Formal Verification of Standards
for Distance Vector Routing Protocols!

KARTHIKEYAN BHARGAVAN, DAVOR OBRADOVIC, and CARL A. GUNTER
Department of Computer and Information Science
University of Pennsylvania

We show how to use an interactive theorem prover, HOL, together with a model checker, SPIN,
to prove key properties of distance vector routing protocols. We do three case studies: correctness
of the RIP standard, a sharp real-time bound on RIP stability, and preservation of loop-freedom
in AODV, a distance vector protocol for wireless networks. We develop verification techniques
suited to routing protocols generally. These case studies show significant benefits from automated
support in reduced verification workload and assistance in finding new insights and gaps for
standard specifications.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks|: Network
Protocols—Protocol Verification; Routing Protocols; C.2.6 [Computer-Communication Net-
works]: Internetworking—Routers; Standards; D.2.4 [Software Engineering]: Software/Program
Verification—Formal Methods; Model Checking; Correctness Proofs; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about Programs—Mechanical Veri-
fication; F.4.1 [Mathematical Logic and Formal Languages|: Mathematical Logic—Mechan-
ical Theorem Proving

General Terms: Design,Verification, Theory,Reliability

Additional Key Words and Phrases: Formal Verification, Routing Protocols, Network Standards,
Distance Vector Routing, RIP, AODV, Interactive Theorem Proving, HOL, Model Checking, SPIN

1. INTRODUCTION

The aim of this paper is to study how methods of automated reasoning can be
used to prove properties of network routing protocols. We carry out three case
studies based on distance vector routing. In each such study we provide a proof
that is automated and formal in the sense that a computer assisted the construc-
tion and checking of the proof using formal mathematical logic. We are able to
show that automated verification of key properties is feasible based on the IETF
standard or draft specifications, and that efforts to achieve automated proofs can
aid the discovery of useful properties and direct attention to potentially trouble-
some boundary cases. Automated proofs can effectively supplement other means of
assurance like manual mathematical proofs and automated testing by identifying
unexpected boundary cases and checking large numbers of cases without the need
for human insight.

1.1 The Case Studies

The first case study proves the correctness of the asynchronous distributed Bellman-
Ford protocol as specified in the IETF RIP standard [Hendrick 1988; Malkin 1994].
The classic proof of a ‘pure’ form of the protocol is given in [Bertsekas and Gallager
1991]. Our result covers additional features included in the standard to improve
real-time response times (e.g. split horizons and poisoned reverse). These features

ITo appear in the Journal of the ACM, 2002

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1-41.

2 : K. Bhargavan, D. Obradovic, and C.A. Gunter

add additional cases to be considered in the proof, but the automated support
reduces the impact of this complexity. Adding these extensions makes the theory
better match the standard and hence also its implementations. Our proof also uses
a different technique from the one in [Bertsekas and Gallager 1991] and provides
additional properties about network stability.

Our second case study provides a sharp real-time convergence bound on RIP in
terms of the radius of the network around its nodes. In the worst case, the Bellman-
Ford protocol has a convergence time as bad as the number of nodes in the network.
However, if the maximum number of links any source needs to traverse to reach a
destination is k (the radius around the destination) and there are no link changes,
then RIP will converge in k timeout intervals for this destination. It is easy to see
that convergence occurs within 2- (k—1) intervals, but the proof of the sharp bound
of k is complicated by the number of cases that need to be checked: we show how
to use automated support to do this verification, based on the approach developed
in the previous case study. Thus, if a network has a maximum radius of 5 for each
of its destinations, then it will converge in at most 5 intervals, even if the network
has 100 nodes. Assuming the timing intervals in the RIP standard, such a network
will converge within 15 minutes if there are no link changes. Our main goal is to
show how automated support can cover real-time properties of routing protocols.

Our third case study is intended to explore how automated support can assist
new protocol development efforts. We consider a distance vector routing protocol
arising from work at MANET, the IETF work group for mobile ad hoc networks.
The specific choice is the Ad-Hoc On-Demand Distance Vector (AODV) protocol
of Perkins and Royer [1999], as specified in the second version of the IETF Internet
Draft [Perkins and Royer 1998]. This protocol uses sequence numbers to protect
against the formation of loops, a widely noted shortcoming of RIP. A sketch of a
proof that loops cannot form is given in [Perkins and Royer 1999]. We show how
to tighten some of the AODV conditions and derive this property from a general
invariant for the paths formed by AODV. We use this invariant to analyze some
conditions concerning failures that are not fully specified in [Perkins and Royer 1998]
but could affect preservation of the key invariant if not treated properly. Issues from
our analysis and that of others enabled these problems to be addressed in subsequent
AODV drafts. Our primary conclusion is that the automated verification tools can
aid analysis of emerging protocol specifications on acceptable scales of effort and
‘time-to-market’.

1.2 Verification of Networking Standards

Automated logical reasoning about computer systems, widely known as formal
methods, has been successful in a number of domains. Proving properties of com-
puter instruction sets is perhaps the most established application and several major
hardware vendors have programs to do modeling and verification of their systems
using formal methods. Another area of success concerns safety critical devices.
For instance, [Heitmeyer et al. 1998] studies invariants of a weapons control panel
for submarines modeled from the contractor design documents. The study led to
a good simulator for the panel and located some serious safety violations. The
application of formal methods to software has been a slower process, but there
has been noteworthy success with avionic systems, air traffic control systems, and

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 3

others. One key impediment in applying formal methods to non-safety-critical sys-
tems concerns the existence of a specification of the software system: it is necessary
to know what the software is intended to satisfy before a verification is possible.
For many software systems, no technical specification exists, so the verification of
documented properties means checking invariants from inline code comments or
examples from user manuals.

An exception to this lack of documentation is software in the telecommunications
area, where researchers have a penchant for detailed technical specifications. RIP
offers a case study in motivation. Early implementations of distance vector routing
were incompatible, so all of the routers running RIP in a domain needed to use the
same implementation. Users and implementers were led to correct this problem by
providing a specification that would define precise protocols and packet formats.
We find below that the resulting standard [Hendrick 1988; Malkin 1994] is precise
enough to support, without significant supplementation, a detailed proof of correct-
ness in terms of invariants referenced in the specification. The proved properties
are guaranteed to hold of any conforming implementation and of any network of
conforming routers. RIP is perhaps better than the average in this respect, since
(1) the standard seeks to bind itself closely to its underlying theory, (2) distance
vector routing is simpler than some alternative routing approaches, and (3) at this
stage, RIP is a highly seasoned standard whose shortcomings have been identified
through substantial experience. This is not to say that RIP was already verified by
its referenced theory. There are substantial gaps between [Hendrick 1988; Malkin
1994] and the asynchronous distributed protocol proved correct in [Bertsekas and
Gallager 1991]: the algorithm is different in several non-trivial ways, the model is
different, and the state maintained is different. Our analysis narrows this gap and
extends the results of the theory as applied to the standard version of the protocol.

It is natural to expect that newer protocols, possibly specified in a sequence of
draft standards, will have more gaps and will be more likely to evolve. Useful ap-
plication of formal methods to such projects must ‘track’ this instability, locating
errors or gaps quickly and leveraging other activities like revision of the draft stan-
dard and the development of simulations and implementations. To test this agility
for our tools and methods we extended our analysis of RIP to newer applications of
distance vector routing in the emerging area of mobile ad hoc networks. Ad hoc net-
works are networks formed from mobile computers without the use of a centralized
authority. A variety of protocols are under development for such networks [Royer
and Toh 1999], including many based on distance vector routing [Perkins and Bhag-
wat 1994; Chiang 1997; Murthy and Garcia-Luna-Aceves 1996; Perkins and Royer
1999]. Requirements for a routing protocol for ad hoc networks are quite different
from those of other kinds of networks because of considerations like highly variable
connectivity and low bandwidth links. Given the rapid rate of evolution in this
area and the sheer number of new ideas, it seems like an appropriate area as a test
case for formal methods as part of a protocol design effort.

