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Abstract

A requirement is a desired relationship among

phenomena of the environment of a system, to be

brought about by the hardware/software machine that
will be constructed and installed in the environment.
A specification describes machine behaviour suffi-

cient to achieve the requirement. A specification is a

restricted kind of requirement all the environment

phenomena mentioned in a specitlcation are shared

with the machinq the phenomena constrained by the
speciilcation are controlled by the machine; and the

specified constraints can be determined without refer-

ence to the future. Specflcations are derived from re-

quirements by reasoning about the environtnen~ using

properties that hold independently of the behaviour of
the machine. These ideas, and some associated tech-

niques of description, are illustrated by a simple ex-

ample.

1 Introduction

Sotisvare development is concerned with the con-

struction of machines of a particular kind those that

can be implemented by a general-purpose computer,

which then becomes the desired machine. Many prob-

lems can be solved by these means [Jackson 94], in-

cluding problems in process control, message

switching, text manipulation, decision support, and

other fields. For example, an information system is a

machine that models a real world outside itself and

produces information about it based on the model; a

word-processing system is a machine that offers its

user a repertoire of operations on texts held within the
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machine; a control system is a machine that interacts

with its environment to bring about or maintain rela-

tionships in that environment. We call the

hardwarehoftware to be developed the machine, pre-

ferring this term to the more common system, which

we consider to be open to too many interpretations.
For example, the term system may be used to denote
the hardware/software machine or the machine to-
gether with the part of the environment with which it
interacts directly; or the machine together with its
users and the whole environment.

Although the different kinds of problem, and the
appropriate methods, have much in common, we
focus in this paper on control systems, and on their
fictional requirements. They seem to offer the

cleanest and most concise illustration of the points

that we want to make.

A requirement states desired relationships in the

environment — relationships that will be brought

about or maintained by the machine. The requirement

is concerned entirely with the environment where the

effects and benefits of the machine will be felt and as-

sessed the machine is purely a means to the end of

achieving the required effect in the environment.

A specification describes the behaviour of the
machine at its interface with the environment. Like a

requirement it is expressed entirely in terms of envi-
ronment phenomena. Seen from the machine, a spec-

ification is a starting point for programming seen
from the environment it is a restricted kind of re@re-
ment.

A spec~lcation is derived fkom a requirement.
Given a requirement, we progress to a spec~lcation
by purging the requirement of all features — such as
references to environment phenomena that are not ac-
cessible to the machine — that would preclude imple-
mentation. The derivation is ma& possible by
environment properties that can be relied on regard-
less of the machine’s behaviour. These properties
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must, of course, be explicitly described if they are to

be exploited.

Such derivation of specifications from require-

ments is loosely analogous to program refinement

[Morgan 90]. In program refinement the purpose is to

refine a specification to a program. Program specifi-

cations and programs are expressed in the same lan-

guage, which contains both non-executable elements

and executable code. Refinement is complete when

all non-executable elements have been removed. The

result is a program, because it contains only executa-

ble code. The refinement steps must ultimately be

justified by appeal to the properties of the computer,

as embodied in the semantics of the speciilcation and

programming language.

In reftning requirements to specifications, we

begin with requirements expressed in terms of the en-

vironment phenomena. Just as program specifications

may contain non-executable elements, so requirements

may refer to phenomena that are inaccessible to the

machine. Refinement is complete when all references

to inaccessible phenomena have been removed. The

result is purely a description of machine behaviour.

The refinement steps must ultimately be justifkd by

appeal to the properties of the environment.

In this paper we present some elements of a meth-

od for describing requirements and for deriving speci-

fications flom them. We explain certain distinctions

that we regard as essential to a sound treatmen~ and

we show how they guide us in bridging the gap be-

tween requirements and specii3cations. We also show

how certain real-time considerations can be handled in

a simple and direct way.

We illustrate our points chiefly by means of a

very small example. Our intention in using this small

example, rather than something more substantial, is to

ensure that as little detail as possible is left to the

reader’s imagination. In presenting the example we

rely on ftite-state automata and predicate logic as de-

scriptive languages. This choice is meant to simplify

the presentation it should be taken neither as a recom-

mendation nor as an intended contribution.

