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ABSTRACT
This paper describes a method for automatically generating
(and re-generating) test oracles during software
development using the counter-example generation
mechanism found in most model checker tools.  Given a
state-based specification of a system, our method helps
organize test cases into a complete cover of disjoint
equivalence partitions on a test space.  These partitions are
comprised of paths in the test space that conform to
specified requirements written in linear temporal logic
(LTL) formulae or quantified regular expressions (QRE).
The oracles can also be used to drive test executions in
cases where the test environment must generate events and
conditions in order to force particular behaviors in non-
deterministic systems.
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INTRODUCTION
Software developers often use models to reason about the
design of their systems, but keeping the models and source
code in fidelity during development is a difficult task [1].
By fidelity, we mean that the results of analysis, simulation
and testing are the same for either representation.
Developers and testers need methods for maintaining
fidelity as quickly and inexpensively as possible because
updating models and code during development does not
contribute to software construction and can be an expensive
and slow process.  Recent trends toward rapid software
development emphasize the need for maintaining fidelity in
an efficient manner [2].  For example, not only must the
code implement behaviors as specified by a model during
development, but a model itself may need to change based
on discovered limitations of the implementation
environment [3].  Maintaining fidelity between the code
and models is important as the software evolves because
any divergence sacrifices the benefits of formal analysis on
the model and may lead to future problems including
design errors, inconsistent documentation, and expensive

rework.

Typically, a model provides an abstraction for specifying,
communicating, and understanding aspects of the expected
behavior of a software system.  Examples of models
include design patterns [4], finite state machines [5], object
models [6, 7], functional descriptions [8], flow diagrams,
process algebras [9], petri nets, and many other formal and
informal notations.  While it is possible in some cases to
generate code directly from a model, most designers must
develop software directly in a common programming
language.  To ensure that their code reflects their model,
developers frequently test their software during
development and refine their designs and code based on the
results of these tests.  Such a process is similar to software
prototyping but is done primarily to confirm the viability of
implementing a proposed design in a target environment.
The use of testing in such circumstances establishes an
informal relationship between the code and a design model.
Few explicit software development methods, however,
exist that support this process of refinement and co-
evolution of designs and implementations.  As a result, the
behaviors expressed by models and code often diverge later
in the development lifecycle because fidelity between them
is difficult to maintain as changes are made to either
representation.

White-box testing allows developers to establish some
fidelity between models of their software requirements,
designs, and code during development.  The output traces
of white-box tests, achieved via the use of assertions and
monitoring statements (e.g., so-called debugging "print"
statements), help to validate that the code behaves in
accordance with a model of its design.  If an inconsistency
between a trace and the specified behavior is discovered,
then the model or the code can be corrected as appropriate.
For example, Bentley describes the use of monitoring
statements in the implementation of a binary search
program [10].  In one test case, the input and output of the
program are correct, but inconsistencies between the
intermediate values of the upper and lower indexes in the
execution trace lead him to discover the error in the code.
This form of debugging is common and informal, but relies
on the existence of an external model of the program’s
design to compare against the actual behavior.  The test
oracle (in this case Bentley himself) relies on an intuitive
model of binary search to verify that the program behaves
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correctly during execution.

Manual examination of test traces and hand construction of
test oracles are expensive methods.  Because of the non-
deterministic behavior of many systems, checking a test
trace usually means checking for a pattern of events.  A test
oracle may accept many trace sequences that constitute
valid behaviors for a particular test.  In addition, an oracle
may have to play an active role in the test environment to
force the execution of specific behaviors under test.  For
example, two executions of the same test of a distributed
system may result in different but valid execution traces
due to network traffic and processor loads.  Often, the trace
scanners and test oracles become complex systems
themselves in major projects.

Another major problem with testing is achieving adequate
test coverage [11] of the specified behaviors of a system
and the source code.  Advocates of specification-based
testing have long promoted the use of formal models as a
source for generating test oracles [12, 13].  The use of
specification-based testing has three benefits: leveraging
the power of formal analysis on the specification itself,
understanding of the dimensions of the test space, and
automated generation of test cases, oracles, and test
environments.  Code coverage advocates focus on
construction of test cases that will exercise paths within the
source code.  In general, a combination of both approaches
is desirable to ensure that both specified behaviors and the
implementation are adequately tested.