1.3 Verification Attributes of Routing Protocols

There have been a variety of successful studies of communication protocols. For
instance, [Mitchell et al. 1998] provides a proof of some key properties of SSL 3.0
handshake protocol [Freier et al. 1996]. However, most of the studies to date have

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 : K. Bhargavan, D. Obradovic, and C.A. Gunter

focused on endpoint protocols like SSL using models that involve two or three
processes (representing the endpoints and an adversary, for instance). Studies of
routing protocols must have a different flavor since a proof that works for two or
three routers is not interesting unless it can be generalized. Routing protocols
generally have the following attributes, which influence the way formal verification
techniques can be applied:

(1) An (essentially) unbounded number of replicated, simple processes execute con-
currently.

(2) Dynamic connectivity is assumed and fault tolerance is required.

(3) Processes are reactive systems with a discrete interface of modest complexity.

—~~
N
SN

Real time is important and many actions are carried out with some timeout
limit or in response to a timeout.

Most routing protocols have other attributes such as latencies of information flow
(limiting, for example, the feasibility of a global concept of time) and the need to
protect network resources. These attributes sometimes make the protocols more
complex. For instance, the asynchronous version of the Bellman-Ford protocol is
much harder to prove correct than the synchronous version [Bertsekas and Gallager
1991], and the RIP standard is still harder to prove correct because of the addition
of complicating optimizations intended to reduce latencies.

In this paper we verify protocols using tools that are very general (HOL) or tuned
for the verification of communication protocols (SPIN). The tools will be described
in Section 2, and an overview of routing protocols including RIP and AODV is
provided in Section 3. The rest of the paper consists of the three case studies. We
describe a proof of the correctness of RIP in Section 4, proof of a sharp real-time
bound on convergence of RIP in Section 5, and proof of path invariants for AODV
in Section 6. We offer some conclusions and statistics in the final section.

2. APPROACHES TO FORMAL VERIFICATION

For centuries mathematicians have worked on techniques for verifying that algo-
rithms have the properties they are expected to have. Instantiations of algorithms
in standardized protocols and their implementation on computers is a more recent
phenomenon. While traditional mathematical techniques are extremely valuable in
this new context, there are some noteworthy changes. First, the implementations
of protocols can be automatically tested using computers. This improves the like-
lihood that the protocol and its implementation achieve the desired results, even
when a full mathematical proof is missing. Second, the complexity of the protocol,
and especially its implementation, make mathematical proof of correctness difficult.
Given the second change, it is tempting to skip mathematical proofs and rely on
the advantages brought by the first change. Since testing does not cover all cases
in the way a mathematical proof does, this reduces the level of assurance that the
protocol and implementation have the desired properties. A happy alternative is
one in which automated analysis techniques enable mathematical verification.
Automated proofs of protocols fall into three general categories. The first can be
seen as an extension of testing wherein automated support is used to create tests
that, in essence, include all possible cases, thus providing a proof of correctness.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 5

Automated tools supporting this approach are often called model checkers. The
second can be seen as a formalization of mathematics wherein logic is used to
characterize mathematical reasoning, and automated formal support is used to aid
the creation and checking of proofs. Automated tools supporting this approach are
often called theorem provers. A third category is one in which exhaustive testing
can be achieved in limited cases. This can improve testing by enabling better
coverage, or, if supplemented by suitable mathematical arguments, it can even
provide a complete proof of correctness. This third category can be supported by a
combination of ‘manual’ mathematical reasoning, automated model checking, and
automated theorem proving.

Computer protocols have long been the targets of verification efforts. Protocol
design often introduces subtle bugs that remain hidden in all but a few runs of the
protocol, but might lead to serious operational failures. In this section, we discuss
the complexities involved in verifying network protocols and propose automated
tool support for this task. As an example, we consider a simple protocol for leader-
election in a network. A variant of this protocol is used for discovering spanning
trees in an extended LAN [Perlman 1985; 1992].

The network consists of n connected nodes. Each node has a unique integer id.
The node with the least id is called the leader. The aim of the protocol is for every
node to discover the id of the leader. To accomplish this, each node maintains a
leader-id: its own estimate of who the leader is, based on the information it has so
far. Initially, the node believes itself to be the leader. Every p seconds, each node
sends an advertisement containing its leader-id to all its neighbors. On receiving
such an advertisement, a node updates its leader-id if it has received a lower id in
the message.

The above protocol involves n processes that react to incoming messages. The
state of the system consists of the (integer) leader-ids at each process; the only
events that can occur are message transmissions initiated by the processes them-
selves. However, due to the asynchronous nature of the processes, the message
transmissions could occur in any order. This means that in any period of p sec-
onds, there could be more than n! possible sequences of events to which the system
must react. It is easy to see that manual enumeration of the potential event or
state sequences becomes impossible as n is increased. For more complex protocols,
manually tracing the path of the protocol for even a single sample trace becomes
tedious and error-prone. Automated support for this kind of analysis is clearly
required.

A well-known design tool for protocol analysis is simulation. However, to simulate
the election protocol, we would first have to fix the network size and topology, and
then specify the length of the simulation. Finally, we can run the protocol and
look at its trace for a given initial state and a single sequence of events. This
simulation process, although informative, does not provide a complete verification.
A verification should provide guarantees about the behavior of the protocol on all
networks, over all lengths of time, under all possible initial states and for every
sequence of events that can occur.

We discuss two automated tools that can help provide these guarantees. First,
we describe the model checker SPIN, which can be used to simulate and possibly

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 . K. Bhargavan, D. Obradovic, and C.A. Gunter

Table I. Leader Election in Promela

#define NODES 3

#tdefine BUF_SIZE 1

chan input[NODES] = [BUF_SIZE] of {int};
chan broadcast = [0] of {int,int};

int leader_id[NODES];

proctype Node (int me; int myid){
int advert;
leader_id[me] = myid;

do
:: input[me]?advert ->
if
:: advert < leader_id[me] ->
leader_id[me] = advert
: else -> skip
fi
:: true -> broadcast!me,leader_id[me]
od

verify the protocol for a given network (and initial state). We then describe the
interactive theorem prover HOL, which, with more manual effort, can be used to
verify general mathematical properties of the protocol in an arbitrary network.

2.1 Model Checking Using SPIN

The SPIN system (netlib.bell-labs.com/netlib/spin/whatispin.html) has
been widely used to verify communication protocols. The SPIN system has three
main components: (1) the Promela protocol specification language, (2) a protocol
simulator that can perform random and guided simulations, and (3) a model checker
that performs an exhaustive state-space search to verify that a property holds under
all possible simulations of the system [Holzmann 1991; 1997].

To verify the leader-election protocol using SPIN, we first model the protocol in
Promela. A Promela model consists of processes that communicate by message-
passing along buffered channels. Processes can modify local and global state as a
result of an event. The Promela process modeling the leader-election protocol at a
single node is as given in Table 2.1. We then hard-code a network into the broadcast
mechanism and simulate the protocol using SPIN. SPIN simulates the behavior of
the protocol over a random sequence of events. Viewing the values of the leader-ids
over the period of the simulation provides valuable debugging information as well
as intuitions about possible invariants of the system.

