in NERL by the following event de�nition:

event MailAccepted = ResponseOk OccurredWhen

(state == DATAEND)

WithAttributes {

MailAccepted.envelope.from = sender;

MailAccepted.envelope.to = receiver;

MailAccepted.message = data

}

Here, the OccurredWhen construct serves to re-
strict the response event based on the current state.
The WithAttributes construct attaches attribute
values to the MailAccepted event. Input events such
as client commands trigger state transitions. For
instance, the MailFrom event triggers the following
state transition.

MailFrom -> { state = MAIL;

sender = MailFrom.address }

An overview of NERL with other examples appears
in Appendix B.
The NERL language suite comes with a compiler

that translates NERL recognizers into a hierarchy of
C monitoring functions. These functions are com-
posed with protocol parsers, and executed on packet
traces to recognize high-level protocol events. The
NERL language suite contains a base library of rec-
ognizer code (derived from open source software) for
the more commonly used protocols, such as IP and
TCP. New protocol recognizers can be built on top
of these and added to the base library.
It is important to check that recognizers are cor-

rect, especially when we compose a long stack of
them. The NERL suite provides a number of tools
and strategies to ensure that recognizers have the in-
tended semantics. For one, the NERL syntax makes
it simple to generate a recognizer from a protocol
standard speci�cation. In addition, NERL is strongly
typed. The type-checker looks for simple errors
such as undeclared variables, arithmetic operations
on non-integers, and array indexing violations.
NERL recognizers can also be translated to

Promela [8] and model-checked by SPIN [9]. SPIN
is a powerful veri�cation tool and can be used to
check that the recognizer behaves correctly for a wide
range of inputs. For instance, we can check that the
SMTP recognizer, when composed with an SMTP
client and server, correctly captures all emails sent
between them, for all possible client-server interac-
tions.

In addition, we are in the process of developing
transformation tools for NERL that incorporate the
algorithms in [1] to address �delity and vantage point
issues.

5 OpenWarrants

In this section, we describe OpenWarrants, our re-
alization of a composable separation function for
packet-mode surveillance. Given a speci�cation of
data that is to be collected, called a warrant, the
OpenWarrants system uses NERL recognizers to �l-
ter a packet stream and deliver exactly the warranted
data. OpenWarrants currently handles email war-
rants.
OpenWarrants sits on a box between the monitored

network (the source) and the monitoring party (the
sink) and acts like a bu�ering �rewall: it stores pack-
ets, analyzes them, and lets them through only when
they are determined to be covered by a warrant. The
operational setup is shown in Figure 6. Packets are

libpcap

OpenWarrants

Filter

libnet

IP Packet DeliveryIP Packet Capture

From Source To Sink

IP Packet Buffer

CSF Execution

Figure 6: OpenWarrants Setup

captured using the libpcap (tcpdump.org) library
and stored in a packet bu�er. The OpenWarrants
module analyzes this bu�er and informs the �lter to
let through packets covered by the warrant. The
libnet (libnet.sourceforge.net) library is used
to deliver the packets to the network on the other
side. Escrow is handled by another �lter, also man-
aged by the OpenWarrants analysis module, and is
placed into a �le. We do not implement any capabil-
ity for hiding parts of packets.
To execute OpenWarrants, the user must specify

an email warrant that consists of several pieces of
information.

� Aggregation Level: High-level events of interest,
such as SMTP messages, or Internet Message
Headers, and NERL modules to recognize them.

8

� Identi�cation: A NERL recognizer that identi�es
emails covered by the warrant.

� Abstraction: A NERL recognizer that describes
the portions of emails that must be sent through
to the sink.

� Escrow: Whether identi�ed emails should be
saved for later analysis.

Specifying two levels of aggregation results in four
NERL recognizers as illustrated in Figure 7. In the
rest of this section, we describe each of these compo-
nents one by one.