We have developed a method for generating test oracles
based on model checking [14-16].  Our methods can be
used to check traces during or after program execution.  In
our approach, a state-based model specification can be
formally analyzed and used to monitor and drive test
executions.  Our process, called formal testing, is a
specification-based testing process that uses model
checking techniques to verify, organize, and generate
white-box tests during evolutionary software development.
While a model can be analyzed directly using model
checking methods for safety, invariance, liveness, and other
properties, it can also be used to generate test oracles and
drivers. Our technique can be used to validate execution
traces during white-box testing using a model checker as a
semantic tableau [17, 18].  We also show how requirements
can be specified as linear temporal logic (LTL) formulae
[19] or quantified regular expressions (QRE) [20] and used
to organize execution traces into disjoint equivalence
partitions [21] that constitute a complete cover of a
program’s design space relative to a set of requirements.
Finally, we demonstrate how our approach allows for
smooth development and evolution of a system through the
automatic regeneration of test oracles.  This permits the co-
evolution of the requirements, design, and implementation
of a system.  Our process helps identify inconsistencies that
inevitably develop between models and implementations
and helps to leverage more powerful forms of analysis
faithfully throughout the development process.  Combined
with existing code coverage methods used during

development, our approach helps analysts understand the
test space of a problem in terms of both its specification
and implementation.

Our approach is most effective on the development of
control systems and communication protocols with state-
based design specifications and requirements [22].
Although we assume that a state-based model exists a
priori, we feel that this is not an unreasonable assumption
given the proliferation of state-based modeling techniques
in use [5, 23, 24].  We are exploring the use of our method
in conjunction with functional approaches [8] by using
similar methods for expansion of test cases along branches
of proof trees produced by automated theorem provers [25].

MODEL CHECKING
A model checker takes a description of several concurrent,
finite state machines as input and effectively analyzes the
expanded computation tree for given properties.  A
computation tree is  a conceptual structure that consists of a
possibly infinite set of all execution paths.  For example,
consider the state machines shown in Figure 1 for sender
(A) and receiver (B) processes using a loss-free version of
the alternating bit protocol (ABP) [26].  Each edge denotes
a two-character message.  The first character represents the
originator of the message and the second specifies a
sequence number (called the alternation bit).  Send
operations are underlined.  Figure 2 depicts the
computation tree consisting of states of execution starting
from the initial state of the system at its root.  Each state is
labeled with the ordered pair corresponding to the sub-state
of the sender (A) and receiver (B) processes respectively.
A legal path is the set of specific states starting from the
root of the computation tree that constitute a valid
interleaved execution of processes.  In this case, the tree
contains all legal execution paths that comprise the joint
machine A ∪ B where each node is denoted by the
composite state of each process.

Model checking is a method by which the computation tree
can be searched effectively to ensure that certain behaviors
(i.e., paths) with specific properties do or do not exist in the
model.  Normally, searching such a large structure is
infeasible due to combinatorial explosion in the number of
operations on states.  But model checkers employ various
methods to reduce the complexity of their search.  For
example, redundant states can be eliminated from searches
due to the memory-less properties of finite state machines.
Other related optimization techniques include partial order
reduction [27] and the use of binary decision diagrams
(BDDs) in symbolic model checkers [15].  With such
methods, some model checkers claim the ability to analyze
spaces comprised of 1010 to 1013 number of unique states
[16].

Through the effective expansion of the computation tree by
the model checker, the behavior of the model can be
analyzed for specific properties.  Such properties can be
specified as linear temporal logic (LTL) formulae or
quantified regular expressions (QRE) that describe sets of
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paths (possibly empty) in the computation tree.  For
example, LTL formulae employ temporal operators [19]
including the always (�), next ( ), and eventually (�)
operators.  The LTL formula

�(A0 È �A0)

describes all paths (if they exist) in which if A0 is sent,
then eventually A0 is received.  Given this formula, a
model checker can determine whether or not any paths
exist in the computation tree that satisfy this formula.  Such
formula can describe non-trivial patterns for sets of paths
that have different behaviors but satisfy a common
property.