Finally, we use the SPIN verifier to prove that the election protocol succeeds
in a 3-node network. This involves specifying the correctness property in Linear
Temporal Logic (LTL) [Manna and Pnueli 1991]. In our case, the specification
simply insists that the leader-id at each node eventually stabilizes at the correct
id. The verifier then carries out an exhaustive search to ensure that the property
is true for every possible simulation of the system. If it fails for any allowed event

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 7

Table II. State Update Function

function Update (state, sender, receiver, mesg, node):int =
if node = receiver then
if mesg < state(receiver)
then mesg else state(receiver)
else state(node)

sequence, the verifier indicates the failure along with the counter-example, which
can be subsequently re-simulated to discover a possible bug.

2.2 Interactive Theorem Proving Using HOL

The HOL Theorem Proving System (www.cl.cam.ac.uk/Research/HVG/HOL) is a
widely used general-purpose verification environment. The main components of
the HOL system are (1) a functional programming language used for specifying
functions, (2) Higher-Order Logic used to specify properties about functions, and
(3) a proof assistant that allows the user to construct proofs of such properties
by using inbuilt and user-defined proof techniques [Gordon and Melham 1993].
Both the programming model and the proof environment are very general, capable
of proving any mathematical theorem. Designing the proof strategy is the user’s
responsibility.

In order to model the leader-election protocol in HOL, we need to model processes
and message-passing in a functional framework. We take our cue from the reactive
nature of the protocol. The input to the protocol is a potentially infinite sequence
of messages. Each process can then be represented by an update function that takes
a message as input and describes how the process state is modified. In our case,
the process state consists of an integer representing the current leader computed
by the node. The state of the entire system is then updated in accordance with
the function at each node, as shown in Table 2.2. Note that the generality of the
programming platform allows us to define the protocol for an arbitrary network in
a uniform way.

We then specify the property that we desire from the protocol as a theorem that
we wish to prove in HOL.

THEOREM 2.1. Eventually, every node’s leader-id is the minimum of all the node
1ds in the network.

In order to prove this property, we prove three lemmas, all of which can be easily
encoded in Higher-Order Logic.

LEMMA 2.2. At each node, the leader-id can only decrease over time.

LEMMA 2.3. If the state of the network is unchanged by a message from node ny
to node ny as well as a message from no to ny, the leader-ids at ny and ny must be
the same.

LEMMA 2.4. Once a node’s leader-id becomes correct, it stays correct.

Finally, we construct a proof of the desired theorem. The proof assistant organizes
the proof and ensures that the proofs are complete and bug-free. We first prove
the lemmas by case analysis on the states and the possible messages at each point

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 . K. Bhargavan, D. Obradovic, and C.A. Gunter

in time. Then, Lemmas 2.2 and 2.3 are used to prove that the state of the network
must ‘progress’ until all the nodes have the same leader-id. Moreover, since the
leader node’s leader-id never changes (Lemma 2.4), all nodes must end up with the
correct leader-id. These proofs are carried out in a simple deductive style managed
by the proof assistant.

The above proof is just one of many different proofs that could be developed
in the HOL system. For example, if instead of correctness, we were interested in
proving how long the protocol takes to elect a leader, we could prove the following
lemma. Recall that p is the interval for advertisements.

LeMMA 2.5. If all nodes within a distance k of the leader have the correct leader-
id after t seconds, then all nodes within a distance (k + 1) will have the correct
leader-id within t + p seconds.

In conjunction with Lemma 2.4 this enables an inductive proof of Theorem 2.1.

2.3 Model Checking Vs Interactive Theorem Proving

We have described how two systems can address a common protocol verification
problem. The two systems clearly have different pay-offs. SPIN offers comprehen-
sive infrastructure for easily modeling and simulating communication protocols and
has fixed verification strategies for that domain. On the other hand, HOL offers a
more powerful mathematical infrastructure, allowing the user to develop more gen-
eral proofs. SPIN verifications are generally bound by memory and expressiveness.
HOL verifications are bound by programmer-months.

Our technique is to code the protocol first in SPIN and use HOL to address limits
in the expressiveness of SPIN. This is achieved by using HOL to prove abstractions,
showing properties like: if property P holds for two routers, then it will hold for
arbitrarily many routers. Or: advertisements of distances can be assumed to be
equal to k or k 4+ 1. In addition, we use the abstraction proofs in HOL to reduce
the memory demands of SPIN proofs while ensuring that the SPIN implementation
properly reflects the standard. We give examples of these trade-offs in the case
studies and summarize with some statistical data in the conclusions.

3. DISTANCE VECTOR ROUTING

An internetwork can be viewed as a bipartite graph consisting of nodes represent-
ing routers and networks, and edges representing interfaces. A host attached to a
network sends a packet with a destination network address to a router on its net-
work. This router cooperates with other routers to determine a path for moving the
packet toward its destination. A routing protocol is an algorithm used by routers
to determine such a path. There are many types of internetworks. The connected
Internet operates globally, mainly over wired links. Other kinds of internetworks,
like ad hoc networks of mobile routers on radio links are a topic of current inves-
tigation. In this section, we provide some general background on routing in these
two contexts, then provide background on the two protocols on which this paper is
focused.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 9

3.1 Routing in the Internet

The Internet is broadly organized into collections of networks called Autonomous
Systems (AS’s); an AS may, for instance, be the internetwork of a company, a
university, or an Internet Service Provider (ISP). Routing protocols that are used
between AS’s are called Ezterior Gateway Protocols (EGP’s), while those that run
within the AS’s are called Interior Gateway Protocols (IGP’s). 1GPs fall into two
categories: distance vector routing and link state routing. The principal EGP is
the Border Gateway Protocol (BGP), which is similar to a distance vector routing
protocol.

Distance-vector protocols were among the first to be used in the Internet. In
such protocols, each router maintains, for each destination, the name of an adja-
cent router that is (thought to be) one ‘hop’ closer to the destination and (what
is thought to be) the number of hops to reach the destination. This information
is periodically advertised to adjacent routers, and updated to take account of in-
formation from the advertisements of adjacent routers. The best-known protocol
of this kind is RIP, which is still widely used because of its early inclusion in Unix
operating systems. RIP is described in a series of IETF RFC’s [Hendrick 1988;
Malkin 1993; 1994]. The Enhanced Interior Gateway Routing Protocol (EIGRP)
(www.cisco.com/warp/public/103/1.html) is another distance-vector protocol;
it is proprietary to Cisco, a major router vendor. The advantage of distance-vector
routing protocols is their simplicity. RIP is easy to implement correctly, and the
protocol works acceptably well on smaller networks. However, since the network
nodes do not maintain a complete view of the network topology, there are limits to
how much they can know, and hence take advantage of, about the available paths
to a destination. In particular, the information available in RIP is so minimal
that the protocol is unable to avoid slow convergence to correct routes when the
internetwork is partitioned by failures.

Link state protocols are based on the idea that each router advertises the state
of its links to other routers. As this information flows into a given router, it is used
to create a map of the complete topology of the internetwork (that is, the collection
of networks covered by the protocol, such as those of a given AS). This information
is used to calculate complete routes and determine the correct next hop for moving
a packet toward its destination. The most widely used link state protocol is the
IETF Open Shortest Path First (OSPF) [Moy 1994]. Another important link state
protocol is ISO’s IS-IS [ISO 8473 1990]. While providing routers with global link
information is useful in determining good routes, there is significant complexity
involved in the sub-protocol that propagates the link states. OSPF, for instance,
is one of the most complex of all RFCs.