2 Designating Environment Phenomena

Our small example concerns the control of a turn-
stile at the entry to a zoo. The turnstile consists of a
rotating barrier and a coin slot and is fitted with an
electrical interface. This mechanical apparatus has
already been chosen, and the development job is to
write the controlling software. The software will run
in a small computec this is the machim. The envi-

ronment is the turnstile mechanism itself and its use
by visitors to the zoo. To enter the zoo, a visitor must
first push on the turnstile barrier, moving it to an in-

termediate position from which it will continue rotat-
ing of its own accord, returning to its initial position
and gently pushing the visitor into the zoo. The turn-
stile is equipped with a locking devicq when locked it

prevents the barrier ffom being pushed to the interme-

diate position.

The fwst step is to decide what environment phenome-

na are of interest (we consider entity classes to be

phenomena too). We capture these decisions by writ-

ing a designation set. Each designation of the set

gives a careful informal description by which certain

phenomena may be recognised in the environmen~ it

also gives a term by which the phenomena may be de-

noted in requirement and specification descriptions:

In event e a visitor pushes the barrier
to its intermediate position % Push(e)

In event e a visitor pushes the barrier
fully home and so gains entry to
the zoo R Enter(e)

In event e a valid coin is inserted into
the coin slot % Coin(e)

In event e the turnstile receives a
locking signal R Lock(e)

In event e the turnstile receives an
unlocking signal R Unlock(e)

The terms on the right hand sides of the designa-
tions are predicates. Push(e) is a predicate that is true
of e if and only if e is an event in which a visitor
pushes the barrier to its intermediate position. In this
small example, all the designated phenomena are
unary predicates characterizing sets of events. This
is not typicak in general, designated terms are n-ary
predicates. However, it is fully typical that we choose
to refer to the designated phenomena by predicates.
Our phenomenology is based on facts about individu-
als; predicates are regarded as generalisations of such
facts, and hence as the appropriate vehicle for denot-
ing phenomena [Jackson 92].

By deciding on the designations that are specific
to the environment — Push(e), Enter(e), Coin(e),
Lock(e) and Unlock(e) — we are not only laying

down a basis for description. We are also identifying

the phenomena in terms of which we will express the

requirement and spcciilcation. This is an important

decision, and must be made consciously and explicit-
ly. It is often claimed that requirements are relative

one person’s requirement is another’s implementation,

and one person’s what is another’s how. Without the
clear statement that designations provide, it is easy to
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vacillate about the subject matter of the requirement.

Is the requirement really about controlling a turnstile,

or is it more generally about admitting and excluding

visitors? Or is it about the zoo’s profitability? Or

perhaps about the profitability of the company that

owns the zoo? Might the developers legitimately rec-

ommend that entry should be free? Or that the zoo be

sold and its real estate redeveloped? Writing a desig-

nation set locates the requirement unambiguously in

the world.

We must also state explicitly that we are adopting

our usual phenomenology of time [Jackson 92, Zave

93]. Like most researchers in formal specii3cations

and requirements engineering, we usually regard

events as atomic and totally ordered. We also regard

both events, and intervals between successive events,

as individuals. Each event begins one interval and

ends another. Predicates associated with time-varying

phenomena must have interval arguments. The ap-

propriate designations for our view of time are

e is an atomic instantaneous event E Event(e)
v is an interval in which no event
occurs % Interval(v)
Event e occurs before event f R Earlier(e,f)
Event e begins interval v R Begins(e,v)
Event e ends interval v R Ends(e,v)

These temporal phenomena are general, being rec-
ognizable in many different environments. We will
assume in this paper that the appropriate assertions
about them — for example, that Earlier(e,j) is a total
ordering on events — have been made.

3 Shared Phenomena

If the machine is to interact with the environment

some phenomena must be shared by both. Investiga-

tion of the turnstile mechanism and its electrical con-

nections shows that Push(e), Coin(e), Lock(e), and

Unlock(e) are shared phenomena; Enter(e) is not

shared. (Sharing phenomena does not imply sharing

control. Rather, the shared phenomena may be re-
garded as constituting the interface between the ma-

chine and the environment and control may reside on

either side of the interface. We return to this point in

Section 4 below.)