DESIGN EVOLUTION
A finite state model can be used to specify a design
solution for meeting a set of requirements.  The design
model is intended to be an abstraction of the eventual
implementation of a system.  Required behaviors of the
system can be expressed as constraints on a design model.
A model checker can be used to determine whether or not
the model contains paths that satisfy a specific property.
There are three categories of properties that correspond to
set of paths in a model:

• no paths in the model should exhibit the property (i.e.,
a safety property)

• all paths in the model should exhibit the property (i.e.,
an invariance property)

• some paths in the model should exhibit the property
(i.e., a liveness property)

Safety requirements are those properties which none of the
paths in a model satisfy.  To check a model for the absence
on all paths of specific behavior means that effectively all
paths in the model have to be explored.  This corresponds
to our intuitive notion that in order to check for the absence
of a property, then exhaustive testing of all paths for a
safety property is necessary but often infeasible.  An
invariant property is one that all paths in the model must
satisfy.  An invariant property is the logical complement of
a safety property.  Like safety properties, invariant
properties require an effective search of all paths in the
model to determine its presence on all paths.

Version 1: Loss-free ABP
In the loss-free ABP example in Figures 1 and 2, we can
express some requirements as temporal formulae:

�(A0 È �A0)  [R1]

�(B0 È �B0)  [R2]

As stated before, the requirement R1 specifies that the
message A0 is eventually received if sent.  Requirement R2

specifies that an acknowledgement is always received if
sent.  Both properties identify a set of infinite paths in the
computation tree.  Indeed, in the loss-free model both
properties hold for any path in the computation tree.
Furthermore, each path in the computation tree in Figure 2
is an infinite path.  For purposes of test generation,

however, we need only to consider finite paths and fixed
cycles in any model that exhibit the desired properties.
Fortunately, the counter-example mechanism in most
model checkers produce only finite paths and fixed cycles
so that we can reason about properties of finite test traces.

Version 2: Adding Message Loss
Both properties R1 and R2 will be satisfied by exactly the
same paths in the loss-free model because all messages and
acknowledgements are delivered on every path.  An
implementation of the protocol, however, will probably
encounter problems such as message loss and starvation in
realistic environments.  We can add these faults to the
model to reflect more pragmatic conditions.  This means
that there will exist paths in which loss of a message
deadlocks the protocol.  Hence, properties R1 and R2 will
not be satisfied by all paths but only by some paths in the
computation tree.  This situation, however, is desirable
from the viewpoint of generating test cases because all
other paths will satisfy the negation of the property.  These
two sets of paths can be used as different test cases with
which to exercise an implementation.

Given properties that are satisfied by some paths in a
model, we can use the counter-example generation
mechanism to produce test cases for specific behaviors
[16].  We assume that a partial, finite-state model of the
system exists and that system requirements can be stated as
LTL or QRE formulae.  A SPIN model is specified in the
Promela language as a finite set of asynchronous,
concurrent processes that interact through shared variables
and communication channels (a special case of shared
variable).  SPIN translates LTL and QRE formulae into
Büchi automata [28] to determine if a behavior is contained
in the model (i.e., a path exists in the computation tree).  If
the Büchi automata terminates or ends in an accepting state
or cycle1, then the search succeeds (the property was
discovered).  To search for the violations of properties such
as R1, the property is negated and then converted to the
Büchi automata. If ÀR1 terminates or occurs infinitely often
in a cycle, this means that a path in the model exists such
that A0 is never received.  Furthermore, SPIN will produce
this path as a counter-example and others paths if they exist
that exhibit the same property.  For example, SPIN will
produce the sequence of events (where a double underline
means that a message is lost):

B1È A1 È B1 È B1 È B1  È … B1 …

as a counterexample path that violates the property R1 (i.e.,
satisfies the property ÀR1).  In this case, the system will
deadlock because the acknowledgement message B1 from
the receiver is always lost.  Conversely, the cycle

B1 È A1* È B1 È A0 È B0 È A1 È repeat from *

satisfies R1.  All paths in the computation tree satisfy either

                                                       
1 An accepting cycle is a cycle in which an accepting state
occurs infinitely often.
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Figure 1:  State machines for sender and receiver using alternating bit protocol (ABP)

Figure 2: Infinite, joint computation tree for ABP example (without loss)

Figure 3: Modified sender with timeouts for retransmissions
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R1 or ÀR1.  This partitions the computation tree into two
types of paths.  If we modify the receiver to lose messages

as well, then we can also partition the computation tree in
two partitions relative to properties R2 and ÀR2.  By
combining these properties and their negations pair-wise,
we can construct four partitions on the computation tree:

R1∧R2, R1∧ÀR2, ÀR1∧R2, and ÀR1∧ÀR2

These cases represent a complete cover of disjoint2

partitions on infinite paths in the computation tree relative
to the requirements R1 and R2.  Some of these partitions
will be empty because they are logically inconsistent.  For
instance, the partition R1∧ÀR2 is empty because it is
impossible for all sent messages to be received on paths on
which acknowledgements are lost.  Only the first and last
partitions above are non-empty in this case.  From a design
perspective we can use model checking to confirm which
partitions are empty and non-empty to ensure that a model
expresses our intentions.  If a partitioning analysis on a
model does not satisfy our required behavior, we can refine
the model until we achieve the desired coverage [29].

Version 3: Avoiding Loss using Retransmissions
In the previous section, the behavior expressed by paths in
the non-empty partition ÀR1∧ÀR2 represent those cases in
which messages are lost.  We can use paths in this partition
to elaborate test cases that exercise the implementation
under such fault conditions.  We characterize paths that
belong to partitions such as R1∧R2 as nominal paths
because in general they represent non-fault cases.  We
characterize other partitions and paths in them as off-
nominal when they exhibit fault or error conditions.  Non-
empty partitions that exhibit off-nominal behaviors are
useful for generating "stress" tests on the implementations.

We can address the issue of loss in the model by further
modifying the sender machine to include retransmissions
upon timeout. Figure 3 shows another version of the sender
with timeouts that permit retransmissions.  But this does
not eliminate the problem of lost messages.  The partition
ÀR1∧ÀR2 is still non-empty.  This is because messages may
always be lost.  This is a realistic case since network links
break and sites often fail in distributed systems.  Most
model checkers eliminate the problem of infinite loss of
messages (usually caused by starvation of a process in the
model) by allowing specific events to occur infinitely often
within all cycles of the computation tree.  This approach,
called fairness, eliminates cases where a message is always
lost by specifying that eventually a message is delivered
after a finite number of retransmissions.  As testers,
                                                       
2 The proof that CCC partitions are disjoint is by
contradiction: assume that a path P satisfies at least two
coverage properties C1 and C2.  But C1 and C2 will differ
on at least one requirement and its negation by definition of
the CCC set.  A path cannot satisfy a requirement and its
negation.  Therefore, the assumption is false and CCC
partitions must describe disjoint sets of paths in the model.

however, we are interested in the generation of test cases
that will exercise all types of nominal and off-nominal
execution behaviors including infinite loss.  In practice, we
will use fairness only during formal analysis, but we
disable fairness mechanisms intentionally to generate test
oracles for off-nominal partitions.

The above scenario involves the evolution of a design
model based on the examination of partitions in the
computation tree.  If an implementation is being coded in
parallel with this specification, we can use the model to
reason about expected and unexpected behaviors that
should or should not be handled by the implementation.  In
this case, the model helps us identify two important
behaviors: paths in which messages are eventually
delivered and those which deadlock due to infinite loss.  In
the next sections, we describe a method for automatically
generating test oracles that force an implementation to
exercise paths in specific partitions.  For off-nominal cases
such as infinite loss, a successful test might mean that an
implementation of the ABP system fails on a timeout
condition rather than deadlock.  Model checking allows us
to identify the complete test space and automatically
construct and maintain a complete and disjoint test cover
even as the model specification and implementation
evolves.

AUTOMATED TESTING USING MODEL
CHECKING
In this section, we demonstrate that we can co-evolve a
model and its implementation so that they are in fidelity
with one another during development.  This is
accomplished through iterative analysis and refinement of
the model so that the partitions of a computation tree are
empty and non-empty as expected by the designer.  Next,
we can automatically generate test oracles for each partition
even after a model is changed.  Each oracle can be used to
force the implemented system into a specific behavior and
check if the system behaves within the bounds of the
partition expected by the oracle.  If the code does not
behave according to the model, this reveals an error in
either the model or the implementation.  Each failure must
be examined individually to determine the source of the
inconsistency.  By resolving these inconsistencies, we can
keep the model and code in fidelity during development,
better leverage the benefits of formal analysis on the model,
and reduce the cost of testing.