BGP [Rekhter and Li 1995] is the dominant routing protocol between AS’s in the
Internet. It is a kind of distance-vector protocol in which advertisements describe
complete routes (rather than just hop count) and the selection of a best route by a
router for an AS is a function of both the policies of the AS and the best route as
determined by its neighbors. That is, BGP allows distance metrics based on hop
count to be overridden by policy-based metrics. This flexibility leads to potential
short-comings. In particular, Varadhan et al. [1996] demonstrated circumstances
in which routes to a given destination oscillate. Such behavior is undesirable in

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 . K. Bhargavan, D. Obradovic, and C.A. Gunter

routing protocols. The extent to which it is a potential problem for BGP on the
Internet is not well understood. Griffin and Wilfong [1999] demonstrated that
even if the BGP topology of the Internet were known, it would not be feasible in
principle to decide whether it might display oscillations. Instead, the focus has been
on devising extensions and restrictions of BGP to guarantee convergence. Griffin
and Wilfong [2000] devised a sufficient condition that guarantees the absence of
permanent oscillations in their BGP model and used it to design a convergent
extension of the protocol. Obradovic [2002] refined that result by extending the
model with real-time attributes and establishing bounds on convergence time. Gao
and Rexford [2000] proposed a way to use the provider-customer hierarchy of the
Internet to configure BGP routers in a way that guarantees convergence. Deeper
understanding of the convergence properties of BGP is likely to be a significant
area of investigation over the next few years.

3.2 Routing in Ad Hoc Networks

Routing protocols like RIP make many assumptions about what is reasonable for
the network on which they provide routing. For instance, it is assumed to be ac-
ceptable to exchange routing information periodically and maintain a route for each
destination. These assumptions are justified by the nature of the elements of the
internetwork, which consist principally of high-bandwidth, reliable links between
capable routing elements serving a stable family of hosts. Consider, by contrast,
a collection of mobile computers being used in an application like disaster relief
where a wired infrastructure may be unavailable. Links between devices will be
low-bandwidth and unreliable. Connectivity will be determined by signal strengths
and the link technology (which will be sensitive to noise and obstructions), so the
mobility of the nodes may cause connectivity to be extremely variable. Indeed, links
to neighboring nodes may change every few minutes or seconds. On the other hand,
such a network may not need complete connectivity between each pair of nodes at
all times. In a disaster relief situation, it may be the case that only a few mobiles
need to communicate, rather than every pair. Low bandwidth, unreliability, and
rapidly changing connectivity can therefore be balanced against a potentially mod-
est, demand for end-to-end communication links by the use of on-demand routing.
That is, routes can be determined when they are needed, thus potentially reducing
the overhead of routing control messages.

Because of its simplicity, distance vector routing is a natural choice for routing in
ad hoc networks. AODV [Perkins and Royer 1999; 1998] provides an instantiation
of an on-demand form of distance vector routing that aims to keep control messages
to a minimum. As mentioned earlier, there are a variety of other approaches to
routing in ad hoc networks based on other strategies. These schemes are all grossly
similar in complexity at the current time. AODV is more complex than RIP, not
only because of the on-demand requirement, but also because of state added to
the protocol to protect against loop-formation. These features will be our primary
focus in analyzing the AODV protocol.

3.3 Routing Information Protocol (RIP)

The RIP protocol specification is given in [Hendrick 1988; Malkin 1994] and a good
exposition can be found in [Huitema 1995]. This subsection gives a brief description

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols : 11

of the protocol. Pseudo-code is given in Appendix A. Our analysis is for version 2
of the RIP Internet Standard, but also applies to version 1.

Each router running RIP maintains a routing table. The table contains one entry
per destination, representing the current best route to the destination. Routers
periodically advertise their routing tables to their neighbors. Upon receiving an
advertisement, the router checks whether any of the advertised routes can be used
to improve current routes. Whenever this is the case, the router updates its current
route to go through the advertising neighbor.

Routes are compared exclusively by their length, measured in the number of hops
(i.e. the number of routers on the route). A routing table entry corresponding to
a destination d contains the following attributes:

hops: number of hops to d.

nextRouter: the first router along the route to d (the one that advertised the best
route so far).

nextlface: the interface through which the advertisement from nextRouter was
received. This interface uniquely identifies the next network along the
route and will be used to forward packets addressed to d.

The value of hops must be an integer between 1 and 16, where 16 has the meaning of
infinity—a destination with hops attribute set to 16 is considered to be unreachable.
RIP is not appropriate for AS’s that contain a router and a destination network that
are more than 15 hops apart from each other. The objective behind a relatively low
upper bound on the route length is faster convergence. RIP exhibits a phenomenon
called counting to infinity, discussed in [Hendrick 1988], which permits a worst-
case loop persistence time, and therefore convergence time, proportional to the
maximum allowed route length.

A router advertises its routes by broadcasting RIP packets to all of its neigh-
bors. A RIP packet contains a list of (destination, hops)-pairs. A receiving router
compares its current metric for destination to hops + 1, which is the metric of the
alternative route, and updates its routing entry for the destination if the alternative
route is shorter. There is one exception to this rule: if the advertising router is
the nextRouter in the table of the receiving router, then the receiver adopts the
alternative route regardless of its metric.

Normally, a RIP packet contains information that matches the advertising router’s
own routing table. This rule has an exception too, which is designed to prevent
creation of loops between pairs of routers. The exception essentially prohibits ad-
vertising routes on the interfaces through which they were learned. Simply failing
to advertise routes to the given destination over this interface is called a split hori-
zon. A more proactive approach is to advertise what is called a poisoned reverse
over this interface. Assume that a router r learns a route through an interface
i. Whenever r advertises that route back through the interface i, the poisoned
reverse advertisement sets hops to 16 (infinity). A detailed discussion of these two
optimizations can be found in [Hendrick 1988].

Each routing table entry has a timer expire associated with it. Every time an entry
is updated (or created), expire is re-set to 180 seconds. Routers try to advertise every
30 seconds, but due to network failures and congestion some advertisements may

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 : K. Bhargavan, D. Obradovic, and C.A. Gunter

not get through. If a route has not been refreshed for 180 seconds, the destination
is marked as unreachable and a special garbageCollect timer is set to 120 seconds.
If this timer expires before the entry is updated, the route is expunged from the
table.

3.4 Ad-Hoc On-Demand Distance Vector Protocol (AODV)

The AODV routing protocol is specified in a series of Internet Drafts submitted
to the MANET working group (www.ietf.org/html.charters/manet-charter.
html) at the IETF. An introduction to the protocol is given in [Perkins and Royer
1999]. This subsection describes the AODV routing protocol as specified in the
version 2 Internet draft [Perkins and Royer 1998]. Pseudo-code for the protocol is
given in Appendices B, C.

In AODV, a route to a destination d contains the following fields:

nexty: Next node on a path to d.

hops;: Distance from d, measured in the number of nodes (hops) that need to
be traversed to reach d.

seqno,: Last recorded sequence number for d.

lifetimey: Remaining time before route expiration.

The purpose of sequence numbers is to track changes in topology. FEach node
maintains its own sequence number. It is incremented whenever the set of neighbors
of the node changes. When a route is established, it is stamped with the current
sequence number of its destination. As the topology changes, more recent routes
will have larger sequence numbers. That way, nodes can distinguish between recent
and obsolete routes.

When a node s wants to communicate with a destination d, it broadcasts a route
request (RREQ) message to all of its neighbors. The message has the following
format:

RREQ(hops_to_src, broadcast_id, d, seqno, s, src_seq_no).

Argument hops_to_src determines the current distance from the node that initiated
the route request. The initial RREQ has this field set to 0, and every subsequent
node increments it by 1. The broadcast_id field is a unique integer assigned to each
RREQ originated by s — it is incremented after every RREQ. Argument seqno
specifies the least sequence number for a route to d that s is willing to accept (node
s uses here the last sequence number it recorded for the destination d, namely
seqno,). Argument src_seq-no is the sequence number of the initiating node s.