IdentMail AbsMail

IMH

SMTP

Identification

Aggregation

Abstraction

To Escrow To Filter

Figure 7: OpenWarrants Components

5.1 Aggregation

To aggregate SMTP data, or Internet Message Head-
ers [5, 16], we write NERL recognizers for these proto-
cols. Because of the layered nature of network proto-
cols, we need to identify protocol events at each layer
as shown in Figure 10. Large IP packets in the Inter-

IP IPIP

TCP TCP

SMTP SMTP

IMH IMH

IP Packet Buffer

IP Fragment Reassembly

TCP Stream Reassembly

SMTP Mail Recognition

Mail Header Recognition

Figure 8: Aggregation: Recognizing Emails

net are sometimes broken down into fragments, which
are reassembled at the destination. An accurate IP
monitor must therefore implement a state machine
that collects and reassembles IP fragments, to gen-
erate an IP packet event. TCP monitors must simi-
larly keep track of sequence numbers and acknowledg-
ments to reconstruct the TCP data sent. The NERL

suite already contains recognizer code for the IP and
TCP protocols.
For OpenWarrants, we need to add recognizer

modules for SMTP and Internet Message Head-
ers (IMH). The SMTP recognizer collects SMTP
commands sent across a TCP session, recon-
structs the SMTP dialogue, and recognizes success-
ful email transmissions. It then produces high-level
events such as EnvelopeSent, EnvelopeAccepted,
MailSent, and MailAccepted, indicating di�erent
events in the SMTP dialogue. The IMH mod-
ules parse Internet message headers, producing
IMHMessage events that contain header �elds as at-
tributes.

5.2 Identi�cation

The NERL identi�cation module IdentMail speci-
�es which email events are covered by the war-
rant. IdentMail takes as input the events produced
by the SMTP and IMH recognizers, and produces
the IdentEnvelope, IdentHeader, and IdentMail

events when the corresponding input event is covered
by the warrant. For instance, the IdentMail event
may identify joe@foo.com's email by looking at the
message header �elds and the SMTP envelope. The
following rule accepts messages where joe@foo.com

sends or receives the message or appears in TO, CC, or
FROM header �elds.

event IdentMail = (MailAccepted &

IMHMessage) OccurredWhen

(MailAccepted.envelope.from ==

"joe@foo.com") ||

(MailAccepted.envelope.to == "joe@foo.com") ||

(IMHMessage.header.to == "joe@foo.com") ||

(IMHMessage.header.cc == "joe@foo.com") ||

(IMHMessage.header.from == "joe@foo.com")

The user is responsible for con�guring the identi�-
cation module based on the intent and range of the
desired warrant. To simplify matters this code could
be produced automatically from a high-level GUI or
speci�cation language where it would be described
by a rule like `email for joe@foo.com'. NERL helps
a technical person determine what this really means.

5.3 Abstraction

We write the Abstraction module as another NERL
recognizer that takes IdentMail, IdentEnvelope

and IdentHeader events from the identi�cation mod-
ule and removes information not covered by the war-
rant. For instance, if the warrant only covers the
TO and FROM �elds in message headers, the AbsMail

event is de�ned as follows.

9

event AbsMail = IdentHeader

WithAttributes {

Absmail.to = IdentHeader.to;

Absmail.from = IdentHeader.from

}

5.4 Implementation details

Finally, the AbsMail event needs to be connected
to the Filter module to deliver the packets covered
by the warrant. OpenWarrants links every high-level
event at run-time with the packet events that caused
it. As events propagate along the NERL recognizers
generating higher-layer events, this packet informa-
tion is carried along. Eventually the packets linked
to the AbsMail event are communicated to the �l-
ter, which sends them through for delivery. All other
packets are dropped. If the warrant requires Escrow,
then the packets linked to the IdentMail event are
saved into a �le. Escrow data is sensitive and must
be protected by encryption.
The NERL recognizers described in this section for

aggregation, identi�cation, and abstraction are com-
posed and translated to a C monitoring program by
the NERL compiler. When this program is executed
on SMTP packet traces it collects warranted packets.