By identifying certain events as shared we are

choosing to regard them as occurring both in the ma-
chine and in the environment. Since events are atomic

and instantaneous, this means that we are ignoring

any delay involved in transmission of the electrical

signals. This decision is reasonable in the context of

the turnstile. If we were to decide that the delay is not

ignorable, we would treat the electrical channel as an-

other part of the environment distinguishing the

events at the machine end of the channel fi-om those at

the turnstile end. The shared events would then be

those at the machine end of the channefi the events at

the other end would not be shared.

The underlying basis of shared phenomena is

shared individuals: the event individuals appear in

both the environment and the machine. But this is not

enough. It is also necessary that the facts about those

individuals, generalised in the predicates, are shared.

Push and Coin events are clearly distinguished in the

environment. But if, perversely, they were identically

signalled by the turnstile, then they would still be

shared individuals, but the distinction captured in the

two predicates would not be accessible to the ma-

chine.

Similar considerations apply to shared state phe-

nomena. In a lift control system, the sensors at the

floors may be shared individuals. For the information

from the sensors to be accessible to the machine, the

facts that particular sensors are associated with par-

ticular floors, and that a particular sensor is On or Off
in a particular time interval, must also be shared.

4 Control of Phenomena

We must also determine where control of the

shared phenomena resides. Investigation — confii-
ing everyday expectations of turnstiles — shows that
Push and Coin events are environment-controlled,
while Lock and Unlock events are machine-control-
led. Push and Coin events are environment-controlled

because they are initiated by the environment. Ap-
proaches based on the identification of agents ~eather
87, Johnson 88, Feather 91] would identify agents in
the environment rather than in the machine for these
events: if there are no visitors to the zoo, no Push or
Coin event will ever occur, regardless of the ma-
chine’s behaviour. Conversely, Lock and Unlock
events are initiated by the machine, which sends elec-
trical signals to the turnstile. Regardless of the be-
haviour of the environment no Lock or Unlock event

will occur unless the machine causes it. Environment
phenomena that are not shared are necessarily envi-

ronment-controlled. (Machine phenomena that are not

shared are, of course, of no interest in requirements or

speci13cations. They are signi13cant only in

programming.)

Control of an event is the power to perform it

spontaneously, but only when it is not precluded by

other constraints on its occurrence. Some environ-

ment-controlled events may be constrained by envi-
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ronment properties; the machine can exploit these

constraints to prevent the events ffom occurring. For

example, Push and Enter events are environment-con-

trolled but, as we shall see, the machine can prevent

their occurrence by Ioeking the turnstile. Coin events

are also environment-controlled, but their occurrence,

by contrast, can be neither prevented nor stimulated

by the machine.

Control of state phenomena is associated with

control of events. To say that the environment in a

lift scheduling problem controls the state of the floor

sensors is to say that the environment controls those

events that cause the sensor states to change. The lift

scheduling machine can access the sensor states, but

only the movement of the lift car in the environment

can change them.

In our view, control of events is always unilateral

it is never shared. We consider shared control to be

unrealistic: it is rarely found in the real world ~eather

87, Abadi 93]. If some kind of event is sometimes in-

itiated by the machine and sometimes by the environ-

ment we separate it into two kinds by designating the

machine-controlled and the environment-controlled

events as different phenomena. In some cases shared

state phenomena may be changed either by the ma-

chine or by the environment.

5 Indicative Environment Descriptions

In developing requirements we are interested in
two distinct kinds of environment description. The
first kind describes the properties we would like the
machine to bring about or maintain. These descrip-
tions are in what grammarians would call the optative

mood they express our wishes. The second kind de-
scribes the properties that the environment has, or will
have, regardless of the behaviour of the machine.
These are in the indicative mood they express what k
the case whether we wish it or not.

We avoid descriptions of mixed indicative and op-
tative mood. This separation allows the mood of a de-
scription to be determined by hs context rather than
by its contents. We adopt this approach for two rea-
sons. First reliance on internal syntactic distinctions.
whether formal or informal, between the two moods
would cause great linguistic dMculty and would ex-
clude many languages from effective use. Second
when a system has been successfully built and in-
stalled the optative descriptions become indicative —
the wishes come true. It would be very inconvenient
if the descriptions themselves then had to be rewritten.
The contextual information on which we rely is, so
far, quite informa~ but in a practical development en-
vironment it should be formalised. In this paper we
distinguish the moods of descriptions by giving indic-

ative descriptions names of the form INDn, and opta-
tive descriptions names of the form OPTn. We also
use deftitions of new (undesignated) terms. Defin-
itions may appear in indicative descriptions, where
they may rely on the truth of the indicative assertion.
They may also appear in separate, purely definitional.
descriptions, whose names we of the form DEFn.