When a node ¢ receives a RREQ, it first checks whether it has a route to d marked
with a sequence number at least as big as seqno. If it does not, it rebroadcasts the
RREQ with an incremented hops_to_src field. At the same time, ¢t can use the
received RREQ to set up a reverse route to s. This route would eventually be used
to forward replies back to s. If ¢ has a fresh enough route to d, it replies to s
(forwarded via the reverse route) with a route reply (RREP) message which has the
following format:

RREP(hops,, d, seqnoy, lifetime).

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 13

Arguments hops,, seqno,, and lifetime, are the corresponding attributes of ¢’s route
to d. Similarly, if ¢ is the destination itself (¢ = d), it replies with

RREP(0, d, big_seq-no, MY_ROUTE_TIMEOUT).

The value of big_seq_no needs to be at least as big as d’s own sequence number
and at least as big as seqno from the request. Parameter MY_ROUTE_TIMEOUT
is the default lifetime, locally configured at d. Every node that receives a RREP
increments the value of the hops packet field and forwards the packet along the
reverse route to s. When a node receives a RREP for some destination d, it uses
information from the packet to update its own route for d. If it already has a route
to d, preference is given to the route with a higher sequence number. If sequence
numbers are the same, the shorter route is chosen. This rule is used both by s and
by all of the intermediate forwarding nodes. The preference rule is important for
propagating error messages.

In addition to the routing table, each node s keeps track of the active neighbors
for each destination d. This is the set of neighboring nodes that use s as their
nexty on the way to d. If s detects that its route to d is broken, it sends an
unsolicited RREP (error) message to all of its active neighbors for d. This message
contains hops equal to 255 (infinity), and seqno equal to one more than the previous
sequence number for that route. Because of the previously mentioned preference
rule for route selection, such an artificially incremented sequence number forces the
recipients to accept this ‘route’ and propagate it further upstream, all the way to
the origin of the route.

4. STABILITY OF RIP
4.1 Formalization

We model the universe i/ as a bipartite connected graph whose nodes are parti-
tioned into networks and routers, such that each router is connected to at least
two networks. In other words, routers and networks are nodes, while interfaces are
edges. The goal of the protocol is to compute a table at each router providing,
for each network n, the length of the shortest path to n and the next hop along
one such path. The hop count is limited to a maximum of 16, where 16 means
unreachable.

Our proof shows that, for each destination d that is less than 16 hops away from
every router, the routers will all eventually obtain a correct shortest path to d. An
entry for d at a router r consists of three parameters:

hops(r): current estimate of the distance metric to d (an integer between 1 and
16 inclusively).

nextN(r): the next network on the route to d.

nextR(r): the next router on the route to d.

Both r and nextR(r) must be connected to nextN(r). We say that r points to
nextR(r). Initially, routers connected to d must have their metric set to 1, while
others must have it set to values strictly greater than 1. Two routers are neighbors if
they are connected to the same network. The universe changes its state (i.e. routing
tables) as a reaction to update messages being sent between neighboring routers.

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 : K. Bhargavan, D. Obradovic, and C.A. Gunter

Each update message can be represented as a triple (snd, net, rcv), meaning that the
router snd sends its current distance estimate through the network net to the router
rcv. In some cases this will cause the receiving router to update its own routing
entry. An infinite sequence of such messages (snd;, net;, rcv;);>¢ is said to be fair if
every pair of neighboring routers s and r exchanges messages infinitely often:

Vi.3j >i. (snd; = s) and (rev; = 7).

This property simply assures that each router will communicate its routing infor-
mation to all of its neighbors. Distance to d is defined as

D(r) = 1, if r is connected to d
" | 1 +min{D(s) | s neighbor of r}, otherwise.

For k > 1, the k-circle around d is the set of routers
Cr ={r | D(r) <k}.

For 1 < k < 15, we say that the universe is k-stable if the following properties S1
and S2 both hold:

(S1): Every router r € C} has its metric set to the actual distance: that is,
hops(r) = D(r). Moreover, if r is not connected to d, it has its next router set
to the first router on some shortest path to d: that is, D(nextR(r)) = D(r)—1.

(S2): For every router r ¢ Cy, hops(r) > k.

Intuitively, in a k-stable universe, all routers inside C}, have converged to the correct
routes, while those outside may not have received the advertisements that would
allow them to calculate the correct routes. The aim of the routing protocol is to
expand the k-stable circle until all routers are contained in it (k = 15).

Given a k-stable universe, we say that a router r at distance k + 1 from d is
(k 4+ 1)-stable if it has an optimal route: that is, hops(r) = k+ 1 and nextR(r) € Cy.

4.2 Proof Results

Our main goal is to show that a universe running RIP does eventually discover all
the shortest paths of length less than 16:

THEOREM 4.1 CORRECTNESS OF RIP. For any k < 16, starting from an arbi-
trary state of the universe U, for any fair sequence of update messages, there is a
time ty such that U is k-stable at all times t > ty.

In particular, we want to show that 15-stability will be achieved. Note that the
theorem applies to an arbitrary initial state. This is important because topol-
ogy changes could occur during a run of the protocol and leave it in an arbitrary
non-stable state. After each topology change, RIP effectively has to start from
this arbitrary inital state and re-compute all the routing tables. But as long as
these topology changes are not too frequent, Theorem 4.1 applies to the periods in
between, guaranteeing eventual convergence if a period is long enough.

Our proof, which we call the radius proof, differs from the one described in [Bert-
sekas and Gallager 1991] for the asynchronous Bellman-Ford algorithm. Rather
than induction on estimates for upper and lower bounds for distances, we carry

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 15

out induction on the radius of the k-stable region around d. The proof has two
attributes of interest:

(1) It states a property about the RIP protocol, rather than the asynchronous dis-
tributed Bellman-Ford algorithm. Closer analysis reveals subtle, but substantial
differences between the two. In the case of Bellman-Ford, routers keep all of
their neighbors’ most recently advertised metric estimates, whereas RIP keeps
only the best value. Furthermore, the Bellman-Ford metric ranges over the set
of all positive integers, while the RIP metric saturates at 16, which is regarded
as infinity. Finally, RIP includes certain engineering optimizations, such as split
horizon with poisoned reverse, that do not exist in the Bellman-Ford algorithm.

(2) The radius proof is more informative. It shows that correctness is achieved
quickly close to the destination, and more slowly further away. We exploit this
in the next section to show a real-time bound on convergence.

Theorem 4.1 is proved by induction on k. There are four parts to it:
LEMMA 4.2. The universe U is initially 1-stable.

LEMMA 4.3 PRESERVATION OF STABILITY. For any k < 16, if the universe is
k-stable at some time t, then it is k-stable at any time t' > t.

LEMMA 4.4. For any k < 15 and router r such that D(r) = k+1, if the universe
is k-stable at some time ty,, then there is a time t,j > ty such that r is (k+1)-stable
at all times t > t, .

LEMMA 4.5 PROGRESS. For any k < 15, if the universe U is k-stable at some
time ty, then there is a time tgyq > tp such that U is (k + 1)-stable at all times
> tpg1.

Lemma 4.2 serves as the basis of the overall induction. Lemma 4.3 is the fun-
damental safety property, ensuring that once the universe converges to the correct
routes, they stay correct. Lemma 4.4 is the main progress property in the proof
and gets generalized to Lemma 4.5 which is the inductive step.

4.3 Proof Details and Tool Support

First we write RIP models that can be analyzed by SPIN and HOL. The Promela
model of RIP follows directly from the pseudo-code in Appendix A. The process
declaration translates to a proctype, constants become C-style macro constants,
and state is expressed using C-style structs and arrays. All events are expressed
as message events on channels; advertisements are asynchronous messages. The
process body consists mainly of event handlers for the different events guarded by
a case statement and enclosed in an infinite do-loop. The individual event handling
routines are translated into the C-style syntax that Promela uses. We simplify the
model to deal with only one destination and a fixed number of interfaces.