5.5 Design and Analysis of Recogniz-

ers

Designing recognizer modules is the subtle part of
this kind of surveillance monitor. To study our abil-
ity to do this correctly in OpenWarrants we looked
for open source information about SMTP recognizers
in NIDSs. We were unable to �nd rules for recon-
structing SMTP messages in Snort (snort.org), the
most popular open source NIDS. As mentioned be-
fore, Altivore provides �lter rules written in C and
claims to imitate Carnivore. We also tried to con-
jecture the kind of rule used in a NIDS like Blac-
kICE, based on survey reports [7] and online docu-
mentation. We coded these in NERL and they ap-
pear in Appendix C. Recognizer A is a transcrip-
tion of the rule from Altivore for capturing complete
emails with no recognition of message headers. Rec-
ognizer N is a more sophisticated stateful analysis like
a NIDS might use. Recognizer O is the corresponding
module from OpenWarrants. Each recognizer ana-
lyzes SMTP message events and attempts to identify
emails associated with a suspect.
We translated these three NERL recognizers to

Promela and analyzed them using the SPIN model-
checker. The SPIN model has three processes: an
SMTP client, an SMTP server, and the translated

recognizer. There are two users in the system: the
suspect S and another user U . The client attempts
to deliver a number of emails to the server. Each
email can be addressed from S or U to one or both
of S and U . The recognizer attempts to capture
emails that are sent to or from S. The Linear Tem-
poral Logic (LTL) property we checked asserted that,
for all client-server interactions in SPIN, the recog-
nizer module never captures emails from U to U .
Recognizer A fails and SPIN produces a counter-
example: A does not correctly handle the case when
two MailFrom commands are issued by the client. It
captures the second email even if it is from U to U .
A message sequence chart produced by SPIN for this
counter-example appears in Figure 11 in Appendix C.
To �nd this error, SPIN analyzed 871 states and
3135 transitions to produce a counter-example with
12 message exchanges. This represents the least num-
ber of messages necessary to demonstrate a viola-
tion of the LTL property. We then attempted the
same proof for recognizer N. Again SPIN provides a
counter-example: when a Data command results in
an error response from the server, N fails to notice
this event and captures the next message sent, even
if it is from U to U . A message sequence chart for this
counter-example appears in Figure 12 in Appendix C.
The SPIN counter-example has 16 messages and was
found after analyzing 1610 states and 9897 transi-
tions. Again, this represents the least number of
messages necessary to demonstrate a violation. This
does not mean that the NIDS rule is incorrect since it
was designed to protect the server not the privacy of
users. Finally, we checked the property for the Open-
Warrants recognizer O. SPIN model-checked this rec-
ognizer and found no errors; it analyzed 2330 states
and 18,689 transitions to reach this conclusion.

6 Conclusions

We have introduced a new architecture for packet-
mode surveillance and developed a prototype based
on this architecture for monitoring SMTP. Our sys-
tem uses a new language that is capable of precise de-
scriptions of packets to be monitored. Our architec-
ture and implementation provide improved modular-
ity and a novel escrow feature that exploits this mod-
ularity. We have also demonstrated the value of more
formal treatment of surveillance �lters to improve as-
surance of privacy protections. Our work partially
addresses concerns with identi�cation, standardiza-
tion, and maintenance as described in 2.2. Although
we were not able to complete performance experi-
ments for OpenWarrants in time for the deadline for

10

this paper, we have tested the performance of NERL
on the analysis of some complex routing protocol con-
ditions. Monitors derived from the NERL speci�ca-
tions could process 10,000 packets per second while
maintaining state for 50 routing tables. This can be
compared to the rates sustained by common packet
capture modules, which have been measured to oper-
ate at around 50,000 packets per second [1].
Our analysis techniques can complement system-

level checks like those run by IITRI on Carnivore.
We were able to exhaustively cover thousands of cases
for the email content monitoring scenario, compared
to couple of tests in the IITRI report that found no
errors. While system-level tests are indispensable,
formal analysis can add assurance guarantees to what
they are likely to establish.

References

[1] Karthikeyan Bhargavan, Satish Chandra, Peter J.
McCann, and Carl A. Gunter. What packets may
come: Automata for network monitoring. In
Proceedings of the Symposium on Principles of
Programming Languages (POPL'01), pages
206{219. ACM Press, January 2001.

[2] Karthikeyan Bhargavan, Carl A. Gunter, Moonjoo
Kim, Insup Lee, Davor Obradovic, Oleg Sokolsky,
and Mahesh Viswanathan. Verisim: Formal
analysis of network simulations. IEEE Transactions
on Software Engineering, 28(2):129{145, February
2002.

[3] William R. Cheswick and Steven M. Bellovin.
Firewalls and Internet Security. Addison-Wesley,
1994.

[4] M. Crispin. Internet Message Access Protocol -
Version 4rev1. Technical Report RFC 2060, IETF,
1996.