We begin here with two indicative properties.

The first of these properties is that Push and Enter

events alternate. starting with Push. A visitor can not

Enter without first Pushing; the next visitor can not

Push until the first has Entered. This property is de-

scribed in a Finite-State Automaton

(IND1) Push

Enter

The state names PEO and PE1 do not refer to des-
ignated phenomena: they are defined in this indicative
description. The description asserts only a constraint
on the ordering of Push and Enter events. It could be
fals~led by observation of the environment — for ex-
ample if the sequence <Push,push> were found to be
possible. The property asserted is purely a safety
property: the description would still be true if no Push
or Enter event ever occurred.

The second indicative property is that if Leek and
Unlock events alternate, starting with Unlock, then a
Push event can occur only after an Unlock and before
the next Lock. This too is a safety property, but its
description needs a little care. We do not know, and
therefore must not describe, what will happen if Lock
and Unlock events do not alternate in the stated way.
Possibly the turnstile mechanism will break perhaps
events not fitting the pattern will be ignored; perhaps
the mechanism will become permanently locked or
permanently unlocked.

So we make this description in two stages. In the
first we define three states of the mechanism. LU2 is
the state reached when the alternation has been bro-
ken. LUO and LU1 are the two alternating states in
which the alternation has been (so far) maintained

(DEF1) ~

‘ock~x::ck

LU1 Unlock

This description is purely deftitional. It has an out-
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going arc in each state for each kind of event and so
imposes no safety constraint on the event occurrences.
Nor is it intended to express any liveness property:
there is no implication that the initial state, or any
other. will not persist indefinitely. The states LUO,
LU1 and LU2 do not appear in the designation set.
Nothing in this description DEF1 could be falsified by
observation of the environment.

These deftitions can now be exploited to assert a
safety property:

(IND2) V e,v ● ( ( LUO(V) A Ends(e,v) )
+ v Push(e) )

This description asserts that if LUO holds in inter-
val v. and v is ended by an event e, then e can not be a
Push everk in other words, Push events are impossi-
ble in state LUO. The assertion could be falsified by
environment observation — for example, if a Push
were found to be possible before the first Unlock.
The description exploits the definition of the states,
both to assert the safety property concerning Push
events and to limit the assertion to the known cases.
If we later discover that Lock or Unlock events not
fitting the alternating pattern will be ignored, we can
add further deftition and description to capture the
resulting properties without changing or contradicting
what we have already said. This kind of technique is
essential to effective separation of concerns.

6 Requirements

It is the customer’s prerogative to determine the
requirements. Essentially, there are two simple re-
quirements: that no-one should enter without paying;
and that anyone who has paid should be allowed to
enter.

Our customer does not require that payments al-
ternate with entries: that would inconvenience school
teachers in charge of groups of children. So the first
requirement is simply that entries should never exceed
payments. Assume that we have defined predicates
Push#(v,n), Enter#(v,n) and Coin#(v,n), meaning that
the count of Push, Enter and Coin events respectively
preceding interval v is n. (Like the states PEO and
PE1, and LUO, LU 1, and LU2, these are not newly
designated environment phenomena: their definitions
are based purely on the previously designated phe-
nomena.) The first requirement can then be stated

(OPT I) ‘d v,m,n ●

( ( Enter#(v,m) A Coin#(v,n) ) + (m < n) )

The second requirement is that visitors who pay
are not prevented from entering the zoo. Strictly in-
terpreted, this requirement is unirnplementable: they

may be prevented by other visitors ahead of them in
the queue, or by a police cordon, or by their own ina-
bility or unwillingness to perform the Push action that
must precede the Enter event that admits them. Intui-
tively, it means that the machine will not prevent their
entry. For now, we can state this requirement very in-
formally as:

(OPT2) V v.m,n ●

( ( Enter#(v,m) A Coin#(v,n) A (m < n) )
+ ‘The machine will not prevent another

Enter event’ )

Later we will make it precise in the form of a
specification of the machine behaviour. Like many
requirements, this requirement seems very difi5cult to
formalise solely in terms of phenomena that are im-
portant to the customer [Johnson 88]. A precise state-
ment must await refinement in terms of the turnstile
mechanism.