The HOL theory consists of definitions of the routing table and the update func-
tion that modifies the routing table based on received advertisements. These def-
initions extend to a natural definition of the state sequence, which represents the
successive states of all the routers in the universe U/ as the protocol is executed.
Then the network model is defined as a relationship between routers and networks

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 . K. Bhargavan, D. Obradovic, and C.A. Gunter

in Y. Finally k-stability is defined and the correctness theorem and lemmas for-
malized.

Lemma 4.2 is easily proved by HOL: it follows from the definition of k-stability,
and the state sequence induced by RIP. The safety property, Lemma 4.3, is proved
twice: once completely in HOL, and the second time using both HOL and SPIN.
We compare the two proofs statistically in Section 7. To prove this lemma, one
needs to show that a k-stable universe remains k-stable after an arbitrary update
message. Our first HOL proof proceeds by separately verifying that each of the
conditions S1 and S2 remain true after an update. This cannot be directly modeled
in SPIN, since, for instance, the number of routers inside the k-circle is unknown.

However, it turns out that k-stability gives rise to a nice abstraction of the system,
which can be used to encode the system in SPIN. We know that in a k-stable
universe, the k-circle always advertises the distance k to the outside world. On
the other side, all the distances that are advertised to the k-circle from the outside
world are strictly greater than k. Therefore, the k-circle can now be modeled as a
single router that always advertises the distance of k£ hops. The outside world can
be modeled by a process that always advertises arbitrary distances greater than
k. So for the router 7 such that D(r) = k + 1, we can abstract its environment
and replace it with one node representing the k-circle and one process representing
the rest of the outside world. Using this abstraction, the U/ effectively reduces to
three nodes, for all properties that need to be proved about r. In addition, the hop
counts are abstracted to the conditions hops < k+ 1, hops = k+ 1, or hops > k + 1.
So our abstract hop count, abs_hop_cnt € {LT, EQ,GR}, corresponding to which
of the conditions is true of hops.

It is crucial that our abstractions are finitary and property-preserving. An ab-
straction is finitary if it reduces the system to a fixed, finite number of states. It is
property-preserving (with respect to a specific property) if whenever the abstract
system satisfies the property it is also the case that the concrete system satisfies the
property. Finitary abstractions, like the one we have described for RIP, are useful
because they enable proofs using state-space exploration in a model checker. Our
first proof in HOL does not make use of the abstraction and is fairly long, needing
9 intermediate lemmas and 903 steps of deduction. For the second proof, we first
prove in HOL that in a k-stable universe, our abstraction is property-preserving for
the router r at distance k+1. The relationship between the abstract system and the
real system is represented as an invariant of the state at r, and is proved inductively
using key properties of k-stability. This is a fairly large proof as well and re-uses
large chunks of the first HOL proof of Lemma 4.3. However, once the abstraction
is proved correct, we can use it to reduce the universe to a finite 3-process system
that can be model checked in SPIN. Proofs that can be carried out in either tool
are typically done in SPIN, since it provides more automation.

Lemma 4.4, the main progress property in the proof, is proved with SPIN, using
the Lemma 4.3 abstraction again. The proof as a whole illustrates well how ver-
ification can be split between the two systems: we justify the abstractions using
a theorem prover and then we prove the property of the abstract system using a
model checker. These two parts are independent and therefore can be done in par-
allel. Moreover, once a suitable abstraction has been proved, it can often be reused

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 17

to prove many properties.

Lemma 4.5 is the inductive step, which is derived in HOL as an easy generalization
of Lemma 4.4, using the fact that the number of routers is finite. Statistics on the
lengths of the proofs and models are presented in Section 7.

5. SHARP TIMING BOUNDS FOR RIP STABILITY

In the previous section, we proved convergence for RIP under the assumption that
the topology stays unchanged for some period of time. We now calculate how big
that period of time must be. To do this, we need to have some knowledge about the
times at which protocol events must occur. In the case of RIP, we use the following:

Fundamental Timing Assumption. There is a value A, such that during every
topology-stable time interval of the length A, each router gets at least one update
message from each of its neighbors.

This is the only assumption we make about timing of update messages. RIP routers
normally try to exchange messages every 30 seconds; a failure to receive an update
within 180 seconds is treated as a link failure. Thus A = 3 minutes satisfies the
Fundamental Timing Assumption for RIP.

As in the previous section, we will concentrate on a particular destination network
d. Our timing analysis is based on the notion of weak k-stability. For 2 < k < 15,
we say that the universe U/ is weakly k-stable if the following conditions hold:

(WS1): The universe U is (k — 1)-stable.

(WS2): For all routers r on the k-circle: that is D(r) = k, either r is k-stable
(hops(r) = k and nextR(r) € Ck—1), or hops(r) > k.
(WS3): For all routers r outside Cy, (D(r) > k), hops(r) > k.

Weak k-stability is stronger than (k — 1)-stability, but weaker than k-stability.
Conditions WS1 and WS3 are similar to the conditions S1 and S2 for k-stability.
However, we make a distinction for the routers r on the k-circle. The only restriction
on r is that it cannot have the correct hop count (hops(r) = k) and an incorrect
next pointer (nextR(r) ¢ Cj_1). This ensures that r will get the correct route when
it gets the next advertisement from inside Cj. The disjunction in WS2 (which
distinguishes weak stability from the ordinary stability) will typically introduce
additional complexity in case analyses arising from reasoning about weak stability.
As with k-stability, we have the following;:

LEMMA 5.1 PRESERVATION OF WEAK STABILITY. For any 2 < k < 15, if the
universe is weakly k-stable at some time t, then it is weakly k-stable at any time
>t

We must also show that the initial state inevitably becomes weakly 2-stable after
messages have been exchanged between every pair of neighbors:

LEMMA 5.2 INITIAL PROGRESS. If the topology does not change, the universe
becomes weakly 2-stable after A time.

The main progress property says that it takes 1 update interval to get from a
weakly k-stable state to a weakly (k + 1)-stable state. This property is shown in

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 . K. Bhargavan, D. Obradovic, and C.A. Gunter

two steps: first we show that condition WS1 for weak (k + 1)-stability holds after
A:

LEMMA 5.3. For any 2 < k < 15, if the universe is weakly k-stable at some time
t, then it is k-stable at time t + A.

and then we show the same for conditions WS2 and WS3. The following puts both
steps together:

LEMMA 5.4 PROGRESS. For any 2 < k < 15, if the universe is weakly k-stable
at some time t, then it is weakly k + 1-stable at time t + A.

The radius of the universe (with respect to d) is the maximum distance from d:
R =max{D(r) | r is a router}.

The main theorem describes convergence time for a destination in terms of its
radius:

THEOREM 5.5 RIP CONVERGENCE TIME. A wuniverse of radius R becomes 15-
stable within min{15, R} - A time, assuming that there were no topology changes
during that time interval.

The theorem is an easy corollary of the preceding lemmas. Consider a universe of
radius R < 15. To show that it converges in R - A time, observe what happens
during each A-interval of time:

after A weakly 2-stable (by Lemma 5.2)
after 2- A weakly 3-stable (by Lemma 5.4)

after 3- A weakly 4-stable (by Lemma 5.4)

after (R — 1) - A weakly R-stable (by Lemma 5.4)
after R-A R-stable (by Lemma 5.3)

R-stability means that all the routers that are not more than R hops away from d
will have shortest routes to d. Since the radius of the universe is R, this includes
all routers.