Most model checkers include mechanisms for producing

Partition
number

Conjunctive complementary closure
(CCC)

1 R1 R2

2 R1 ÀR2

3 ÀR1 R2

4 ÀR1 ÀR2

Table 1: Equivalence partitions on R1,R2
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counter-examples if some paths in a computation tree
exhibit a given property.  The SPIN [16], Murphi [14], and
SMV model checkers [30], for example, will produce
counter-examples when paths exist in the computation tree
that violate assertions or satisfy temporal formulae.  Using
this mechanism, we can purposely cause the SPIN model
checker to generate counter-examples on demand for a
given coverage property.  The SPIN model checker will
produce finite paths or fixed cycles that exhibit a given
property if it exists in the computation tree.  These counter-
examples serve as test templates for test oracles that drive
and verify an actual test sequence on an implementation.
By composing these templates into a new finite-state
machine, we can create a test oracle that monitors test
executions for specific patterns of behavior and can also be
used to drive the test process.  Our test process is illustrated
in Figure 4.  The next sections describe this process in
detail.

Equivalence Partitioning
Test analysts use equivalence partitioning on the input
space of a program to minimize the number of tests needed
to cover all expected behaviors of a software system under
test [21].  Creating partitions, however, is usually an
informal and difficult task.  Traditionally, the input space is
partitioned roughly into overlapping subsets based on some
categorization of the expected output behavior of the
program under test.  In white-box testing, the expected
behavior includes the intermediate values of internal
variables as shown in the execution trace during the test.

Our approach involves partitioning paths in a computation
tree based on combinations of requirements and their
logical complements.  The requirements are encoded as
LTL formulae and quantified regular expressions.  We
construct a partitioning based the conjunction of all
requirements and their complements as shown in Table 1.
This partitioning is called the conjunctive complementary
closure (CCC) of a set of requirements.  Each combination
is called a coverage property because it describes a unique
set of paths.  In general, the number of partitions is 2n but
some partitions will be empty depending on conflicts
between requirements.  For example, the two requirements
R1 and R2 in the ABP example form a complete cover of
the computation tree comprised of four disjoint partitions,

two of which are empty.  While the partitions created by a
CCC are disjoint, this only applies to complete paths in the
computation tree.  Finite prefixes of paths may fall into one
or more partitions.

Given a state-model written in Promela and a coverage
property, we first use SPIN to produce a validator (step 1 in
Figure 4).  A validator is an executable model checker for a
given coverage property (called a "pan" file in SPIN).
When executed, a validator will produce a set of counter-
example paths, called trail files, for a particular coverage
property (step 2 in Figure 4).  A trail file represents a single
counter-example comprised of a path in the partition that
exhibits the partition’s behavior.    SPIN can produce
multiple trail files by supplying a command line argument
to the validator to produce up-to a specified maximum
number of counter-examples if found.

Test Oracle Generation
For each validator, we can produce an oracle (step 3 in
Figure 4).  This is accomplished by extracting the joint
finite state machine from the validator using a command
line option.  This joint machine is a union of state machines
for all processes in the model specification including the
Büchi automata.  From this extracted machine, we produce
an oracle FSM (OFSM).  The OFSM will serve as both a
test driver and oracle for that partition.

Next, the OFSM reads the trail files produced by the
counter-example mechanism for that partition and marks all
paths in the state machine that are traversed by any trail
file.   The reason for the state marking is so that when the
oracle acts as a driver, it can follow paths in its state
machine that lead to behaviors contained in the oracle's
partition.  Without this information, the oracle does not
know which path to take at non-deterministic points in the
FSM to reach an accepting state.

For example, consider the branch point at which an oracle
for the sender must decide whether to send a message or
induce a message loss.  In this case, the receiver is the unit-
under-test and the oracle is acting as the sender.  The oracle
wishes to test for infinite loss conditions.  At the branch
point, the oracle can either send a message or cause the loss
of a message.  If it chooses the latter, it returns to the same
state and can eventually deliver the message to the receiver.

Figure 4: Formal testing process diagram
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But if we mark only paths of infinite loss, the oracle will
always cause infinite loss.  The implementation should
eventually timeout and abort under such conditions.  This
would constitute a "successful" stress test of the
implementation.

Test Execution
Before test execution, we must first identify what processes
in the implementation represent the units-under-test
(UUTs) and which processes will be represented by the
OFSM.  In an external file, we keep an association list of
driver actions and checks for each transition event in the
model (step 4 in Figure 4).  When the oracle needs to
execute an action to drive a test or check for the occurrence
of an event, it looks up the action to execute based on the
transition event in the model.  For example, the SPIN event
A0 might be associated with a procedure call in the action
file that sends a packet or generates a bus event.