7 Specifications

A requirement describes a desired relationship
among environment phenomenw a speciilcat.ion de-
scribes a desired behaviour of the machine in the envi-
ronment. To be a specitlcat.ion, a requirement must
observe at least these rules:

(a) All environment phenomena mentioned in the re-
quirement are shared with the machine. That is, the
specitlcation is lccated entirely at the interface be-
tween the machine and the environment.

(b) All phenomena required to be constrained are di-
rectly machine-controlled. That is, the implementor
will not need to reason about environment properties
to achieve execution or inhibition of events: the ma-
chine can execute, or retiain horn executing, the ac-
tions directly.

(c) All required constraints on events are expressed in
terms of preceding events or states in preceding inter-
vals. That is, the conditions for executing, or not exe-
cuting, an event can be evaluated in a suitably defined
current state and do not involve reasoning from a sub-
sequent state.

The two requirements stated in the descriptions
OPT 1 and 0PT2 express the customer’s intention, but
they are not specifications. Both are expressed in
terms of Enter events, which are not shared so they
break rule (a).

To realise OPT1 the machine must either compel
Coin events or prevent Enter events. Coin events are
shared phenomena, but they are environment-control-
led. If, then, we interpret OPT1 as requiring the ma-
chine to enforce Coin events, it fails as a specit3cation
by rule (b): it requires constraints on phenomena that
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are not machine-controlled.

OPT1 also constrains the state in every interval,
including those that are still in the future. When the
machine executes, or refrains from executing, any
event, it must ensure that OPT 1 will hold ajlerwards.

A requirement based in this way on a fiture state,
even if refined to a form in which it infringes neither
rule (a) nor rule (b), can not be a spec~lcation by rule
(c).

Our strategy for obtaining a specification from a
requirement is to make explicit use of the indicative
environment properties. Denoting the requirement
specillcation, and environment properties by R, S, and
E respectively, for a given R and E we seek S such
that

Satisfaction of the requirement can be deduced from
satisfaction of the speciilcation together with the in-
dicative environment properties.

Considering OPT1, we know of no environment
property by which the machine could ensure the oc-
currence of Coin events. Therefore it must instead act
to prevent Enter events. We must rely on the safety
properties described in IND 1 — the alternation of
Push and Enter events; and in IND2 — the impossi-
bility of Push events cccurring after certain sequences
of Lock and Unlock events. Our speciilcation will re-
quire the machine to perform Lock and Unlock events
so that certain Push events, and hence the undesired
Enter events, do not occur.

The f~st step is to obtain a form of OPT1 that
does not involve Enter events. From the indicative de-
scription IND 1 we can immediately derive:

(IND3) V v,m,n ●

( ( Enter#(v,rn) A Push#(v,n) ) + (n–l < m < n) )

That is: at all times Push#- 1< Enter# S Push#.
This property allows us to obtain OPTla, expressed
in terms of Push# (whose deftition depends on shared
phenomena), rather than of Enter# (whose deftition
depends on unshared phenomena}

(OPTla) V v,m,n “
( ( Push#(v,m) A Coin#(v,n) ) --+ (m < n) )

OPTla is a strengthening of OPT1. The re@re-
ment OPT 1 is, informally, that at all times Enter# <
Coin#. OPTla specit3es the stronger condition that at
all times Enter# S Push# < Coin# (the first part of the
inequality being guaranteed by IND3). The strength-
ening is inevitable. If Push# z Coin# were ever al-

lowed to hold, the environment possesses no proper-
ties by which Enter# > Coin# could then be prevented
once a Push has occurred the subsequent Enter can
not be stopped; and a fiu-ther occurrence of Coin can
not be enforced.

To satisfy the requirement OPT 1, then, the ma-
chine must ensure that Push# never exceeds Coin#.

By an obvious piece of reasoning necessitated by rule

(c), we refine this to the requirement that when Push#

already equals Coin# the machine must prevent a @--
ther Push at least until after a further Coin event.
How can Push events be prevented by the machine?