[5] D. Crocker. Standard for the Format of ARPA
Internet Text Messages. Technical Report RFC
822, IETF, 1982.

[6] Department of Justice Federal Bureau of
Investigation CALEA Implementation Section.
Flexible Deployment Assistance Guide Second
Edition Packet-Mode Communications, August
2001.

[7] NSS Group. Intrusion detection systems - group
test, December 2001.

[8] Gerard J. Holzmann. Design and Validation of
Computer Protocols. Prentice Hall, 1991.

[9] Gerard J. Holzmann. The Spin Model Checker.
IEEE Trans. on Software Engineering,
23(5):279{295, May 1997.

[10] J. Klensin. Simple Mail Transfer Protocol.
Technical Report RFC 2821, IETF, 2001.

[11] Peter McCann and Satish Chandra. PacketTypes:
Abstract Speci�cation of Network Protocol
messages. In ACM Conference of Special Interest
Group on Data Communications (SIGCOMM),
August 2000.

[12] MSNBC. FBI's Carnivore hunts in a pack, October
2000.
http://zdnet.com/com/2100-11-124798.html.

[13] J. Myers and M. Rose. Post OÆce Protocol -
Version 3. Technical Report RFC 1939, IETF, 1996.

[14] Jonathan B. Postel. Simple Mail Transfer Protocol.
Technical Report RFC 821, IETF, 1982.

[15] Thomas H. Ptacek and Timothy N. Newsham.
Insertion, evasion and denial of service: Eluding
network intrusion detection. Technical report,
Secure Networks, Inc., 1998.

[16] P. Resnick. Internet Message Format. Technical
Report RFC 2822, IETF, 2001.

[17] Stephen P. Smith, J. Allen Crider, Jr. Henry Perrit,
Mengfen Shyong, Harold Krent, Larry L. Reynolds,
and Stephen Mencik. Independent review of the
carnivore system - �nal report. Technical report,
IIT Research Institute, December 2000.

[18] TIA TR45. Report to the Federal Communications
Commission on Surveillance of Packet-Mode
Technologies, September 2000.

[19] TIA/EIA/IS-J-STD-025. Lawfully Authorized
Electronic Surveillance, December 1997.

[20] TIA/EIA/IS-J-STD-025-A. Lawfully Authorized
Electronic Surveillance, May 2000.

11

A Internet Mail

Email has for many years been one of the most preva-
lent services on the Internet. As a result, the Internet
Mail Architecture has been closely studied and quite
heavily engineered. To use email, a sender writes
a message, addresses it to a recipient, and hands it
over to a Mail Transport Agent (MTA) such as Send-
mail. Once an email has thus entered the mail sys-
tem, the system becomes responsible for delivering
the message to the recipient or returning an error
message (via email) to the sender. Senders and re-
cipients are users (or administrators) of mail servers,
and are often represented by email addresses of the
form user@domain, where domainmay be a mail server
anywhere in the Internet.
The actual transfer of email across the Internet

is carried out by the MTAs. An MTA is given a
message, and an envelope that contains the sender
and recipient email addresses,6 say S@domainA and
R@domainB. The MTA then attempts to deliver the
message to the MTA at domainB. If there is no direct
way to contact the MTA at domainB, the message
may be delivered to an intermediate relay server that
would later forward the email to its destination.
The protocol that runs between MTAs in order to

carry out the transfer of email is called the Simple
Mail Transport Protocol (SMTP) [14, 10]. SMTP
uses a TCP session between two MTAs to deliver
multiple emails between them. After the TCP ses-
sion is established, the SMTP dialogue begins when
the sender MTA (the client) sends the HELO command
to the recipient MTA (the server), which then sends
either an Ok or an Error response. The client can
then send the next command, and wait for the next
response and so on.
A typical SMTP session that delivers an email is

given in Figure 9 where C: indicates client commands,
and S: indicates server responses. Here, the MTA at
domainA is talking to the MTA at domainB, and in
the �rst 3 lines the two MTAs identify their domains.
The client then initiates an email delivery by naming
the sender (S) in a MAIL FROM command, and then
naming the recipient (R) in an RCPT TO command.
The client can name multiple recipients for an email,
but only one sender. The server can reject the sender
or a recipient by sending an error message (line 9).
After sending the envelope information, data delivery
begins after the DATA command in Line 10 is accepted
by the server. Lines 12 to 21 contain the message sent