An interesting observation is that progress from (ordinary) k-stability to (ordi-
nary) (k+ 1)-stability is not guaranteed to happen in less than 2- A time (we leave
this to the reader). Consequently, had we chosen to calculate convergence time
using stability, rather than weak stability, we would get a worse upper bound of
2-(R—-1)-A. In fact, our upper bound is sharp: in a linear topology, update
messages can be interleaved in such a way that convergence time becomes as bad
as R-A. Figure 1 shows an example that consists of k routers and has the radius k
with respect to d. Router rq is connected to d and has the correct metric. Router
ro also has the correct metric, but points in the wrong direction. Other routers
have no route to d. In this state, ro will ignore a message from r;, because that
route is no better than what ro (thinks it) already has. However, after receiving
a message from r3, to which it points, o will update its metric to 16 and lose the
route. Suppose that, from this point on, messages are interleaved in such a way
that during every update interval, all routers first send their update messages and
then receive update messages from their neighbors. This will cause exactly one new

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 19

rl r2 r3 rk
(OO0
ri r2 r3 rk
(OO~ O=0
rl r2 r3 rk
(OO~ OO
rl r2 r3 rk
ri r2 r3 rk

Fig. 1. Maximum Convergence Time

router to discover the shortest route during every update interval. Router ro will
have the route after the second interval, r3 after the third, ..., and 7y after the
k-th. This shows that our upper bound of k- A is reachable.

5.1 Proof Details and Tool Support

The proof of RIP convergence time is similar in structure to that of RIP correct-
ness described in Section 4. The main result, Theorem 5.5 is broken down into
Lemmas 5.2, 5.4, and 5.1. An abstraction is used to create a finite abstract model
of the universe, for which the Lemmas are proved by model checking in SPIN.

Recall that the abstraction used to prove results about stability, used k-stability
to reduce the universe to a 3-process system: representing those inside the k-circle,
those outside it, and a router on the edge of the circle. Since weak (k + 1)-stability
implies k-stability, the same abstraction is applicable for weak-stability as well. In
addition, we abstract hop counts to abs_hop_cnt € {LT, EQ,GR} as before, repre-
senting hops < k+1, hops = k+1, and hops > k+ 1. This abstraction yields a finite
property-preserving model, for which Lemma 5.1 is proved automatically in SPIN.
Lemma 5.2 is similarly proved, using the abstraction instantiated for £ = 1. For
Lemma 5.4 we extend the abstract hop counts to abs_hop_cnt € {LT,EQ, EQ',GR}
corresponding to hops < k + 1,hops = k + 1,hops = k + 2, and hops > k + 2.
Lemma 5.4 is then proved automatically in SPIN as well, completing the proof.

SPIN turned out to be extremely helpful for proving properties such as Lemma 5.4,
which involve tedious case analysis. To illustrate this, assuming weak k-stability at
time ¢, let us look at what it takes to show that condition WS2 for weak (k + 1)-
stability holds after A time. (WS1 will hold because of Lemma 5.3, but further
effort is required for WS3.)

To prove WS2, let r be a router with D(r) = k + 1. Because of weak k-stability
at the time ¢, there are two possibilities for r: (1) r has a k-stable neighbor, or (2)

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 . K. Bhargavan, D. Obradovic, and C.A. Gunter

all of the neighbors of r have hops > k. To show that r will eventually progress
into either a (k + 1)-stable state or a state with hops > k + 1, we need to further
break the case (2) into three sub-cases with respect to the properties of the router
that r points to: (2a) r points to s € Cy (the k-circle), which is the only neighbor
of r from Cy, or (2b) 7 points to s € C}, but 7 has another neighbor ¢ € C}, such
that ¢ # s, or (2c) r points to s € Cj. Each of these cases, branches into several
further sub-cases based on the relative ordering in which r, s and possibly ¢ send
and receive update messages.

Doing such proofs by hand is difficult and prone to errors. Essentially, the proof
is a deeply nested case analysis in which final cases are straight-forward to prove—
an ideal task for a fully automated model checker. Our SPIN verification is divided
into four parts accounting for differences in possible topologies. These differences
arise from the case analyses similar to the one sketched above. Each part has a
distinguished process representing r and another processes modeling the environ-
ment for r. An environment is an abstraction of the ‘rest of the universe’. It
generates all message sequences that could possibly be observed by r. In order to
simplify the model, our abstraction allows the environment to also generate some
message sequences that are not possible in reality. Such abstractions will still be
property-preserving for ‘all path’ properties, stating that something holds in every
possible run of the system. SPIN considered more cases than a manual proof would
have required, 21,487 of them altogether for Lemma 5.4, but it checked these in
only 1.7 seconds of CPU time. Even counting set-up time for this verification, this
was a significant time-saver. The resulting proof is probably also more reliable
than a manual one. We summarize similar analyses for our other results in the
conclusions (Section 7).

6. AODV LOOP FREEDOM

As mentioned before, loop-freedom is an important property for distance vector
routing protocols. In the context of mobile, ad hoc networking, the topologies are
much more dynamic. As a result, the routing protocol is always in a transient state,
and loop-freedom becomes even more important. Perkins and Royer [1999] sketch
a hand-proof that AODV is loop-free by appealing to the rules by which AODV
routes can be formed. However, it is not clear that the proof applies to the AODV
standard in all its complexity, especially since significant parts of the standard were
still unspecified at the time of that work. We aim to analyze the AODV standard,
version 2, to verify that the routes formed by AODV indeed have no loops.

We first attempt to prove loop-freedom for the simple network shown in Figure 2.
The tool we use for this finite-instance verification is the model checker SPIN. We
write a Promela model of AODV, along the lines of the standard pseudo-code shown
in Appendix B, that SPIN can analyze.

GH—CE—0O

Fig. 2. Sample 3-node Network

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols : 21

We run AODV processes at all 3 nodes—A, B and D. D is the only destination
and both A and B attempt to send data to D. The link B—D is fragile and may
be broken at any time. The challenge to AODYV is to gracefully discover that the
B—D link has broken and there is no longer any route from A or B to D. Note that,
if A and B form a routing loop, they will never discover that D is unreachable. We
model the network and the processes in SPIN and attempt to verify that there is
no sequence of events that can result in a routing loop between A and B.

6.1 Loop Conditions

Let A and B have active routes to D to begin with (Figure 3). When we try to verify
using SPIN that this configuration will never result in a loop between A and B,
SPIN finds a number of counter-examples. On analyzing these counter-examples,
we discover 3 scenarios in which a routing loop will indeed be formed. We describe
the scenarios below as sequences of events that lead to routing loops.

[1]s] [o]s]

BH——E—O

Fig. 3. Initial Routes

LS1. When the link B—D goes down, B generates a RREP with hop count infinity
and increments its sequence number for D. If the RREP gets dropped, and B
deletes its route before A’s route expires, there will be a loop. This scenario is
depicted in Figure 4, and is due to Joshua Broch and Dave Maltz who found it
by manual inspection. It is also found by SPIN automatically.

l2[s] [als] [ofs] L2 s] =[]

|
s
\ /

LinkDown
| 1 el "RREP(2,5)
2] s] [inf]s+] 2] s] [3]5s]

©® ©®

DN J/
) ><’ ” LinkDown(RREP)

Fig. 4. Loop Condition LS1

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 : K. Bhargavan, D. Obradovic, and C.A. Gunter

LS2. Suppose B’s route expires while A is still pointing to it. The standard does
not explicitly say what happens when a route expires. Consider the following

alternatives for an implementation:

a. Suppose B deletes the route on expiry. Then, there is a sequence of events

that lead to a loop as shown in Figure 5.