IND2, together with the definitional description
DEF1, constrains Push events provided that the alter-

nation of Leek and Unlock events is maintained in

the absence of this alternation we can say nothing. So
we require the machine’s behaviour to satisfy the fol-
lowing safety spec~lcation

(OPT3)

m

Lock

If the machine behaviour has this property, we
can be sure that LU2 will never hold. In any interval
either Pushes are impossible because LUO already
holds, or LU1 holds and the machine can reach LUO
by causing a Lock event.

Now we can refine OPT 1 (in its strengthened
form OPTla). The refinement is to a safety property
and a Liveness property. The safety property is:

(OPT4) V v,e,n ●

( ( ( LUO(V) A RWKv,n) A Coin(v,n) A Ends(e,v) )
+ 7 Unlock(e))

If LUO holds and Push# equals Coin#, the ma-
chine must not unlock the turnstile. Push events are
impossible while LUO holds, so the turnstile will even-
tually be unlocked only after another Coin event as
we might expect.

The liveness property is that the machine must
perform a Lock event in certain states. The relevant
states are defined by a predicate on intervals:

(DEF2) Re@ock(v) 42
( LU1(V) A ~ n ● ( Push#(v,n) A Coin#(v,n) ) )

The liveness property is that if ReqLock holds —
that is, if the turnstile is unlocked and Push# equals
Coin# — the machine must perform a Lock event in
time to prevent a further Push (and thus a further
Enter) event.
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If we were to adopt the reactive systems hypothe-

sis (the commonly adopted assumption that the ma-

chine will react to each stimulus from the environment

before the next stimulus occurs), we would say simply

that in state ReqLock the machine must perform a

Lock event. But there are important real-time consid-

erations here. We will return to this point — and

state the liveness property exactly — in the next sec-

tion.

The refinement of 0PT2 is somewhat analogous

to that of OPT 1. The machine must ensure that the

indicative safety property IND2 does not prevent Push

events when there is a coin in credit. Again there is

both a safety property and a liveness property. The

safety property is:

(OPT5) V v,e,m,n “
( ( I. Nl(v)A Push#(v,m) A coin#(v,n) A

(m< n) A Ends(e,v) )
+ - Lock(e))

If LU 1 holds — the turnstile is unlocked — and
there is a coin in credit the machine must not lock the
turnstile. The condition in which Lock events are for-
bidden will cease to be true when an excess of subse-
quent Push events over Coin events uses up the credit.

The liveness property is that the machine must
perform an Unlock event in certain states. The rele-
vant states are defined by a predicate on intervals:

(DEF3) ReqUnlock(v) A
( LUO(V) A g m,n ●

( Push#(v,m) A cOiIl#(V,n) A (~ < @ ) )

The liveness property is that if ReqUnlock holds
— that is, if the turnstile is locked and there is a coin
in credit — the machine must perform an Unlock
event. Again, there is a real-time consideration, and
we will state the liveness property exactly in the next
section.

8 Real Time

We return now to the point deferred above in dis-
cussing the statement of the liveness properties in the
refinements of OPT1 and 0PT2.

The refinement of 0PT2 must be more than a
specitlcation that in state ReqUdock the machine will
eventually perform an Unlock. It must ensure that
that state, in which some visitor has paid but has not
yet been enabled to Push, does not persist unreasona-
bly long. We may express this quite directly in an op-
tative description

(OPT6) Duration@eqUnlock] c 250

The visitor must be enabled to Push within 250

msecs of paying. OPT6 specifies that the machine

must terminate a ReqUnlock state within the time

limit. Its only means of doing so, by virtue of DEF3,

is to exit from state LUO. By DEF 1 and 0PT3, that

means it must execute an Unlock event. (The envi-

ronment can not terminate a ReqUnlock stattx it can

not initiate an Unlock event to terminate LUO; and

while LUO holds it can not initiate a Push.)

The refinement of OPT1 discussed above led us

to the spec~lcation that in state ReqLock the machine

must perform a Lock event soon enough to prevent

another Push eventi that is the whole point of the re-

quirement. Clearly, we can satisfy this requirement

only if the environment guarantees a sufficient real-

time delay for the machine to respond. Further inves-

tigation of the turnstile reveals that hydraulic damping

guarantees delays of at least 750 msecs between a

Push and a following Enter, and at least 10 msecs be-

tween an Enter and a following Push

(IND4) Duration[PEO] 210 A DurationPEl] 2750

At least 760 msecs will therefore intervene be-
tween successive Push events, and the necessary re-
finement of the liveness part of requirement OPT 1 is:

(OPT7) Duration~eqLock] <760

The freedom to delay the Lock event is important
for smooth and efficient working of the turnstile. The
machine may wait in state ReqLock, within the limit
of 760 msecs, in order to increase the probability that
another Coin event will intervene to cause an exit
from the ReqLock state and so make the Lock unnec-
essary. A machine that does so is preferable to a ma-
chine that performs the Lock event immediately.