6Envelopes typically contain the complete path that the
message should take to the recipient, or an error message
should take back to the sender. This path includes the email
addresses of the sender and receiver.

by the client. Data delivery ends at Line 22 with a
special line that just has a full stop in it. The client
can then send another email or close the session with
a QUIT.
An SMTP client can also issue a RSET command at

any time during a transaction to reinitialize the ses-
sion. Similarly, HELO and MAIL commands can also
be issued at any time to reinitialize the session. The
complete SMTP client state machine for these com-
mands is shown in Figure 10. In the diagram, tran-

RSET! or
HELO! or
MAIL!

RSET! or
HELO! or
MAIL!

RSET! or
HELO! or
MAIL!

ERR?

ERR?

ERR?

OK?

RCPT!

mesg!

OK? or ERR?

RCPT!

MAIL!

OK?

HELO!

ERR?

OK? or ERR?

OK?

OK?

OK?

DATA!

DATAEND!

Figure 10: SMTP Client State Machine

sitions are labeled by actions. A! indicates that A
is sent from client to server. B? indicates that B is
received at client from server. Each OK and ERR re-
sponse may span several lines and must be suitably
parsed. The server state machine is symmetric, with
the inputs swapped with the outputs.

1. S: 220 domainB Simple Mail Transfer Service Ready

2. C: HELO domainA

3. S: 250 domainB greets domainA

4. C: MAIL FROM:<S@domainA>

5. S: 250 OK

6. C: RCPT TO:<R@domainB>

7. S: 250 OK

8. C: RCPT TO:<Rsec@domainB>

9. S: 550 No such user here

10. C: DATA

11. S: 354 Start mail input; end with <CRLF>.<CRLF>

12. C: To: "Rob R Roy" <R@domainB>

13. C: From: Sam S Smith <S@domainA>

14. C: Reply-To: "Smith:Personal" <S@personal.domainA>

15. C: Cc: "Roy's Secretary" <Rsec@domainB>,

16. C: "Smith's Secretary" <Ssec@domainA>

17. C: Subject: Saying Hello

18. C: Date: Fri, 21 Nov 1997 11:00:00 -0600

19. C: Message-ID: <abcd.1234@local.machine.tld>

20. C:

21. C: This is a message just to say hello.

22. C: .

23. S: 250 OK

24. C: QUIT

25. S: 221 domainB Service closing transmission channel

Figure 9: Sample SMTP Session

In addition to these commands, SMTP allows the
VRFY, EXPN, and HELP commands at any time, to ex-
tract information from a server. Newer versions of
SMTP also allow service extensions to the standard
protocol. We do not consider these commands and
extensions here since they do not a�ect standard mes-
sage delivery.
SMTP transfers emails between mail servers.

When an email is delivered to the MTA at the re-
cipient domain, it is stored in a mailbox owned by
the recipient on the mail server. The recipient can
then log in to the mail server to check his mailbox.
Many users, however, like to read their email on desk-
top computers that are not powerful enough to act as
mail servers. Protocols such as the Post OÆce Proto-
col [13], and the Internet Message Access Protocol [4]
enable users to access their mailboxes remotely, with
facilities to download message headers and bodies,
and delete them from the mail server. These proto-
cols work well for incoming email. In order to send
email, however, the desktop computer must still use
SMTP as a client to hand over messages to the MTA
at a mail server.
We have described the Internet mail architecture

and the SMTP protocol that delivers email between
the MTAs at two mail servers. Internet users, how-
ever, never need to be aware of SMTP or even the

MTA at their own server. This is because most mail
users use Mail User Agents (MUAs), such as Lotus
or Outlook, that help them to compose, send, and
receive email messages.
MUAs give the user a lot more
exibility in de-

scribing the attributes of a message. For instance,
the sender S can de�ne who the email is From as well
as who the recipient should Reply-to. S can choose
who to address the email To, and who should get a
copy (Cc,Bcc). S can even specify the Subject of the
email. All these attributes are included at the begin-
ning of an email according to a standardized Internet
Message Format [5, 16]. Although the complete for-
mat is quite involved, and has a number of options,
a typical Internet message is as shown in Lines 12 to
21 in Figure 9.
The attributes at the beginning of the message

comprise the message header, separated from the body
by an empty line. The MUA is responsible for tak-
ing such a message and automatically generating the
email envelope by looking at the addresses in the To,
Cc, and From �elds.7 It then hands over the complete
message and envelope to an MTA to carry out the ac-
tual delivery. When the MTA at the recipient's mail