This approach implies the existence of a sophisticated test
environment that drives UUTs by sending them events and
can monitor responses from UUTs.  It also assume
assertions and monitoring must be embedded in the code to
examine intermediate events and values during execution.
Our case studies based on this approach have either
employed a form of software bus [31], involved snooping
messages in network-based distributed systems, or on
advanced bus-based spacecraft implementations [32].
When a test execution fails to terminate in an acceptable
state, it may be that an intermediate event or value was not
captured.  The oracle can detect this, but the fix may be to
insert the necessary assertions or monitoring statements to
complete the test run.  This is a further aid in keeping
fidelity between the model and code during development
because it makes programmers consider where in their code
they must insert such mechanisms in order to test their
components relative to the system model.  In addition, we
are currently exploring generic techniques for scaffolding
other software architectures and patterns that are not based
on message handling systems.

Finally, when the action file is complete, each OFSM can
be configured with information about the UUTs and tests
for that partition can be executed (step 5 in Figure 4).  Each
OFSM will check for conditions, receive events, and
generate events for all acceptance sequences marked in its
state machine.  If the behavior of the UUTs deviates from a
specific sequence but remains within the acceptance path of
any other path in the partition space for that oracle, the
oracle continues to execute the test.  However, if the
behavior of the UUTs leaves diverts from the acceptance
paths in the partition space or terminates in a non-accepting
state, the oracle flags a test failure and produces a counter-
example of its own for the errant test run.

Since there may be multiple valid paths in a partition, an
oracle can be executed several times to force the behavior
of different marked paths. Each test execution results in a
test trace that records the actual path of the OFSM
oracle/driver and UUTs during each path execution.  These

test traces can be analyzed off-line to verify their
membership in a particular partition (or not).  Traces are
also used to minimize re-testing efforts as described in the
next section.

Re-Testing
One of the major benefits of this approach is that the entire
test suite can be regenerated when the model changes.
Additional actions may need to be specified in the action
file, but all trail files and OFSMs can be regenerated
automatically.  No other steps are needed to restructure test
cases or reprogram oracles based on changed
specifications.  Additional requirements will cause
repartitioning to occur based on new coverage properties.
Relative to design model changes, however, changes and
additions to the requirements are less frequent.

In addition, we can economize testing by marking paths in
the new OFSMs that have been executed in previous
OFSMs (step 6 in Figure 4).  Assume that the design space
of a model is partitioned into OFSMs P1, P2, … Multiple
executions of oracle/driver Pi will produce test traces T1,1,
T1,2, …, T2,1, T2,2, …  If the model is changed to yield new
partition oracles P1’, P2’, … then we can mark paths in Pi’
that have been tested by oracle Pi.  This is done by marking
paths in Pi’ that correspond to sequences recorded in test
traces Ti,1, Ti,2, …  If a previous test trace does not
correspond to any sequence in the new OFSM, then it is
discarded since similar behaviors will have to be re-tested
as a result of model changes.  This re-test minimization
process identifies new paths created by model changes and
assumes that the implementation remains unaltered.  We
are still exploring the use of code coverage analysis
methods to minimize re-testing partition paths based on
changes to the source code.

Consider the change to the ABP model when we added
retransmissions based on timeouts.  We can mark paths in
the new FSM with traces created by the oracle for the
coverage property R1^R2 in the loss-free model.  In a
subsequent test run of the R1^R2 oracle, loss-free paths
would not be tested because they still exist in the partition
on the new model.  Instead, paths in the R1^R2 partition that
contain finite lost messages would be tested first.

AN EXAMPLE
We have employed this approach on some simple graphical
user interface (GUI) programs via a GUI testing tool called
JavaStar [33].  JavaStar is able to act as a test environment
for user interface applications written in Java.  The
generated OFSM takes the form of a script that calls on
other JavaStar procedures to exercise events on the
graphical components of the application.  The OFSM
exercises sequences of events that represent coverage
properties of the test space.