The preferable machine is not readily specifiable
under the reactive system hypothesis. The virtue of
the reactive systems hypothesis is that we can avoid
real-time considerations in writing requirements and
specifications. Everything that the machine must do
to satisfy the requirement is assumed to be done fast
enough. Or, equivalently, everything that the environ-
ment might do to frustrate the requirement is assumed
to happen too slowly to do so. The disadvantage is
that it becomes very inconvenient to speci~ that the
machine should wait in case another stimulus arrives
to countermand the effect of a previous stimulus. Our
technique of deftig states avoids this disadvantage,
and allows us to deal reasonably directly with real-
time considerations.
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9 Satisfaction of the Requirement

IrJthe entaihnent

mentioned in Section 7 above, the requirement R is

OPT1 and 0PT2. The spec~lcation S is 0PT3,

0PT4, 0PT5, 0PT6, and 0PT7. The environment

properties E are IND 1, IND2 and IND4 (IND3 being

deduced ffom IND1). Assuming the definitions

DEF1, DEF2, DEF3, the entailment is therefore

IND1 ,IND2,1ND4,0PT3 ,0PT4,0PT5,0PT6,0PT7
} OPT 1 A 0PT2

To prove satisfaction of the requirement is to
prove this entailment. OPTla will be a lemma in this
proof.

The derivation steps presented in this paper are,
of course, somewhat too informal to constitute a proof
of satisfaction. Most notably, some subtleties in the
relationship of Push and Enter events were ignored in
the refinement of 0PT2. The requirement ‘The ma-
chine will not prevent another Enter event’ is satisfied
by a speciilcat.ion in which the machine unlocks, or
refrains fi-om locking, the turnstile, thus enabling the
visitor to perform a Push event, following which the
visitor is automatically enabled to execute an Enter
event.

10 Related Work

Many researchers in requirements engineering are
interested in achieving a fuller understanding of the
relationship between requirements and specflcations.
In this section we compare our ideas to those of four
closely related papers.

~eather91] is agent-orienti, it envisions sys-
tems that are mixtures of human, software, and hard-
ware agents, taking responsibility for various goals
and subgoals. We recognize only two agents — envi-
ronment and machine — and their multiple agents are
clearly a decomposition of our two. We emphasise a
fixed environment that must be filly accommodated
by the machine, while Feather, Fickas, and Helm em-
phasise a environment that is “designed” along with
the machine. Both are legitimate viewpoints for re-
quirements engineering (and we certainly don’t intend
to limit ourselves to only one of them), but they are ir-
relevant to this comparison. We are concerned here
chiefly with the technical issue of how requirements
and specifications differ, and how are they related.
For a precise comparison, it is necessary to factor out
this difference in viewpoint.

They mention four key transformations by which

agent specitlcations are obtained from requirements or

goals:

(a) Brinkmanship: identify actions that could cause
a constraint to be violated, add components to exert
control over these actions, assign some agent to be the
controller.

(b) Spatial spliti split goal responsibility into pieces
assigned to separate agents.

(c) Indirect access: agent B needs some information
it does not have direct access to; agent A gets it and
communicates it to B.

(d) Responsibility accumulation: assigning multiple
responsibilities to the same agent.

Spatial split and responsibility accumulation con-
cern a level of detail that is lower than our scheme —
decomposition of the environment and machine
agents. We would expect such separations of con-
cerns to be reflected in separate descriptions; but
these separations are not needed to explain the differ-
ence between requirements and specitlcations.

Brinkmanship is reminiscent of our rule concern-
ing requirements that are not specitlcations because
they constrain environment-controlled phenomena.
But brinkmanship concerns only safety properties,
while our rule includes liveness.