7[16] describes a number of other �elds that may contain
addressing information as well.

server receives the message, the recipient R looks at
the email through his own MUA, which parses the
mail headers and cleanly presents them.
It is important to note, though, that a mail user

need not go through an MUA in order to generate an
Internet message. S can type the message in a text
editor, and directly interact with the MTA to deliver
the typed message, according to a speci�ed envelope.
So there is no guarantee that the mail headers have
any relation to the actual senders or recipients of a
message. Moreover, since a user can specify an enve-
lope to an MTA, the sender and even the recipient in
the envelope may not exist. Some MTAs will refuse
to accept messages if they can determine that the
senders or recipients are unknown, but many MTAs
do not have enough information to make this decision
and will accept the messages anyway.
In addition to the message formats described in

this section, further structure can be imposed on the
message body, for instance to describe and include
attachments (using MIME), and to authenticate or
encrypt the message (using S/MIME).

B Overview of NERL

NERL monitors are written as a number of recog-
nizer modules, one for each layer in the protocol
stack up to the protocol of interest. For instance, to
recognize SMTP events, recognizers are written for
IP, TCP and SMTP. Each recognizer takes events
recognized at the lower layer and follows the pro-
tocol state machine to recognize high-level protocol
events. For instance, the SMTP state machine is de-
scribed in the Appendix A. A TCP recognizer must
�rst reconstruct each command and response, and
then an SMTP recognizer follows the state machine
to recognize events, such as MailAccepted. Addi-
tional NERL recognizers may be used for application
speci�c processing, such as �ltering MailAccepted

events to recognize IdentMail events that indicate
emails sent by a suspect.
Each NERL recognizer describes a state machine.

It �rst contains typed declarations of its input and
output events, and its local state variables. Variables
can contain integers, doubles, bits, bytes, arrays and
records. Events have typed attributes: a timestamp

attribute indicates the time of occurrence, and other
attributes, such as IP_SRC for IP packets, provide
additional information. After the declarations, the
recognizer consists of several event de�nitions, and
state transitions. For instance, a small NERL recog-
nizer for the Ping protocol is shown below.

Recognizer Ping =

/* event declarations */

typedef { time timestamp;int seq } pkt;

input event pkt Ping_Request;

input event pkt Ping_Echo;

output event pkt Ping_Responded;

/* state variables */

int last_req;

/* event definitions */

event Ping_Responded = Ping_Echo OccurredWhen

(Ping_Echo.seq==last_req);

/* state transitions */

Ping_Request -> { last_req = Ping_Request.seq };

EndRecognizer

Event de�nitions describe high-level protocol
events in terms of input events. For instance, when
an SMTP client successfully delivers an email to the
server, we say that a high-level event MailAccepted
has occurred. NERL o�ers several constructs
to help de�ne such events. Events can be �l-
tered by the OccurredWhen construct: we say that
Ev OccurredWhen B occurs when Ev occurs and the
boolean condition in B is true. B expresses a condition
on the current state and the attributes of event Ev.
For instance, when a server sends an SMTP Ok in
response to a complete email message, the response
code must be 250.

event MailResponseOk = ResponseOk Occurredwhen

(ResponseOk.code == 250)

OccurredWhen also enables state speci�c events, by
allowing B to express conditions on state variables.
For instance, the MailAccepted event occurs when a
response is received in the DATAEND state.

event MailAccepted = MailResponseOk OccurredWhen

(state == DATAEND)

Events are correlated by the disjunction (|), conjunc-
tion (&), and implication (=>) operators. Note that
NERL does not have event negation, because the ab-
sence of an event is not an event; it is a condition
that can only be indicated by another event such as
a timer expiry event. These have the usual meaning:
Ev1 | Ev2 occurs when one of the two events occurs,
and so on. For instance, an SMTP session must be
reinitialized when any of the three input events RSET,
HELO, MAIL occur in a transaction:

event SessionReInit = RSET | HELO | MAIL

Finally, we can use the WithAttributes construct to
assign attributes to an event. For instance, when a

successful email transfer is detected (MailAccepted),
we may want to tag the envelope and message with
the event.