The canonical JavaStar application is a tool that displays
entries in a database of addresses.  The GUI is comprised of
a record display along with buttons for opening a database
(OPEN), saving a database (SAVE,SAVEAS), closing a
database (CLOSE), adding a new record (ADD), removing
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a record (REMOVE), clearing the record display
(CLEAR), and finding an entry by name (SEARCH).  A
state model of this system consists of two processes: a data
store and the user interface.  Some requirements for the
system include the following formulae:

�(AddRecord(x) È �FindRecord(x))

�(RemoveRecord(x) È À�FindRecord(x))

These properties represents a nominal behaviors, because it
is not always true that an added record can be found or a
removed record cannot be found.  This is because the user
could REMOVE the added record or ADD a removed
record before a subsequent SEARCH operation.  It is
unimportant that all paths in the model do not satisfy these
properties.  It is important, however, that we identify and
understand the sources of off-nominal cases.  Such cases
are valuable test cases for stress testing an implementation.
For the two formulae shown, our model quickly identifies
the non-empty partitions for all cases.  We then construct
oracles for these partitions to see if

1. A record can be added to the database and then search
for;

2. A record can be removed from the database, searched
for an not found (i.e., an error message must appear in
a window);

3. A record can be added to the database, removed, and
not found in a subsequent search;

4. A record can be removed from the database, added
again, and successfully found;

5. A record can be added to the database and then the
database can be closed.

The technique is also useful for checking that a modified
database is saved before closed (i.e., an error message
appears in a window asking the user if they really want to
quit and lose new records).  We have found that the use of
model checking allow us to organize the many confusing
interactions of features into orderly test cases.  While we
are not able to exhaustively test all cases, the partition
oracles provide an understanding of the complete test
space.

The JavaStar tool is an environment that is highly amenable
to our approach since it relies on test scripts (.jst files) that
can contain sub-test procedures that drive events (e.g.,
simulate button clicks) and check for conditions of display
values (e.g., the result displayed in a text field).  We are
able to generate non-trivial OFSMs for non-empty
partitions that completely exercise an application relative to
the stated high-level requirements.

PREVIOUS WORK
We previously used a manual version of this technique on
the specification and implementation of the Reliable
Multicast Protocol (RMP) [34].  We manually constructed
test oracles using counter-example paths produced by the
Murphi model checker.  In this case, we hand-crafted test

scenarios for classes of paths that we were interested in
testing.  If the model changed, we had to compare
differences in the new counter-examples with the old
counter-examples and manually update the scripts.  The
addition of the action file for mapping SPIN events (i.e.,
assignments, message sends and receives, checks for
conditions) to test driver actions was a tremendous help.

One of the early conceptual barriers in our work was the
initial and incorrect assumption that the all paths on the
model had to satisfy all safety, invariant and liveness
properties.  When we relaxed this assumption, it made
sense that model checking should help us explore the
design space and generate unique test cases, rather than
ensure complete correctness of a design.  It also helped to
remove “artificial” assumptions and simplifying
assumptions in the model that corrupt fidelity with the
implementation.  The models we build are easier because
they are naïve: they exhibit race conditions, starvation, and
deadlock problems on some paths.  We eventually realized
that identification and classification of these paths in oracle
partitions was important to the test and analysis process.

CONCLUSIONS
Our method has already been proposed for organizing test
suites on several new projects that employ a message-based
architecture and whose specifications contain complex state
machines in several subsystems.  Like the GUI example,
the use of LTL and QRE partitioning allows the
surreptitious discovery of interest cases that designers did
not consider a priori.  Formal analysis.  This reinforces
some of our previous work that shows that formal methods
are not so valuable for the analysis they render, but rather
the incremental understanding of the problem space that
they let the designer explore prior to and during
implementation [22].

Our approach is most effective on the development of
control systems and communication protocols with state-
based design specifications and requirements.  Although we
assume that a state-based model exists a priori, we feel that
this is not an unreasonable assumption given the
proliferation of state-based modeling techniques in use.
We are exploring the use of our method in conjunction with
functional approaches by using similar methods for
expansion of test cases along branches of proof trees
produced by automated theorem provers.

Testing remains a powerful and intuitive approach to
ensuring the quality and reliability of software, but testing
also has serious limitations.  We believe that by managing
testing via a formal methods we can reap the benefits of
formal analysis on a model that is kept in fidelity with the
code.  The model can be analyzed for invariant and safety
properties that are difficult to test for completely in an
implementation.  The composition of both testing and
formal methods in this manner has great potential since
both approaches complement the strengths and weaknesses
of the other method.
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