Indirect access is reminiscent of our rule concern-
ing requirements that are not spectilcations because
they use unshared phenomena; but it requires the use
of an active operational agent to maintain the relation-
ship between the unshared and the shared phenomena.
IU our view this relationship must be described explic-
itly, but need not be attributed to an active agent.

In summary, we find our scheme simpler because
it does not depend on decomposition of agents, and
does not introduce them when not needed. It seems to
be more comprehensive because it includes such
things as liveness requirements on environment-con-
trolled phenomena. It also seems to be more system-
atic because it is not an empirically discovered
collection, but rather is based on the exhaustive clas -
.sKlcations into shared and unshared, and environ-
ment-controlled and machine-controlled phenomena.

ll%ather 94] extends the work reported in lFeath-
er 91], concentrating on bringing a number of formal
techniques to bear on the derivation of spectilcations
from requirements. In particular, Feather exploits a
finite differencing transformation, calculation of
weakest preconditions, weakening of invariant, and
the unfolding of invariants into guarded commands.
Use of such formal techniques assists refinement by
reformulation of previously stated requirements. It
complements the exploitation of indicative environ-
ment properties that is a central feature of our ap-
proach.
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Feather also discusses a form of our distinction
between shared and unshared phenomena. Agents in
the environment — in his example, railway trains —
may be unable to evaluate a predicate that guards one
of their actions. For example, a train does not ‘know’
whether there is another train in the next track seg-
ment.

The scheme of [Dubois 89] is based on bilaterally
controlled actions, which we consider unrealistic.
They are also prone to unnecessary semantic compli-
cations, such as the distinction between external and
internal (hidden) nondeterminism in [Abadi 93 ]. Fur-
ther, Dubois’s scheme requires a cumbersome and
nonstandard logic.

In many ways, Johnson’s work on deriving speci-
fications from requirements [Johnson 88] is the clos-
est to ours philosophically. Johnson’s transformation
of “removing the perfect knowledge assumption” has
exactly the same purpose as our rule about require-
ments that are not specflcations because they use un-
shared phenomena. Also, his transformation of
“deftig capabilities” has exactly the same purpose
as our rule about requirements that are not speciilca-
tions because they constrain environment-controlled
phenomena. (Incidentally, these transformations have
roughly the same purpose as the “operationalization”
goals IsEvaluable and IsAchievable in [Mostow 83].

But Mostow’s work focuses on automated problem-

solving, and thus assumes — if applied to require-

ments engineering — that the domain is as malleable

as the machine.)

One difference is that [Johnson 88], like [Feather

91], is agent-oriented rather than description-oriented.

Also, Johnson describes requirements as being edited

until they become speciilcations. Our characteriza-
tion of requirements and speciilcations as distinct op-
tative descriptions, linked by the indicative
descriptions that cause the speciilcation to imply the
requirement, is more generak it embraces other con-
siderations such as the reuse of existing specil3ca-
tions,

We feel that we have added signiilcantly to John-
son’s notion of “defting capabilities” by explaining
the precise circumstances under which agents have the
wrong capabilities (an optative description constrains
environment-controlled phenomena) and the precise
remedy for the problem (there must be indicative de-
scriptions linking machine-controlled phenomena to
the relevant environment-controlled phenomena).

11 Conclusions

We have explained a distinction between require-
ments and specifications. Both are expressed in terms
of environment phenomena. A requirement is ex-

pressed in terms of phenomena and relationships that
are of direct interest to the system’s customers and
users, while a specii3cation is restricted to imple-
mentable behaviour of a machine that can ensure sat-
isfaction of the requirement. The gap between the two
is bridged by reasoning based on environment proper-
ties that can be relied on independently of the ma-
chine’s behaviour.

This view leads to an emphasis on careful expres-
sion of environment properties. We separate indica-

tive from optative properties — those that can be
relied on from those that the system must bring about.
We separate definition from assertion, and designat-

ed phenomena from defined terms. We pay explicit
attention to control, and express liveness properties in
terms of real time.

We have illustrated our ideas with a simple con-

trol system example. We believe that other kinds of

problem will demand application of the same ideas,

albeit in different contexts and expressed in different

languages. In some cases a structuring of the environ-

ment into domains will be necessary. Larger prob-
lems, of realistic complexity, will additionally demand
a decomposition into simple problems, and a recombi-
nation of the resulting solutions.
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