event MailAccepted = MailResponseOk OccurredWhen

(state == DATAEND)

WithAttributes {

MailAccepted.envelope.from = sender;

MailAccepted.envelope.to = receiver;

MailAccepted.message = data

}

State Transitions are triggered by events, and con-
sist of updates to state variables. The usual arith-
metic and boolean operations can be performed on
state variables. We allow while loops for updating
arrays, and for complex computation. Conditionals
are expressed as if: : :then: : :else expressions. How-
ever, most transitions simply consist of assignment
statements. For instance, the transition triggered by
the SMTP MailFrom command updates the control
state of the machine, and stores the sender's email
address in a state variable.

MailFrom -> { state = MAIL;

sender = MailFrom.address }

NERL is strongly-typed. The NERL type-checker
enforces that arithmetic and boolean operators can
only be applied to expressions of the appropriate
types. It points out the usage of undeclared variables,
event attributes, and record �elds. For safety, ev-
ery array indexing operation is guarded by an array-
bounds check at run-time. Finally, the type-checker
enforces several scoping rules. For instance, in
event x = Ev WithAttributes S, the statements
in S can only refer to event variables that are men-
tioned in Ev. The type-checker is quite useful in �nd-
ing simple errors that occur while transcribing long
state machines.

C SMTP Recognizers

C.1 Altivore

Recognizer A

bit state;

#define parsing_envelope 0

#define parsing_message 1

bool do_filter;

emailAddr suspect;

string message;

input event {emailAddr address} MailFrom;

input event {emailAddr address} RcptTo;

input event basic Data;

input event {string line} DataLine;

input event basic DataEnd;

output event {string message} IdentMail;

Init -> {

state = parsing_envelope;

do_filter = false;

message = "";}

MailFrom OccurredWhen

(state == parsing_envelope) &&

(MailFrom.address == suspect) -> {

do_filter = true;}

RcptTo OccurredWhen

(state == parsing_envelope) &&

(RcptTo.address == suspect) -> {

do_filter = true;}

Data OccurredWhen

(state == parsing_envelope) &&

(do_filter == true)-> {

state = parsing_message;}

DataLine OccurredWhen

(state == parsing_message) -> {

concat(message,DataLine.line);}

event IdentMail = DataEnd OccurredWhen

(state == parsing_message)

WithAttributes {

IdentMail.message = message}

DataEnd OccurredWhen

(state == parsing_message) -> {

state = parsing_envelope;

do_filter = false;

message = ""}

EndRecognizer

C.2 NIDS

Recognizer N

int state;

#define clear 0

#define mail_done 1

#define rcpt_done 2

#define data_done 3

bool do_filter;

emailAddr suspect;

string message;

input event {emailAddr address} MailFrom;

input event {emailAddr address} RcptTo;

input event basic Data;

input event {string line} DataLine;

input event basic DataEnd;

output event {string message} IdentMail;

event {emailAddr address} MF;

event {emailAddr address} RT;

Init -> {

state = clear;

do_filter = false;

message = "";}

event MF = MailFrom OccurredWhen

(state != data_done);

MF -> {

state = mail_done;

do_filter = false;}

MF OccurredWhen

(MailFrom.address == suspect) -> {

do_filter = true;}

event RT = RcptTo OccurredWhen

(state == mail_done) ||

(state == rcpt_done);

RT -> {state = rcpt_done}

RT OccurredWhen

(RcptTo.address == suspect) -> {

do_filter = true;}

Data OccurredWhen

(state == rcpt_done) &&

(do_filter == true) -> {

state = data_done;}

Data OccurredWhen

(state == rcpt_done) &&

(do_filter == false) -> {

state = clear;}

DataLine OccurredWhen

(state == data_done) -> {

concat(message,DataLine.line);}

event IdentMail = DataEnd OccurredWhen

(state == data_done)

WithAttributes {

IdentMail.message = message }

DataEnd OccurredWhen

(state == data_done) -> {

state = clear;

message = "";

do_filter = false }

EndRecognizer

C.3 OpenWarrant

Recognizer O

int state;

#define clear 0

#define mail_wait 1

#define mail_done 2

#define rcpt_wait 3

#define rcpt_done 4

#define data_wait 5

#define data_done 6

#define dataend_wait 7

bool some_rcpt;

bool sender_matched;

bool recipient_matched;

bool last_recipient_matched;

emailAddr suspect;

string message;

input event {emailAddr address} MailFrom;

input event {emailAddr address} RcptTo;

input event basic Data;

input event {string line} DataLine;

input event basic DataEnd;

output event {string message} IdentMail;

event {emailAddr address} MF;

event {emailAddr address} RT;

Init -> {

state = clear;

sender_matched = false;

recipient_matched = false;

last_recipient_matched = false;

some_rcpt = false;

message = "";}

event MF = MailFrom OccurredWhen

(state != data_done);

MF -> {

state = mail_wait;

sender_matched = false;

recipient_matched = false;

last_recipient_matched = false;

message = null;}

MF OccurredWhen

(MF.address == suspect) -> {

sender_matched = true;}

ResponseOk OccurredWhen

(state == mail_wait) -> {

state = mail_done;}

ResponseErr OccurredWhen

(state == mail_wait) -> {

state = clear;

sender_matched = false;}

event RT = RcptTo OccurredWhen

(state == mail_done) ||

(state == rcpt_done);

RT -> {state = rcpt_wait}

RT OccurredWhen

(RT.address == suspect) -> {

last_recipient_matched = true;}

ResponseOk OccurredWhen

(state == rcpt_wait) -> {

state = rcpt_done;

some_rcpt = true;

recipient_matched = (recipient_matched

|| last_recipient_matched);

last_recipient_matched = false;}

ResponseErr OccurredWhen

(state == rcpt_wait) -> {

if (some_rcpt = false)

then state = mail_done

else state = rcpt_done;

last_recipient_matched = false;}

Data OccurredWhen

(state == rcpt_done) &&

((sender_matched == true) ||

(recipient_matched == true)) -> {

state = data_wait;}

Data OccurredWhen

(state == rcpt_done) &&

((sender_matched == false) &&

(recipient_matched == false)) -> {

state = clear;

sender_matched = false;

recipient_matched = false;

some_rcpt = false;}

ResponseOk OccurredWhen

(state == data_wait) -> {

state = data_done;}

ResponseErr OccurredWhen

(state == data_wait) -> {

state = clear;

sender_matched = false;

recipient_matched = false;

some_rcpt = false;}

DataLine OccurredWhen

(state == data_done) -> {

concat(message,DataLine.line);}

DataEnd OccurredWhen

(state == data_done) -> {

state = dataend_wait;}

event IdentMail = ResponseOk OccurredWhen

(state == dataend_wait)

WithAttributes {

IdentMail.message = message }

(ResponseOk | ResponseErr) OccurredWhen

(state == dataend_wait) -> {

state = clear;

sender_matched = false;

recipient_matched = false;

some_rcpt = false;

message = "";}

EndRecognizer

client:0
14

monitor:1
15

1!hello

17

server:2
18

2!hello

20

21
3!ack

25

26
1!mailA

30

31
2!mailA

35

36
3!ack

38

39
1!mailB

43

44
2!mailB

46

47
3!ack

49

50
1!rcptB

52

53
2!rcptB

55

56
3!ack

58

59
1!data

61

62
2!data

66

67
3!ack

71

72
1!bbb

74

75
2!bbb

81

82
1!dataend

83
83

83

Figure 11: Violation in SMTP Recognizer A

client:0
14

monitor:1
15

1!hello

17

server:2
18

2!hello

20

21
3!ack

25

26
1!mailA

30

31
2!mailA

35

36
3!ack

38

39
1!rcptA

41

42
2!rcptA

46

47
3!ack

49

50
1!data

52

53
2!data

57

58
3!error

62

63
1!mailB

67

68
2!mailB

74

75
3!ack

77

78
1!rcptB

80

81
2!rcptB

87

88
3!ack

90

91
1!data

93

94
2!data

100

101
3!ack

105

106
1!bbb

108

109
2!bbb

115

116
1!dataend

117
117

117

Figure 12: Violation in SMTP Recognizer B