RouteExpiry

2Xs] [0l 2Ts] [

|
s
\ /

S 7

C

| 1 "~ - - - "RREP(2,5)
l2]s] [-]-] l2]s] [3]s]
(A8 . Ye
@ ® . ® ®

Fig. 5. Loop Condition LS2(a)

b. Suppose B keeps the route, unchanged, as an expired route. Then again, there

will be a loop (Figure 6).

RouteExpiry
[2]s] [X[s] [o]s] [2]s] linf]s]

®

¥ RREQAS) -]
| 11 \\‘—/F/zREp(z,s)
[2]s] [inf [s | [2]s] [3]s]
(A——=(8) & Yo
o I CRC

Fig. 6. Loop Condition LS2(b)

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 23

c. Suppose B keeps the route as an expired route, increments the route’s sequence
number for D, and deletes it after some time. B may even decide to send an
error message to A. Even in this case, there is a sequence of events (Figure 7)
that lead to a loop.

RouteExpiry DeleteTimeout

2[s] [Xs] [ols) 2[5 [-[-]
® ®

'+ RREQ?(s) /|

S 7

| 1 "~ - - - "RREP(2,5)

2] s] [inf s l2[s] [3]s]

R—® ® & Yo ®

/

- X’ LinkDown(RREP)

Fig. 7. Loop Condition LS2(c)

N

d. Finally, suppose B keeps the route as an expired route, increments the route’s
sequence number, and never deletes it. In this case SPIN cannot find a loop.
Since an AODV process has unbounded state, SPIN cannot authoritatively say
that this alternative will produce no loops. However, it is a good indicator that
we have found a loop-free solution.

LS3. Suppose the AODV process at B is restarted suddenly, because of a reboot
following (say) a crash. If A does not detect the restart as a link-breakage, and
continues to point to B, then there will be a loop when B comes back up and
looks for a route to D. This scenario is depicted in Figure 8.

Here, we assume that B restarts in a vanilla state, so this case is essentially
equivalent to one in which all the routes at B suddenly expire and are deleted.
This leads to the problems in case LS2a above.

Each of the scenarios described in this section illustrates gaps in the AODV
standard that allow routing loops to be formed despite the loop-prevention mech-
anisms built into the protocol. However, these counter-examples also indicate the
conditions that must hold for loop-freedom to be guaranteed for AODV.

6.2 Tool Support

In this section, we explain what we mean when we say that SPIN found a counter-
example that demonstrates a loop. We have described earlier in Section 3.4 how
AODV can be specified in a pseudo-code notation. The pseudo-code for AODV is
shown in Appendix B.

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 : K. Bhargavan, D. Obradovic, and C.A. Gunter

l2]s] [1]s] [o]s] l2]s] [-]-]
Reboot
(A X (D) (D
! RREQ? .
NodeDown \\V\\~<9/,Zl
| 1 "~ - - - "RREP(2,5)
l2[s] [3]s]
B ® ®
Il \Y)

Fig. 8. Loop Condition LS3

The Promela model for AODV follows directly from the pseudo-code in Ap-
pendix B. The process definition in the pseudo-code is translated to a Promela
proctype, as in the case of RIP. The main issue that we have to deal with in the
modeling is timing. Promela has no notion of real time, whereas AODV depends
crucially on timeouts that trigger various events. We omit the precise timer values
and make all timeouts non-deterministic events that can take place at any time.
This clearly allows a much larger set of event sequences to occur. Asin RIP, we limit
the AODV Promela process to one destination and a fixed number of neighbors.

After generating a satisfactory Promela model for AODV, we describe the envi-
ronment: the 3-node AODV network. There are 3 processes, named A, B and D.
The destination node is set to D. The neighbor relation is encoded as follows: B is
the only neighbor known to A; A and D are known to B; B is known to D. Each node
is only capable of sending messages to the in-queues of its known neighbors. This
topology can be hard-coded into the processes themselves or can be implemented
by a ‘connections’ process running in parallel that captures all sent messages and
delivers them when appropriate. For a small topology like this one, hard-coding
has significant performance advantages in SPIN.

To denote the fragility of the B-D link, we add a non-deterministic clause to the
environment process, which at any one point in the execution can send link-broken
events to both B and D.

Finally, we define the loop-free property in LTL as a state invariant:

O(!((nextp(A) == B) A (nextp(B) == A)))

That is, never during the execution of the 3-node AODV network, does there occur
a state where the next pointers of A and B (for the destination D) point to each
other.

The Promela processes and LTL definitions are then handed over to SPIN. SPIN
is a push-button tool that compiles the Promela process definitions and LTL prop-
erty definitions into an executable called a protocol analyzer. When executed,

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 25

the protocol analyzer compares the 3-node AODV network model against the de-
sired loop-free property and generates the counter-examples we have shown. The
counter-examples are presented in the form of execution trails, which can be visu-
ally simulated using the XSPIN graphical environment. We view the simulation
and read the trail, in conjunction with reading the Promela code to uncover the
sequence of events and possible bugs that led to the counter-example. The sce-
narios presented in this section are our analyses of the SPIN counter-examples,
highlighting the main events that led to the formation of loops in each case.

6.3 Ambiguities in the Standard

Virtually all standard specifications contain ambiguities and omissions. Version 2 of
the AODV standard is no exception. A programmer implementing the standard will
naturally attempt to resolve the ambiguities reasonably, taking account of special
knowledge of the aims of the standard. We have outlined some scenarios in which
the AODV standard, version 2, allows loops to be formed; in these scenarios, the
standard fails to anticipate some sequence of events that consequently leads to the
loop. Each of the scenarios points to an instance in which an implementation could
conform to the standard but fail to satisfy a desired property. In the next section,
we propose some fixes to the standard, and an invariant-based proof of loop-freedom
for the fixed standard. In this section, we outline some other ambiguities in the
standard and how we resolved them.
Here are the primary areas we felt needed some further specification.

—The standard does not describe the initial state of the AODV process. Intuitively,
it seems clear that the AODV process should start up with empty routing tables;
this choice is indeed safe with respect to loops. However, if we choose to start
with some default routes, then SPIN can demonstrate cases with loops. For our
analysis, we assumed that an AODV process begins with an empty routing table.

—The event handler for the reception of RREP packets is not fully described in the
standard. An incorrectly written RREP handler could easily cause loops. We
resolved this based on the description in [Perkins and Royer 1999]. This matched
the approach subsequently described in section 9.5 of version 4 of the standard.

—When an AODYV node discovers that the next node on the way to the destination

is no longer reachable, the standard says that it must send a route error message
in an RREP packet to its neighbors. This RREP packet has a hop count of infinity
and a sequence number one more than the sequence number stored at the node.
However, the standard does not explicitly say that the sequence number stored
at the node must also be increased by one. Indeed, if the stored sequence number
is not incremented, SPIN finds a scenario in which there will be a loop. This
omission was fixed in later versions, and we believe that it was always intended
that the AODV node would increment its stored sequence number as well.
In a related omission, when AODV was revised to version 5, a new kind of
packet (RERR) was introduced to denote route errors, thus simplifying the
role of the RREP packets. However, the standard failed to require the incre-
menting of sequence numbers in the outgoing RERR packets. This error leads
to a looping scenario that was discovered by Madanlal Musuvathi using Mur¢
(http://sprout.cs.stanford.edu/dill/murphi).

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 . K. Bhargavan, D. Obradovic, and C.A. Gunter

Our model of the AODV protocol needs to take these ambiguities into account.
To remove these ambiguities, we change the standard pseudo-code described in
Appendix B. We make the first three modifications as described in Appendix C,
and it is this modified pseudo-code that we model in SPIN and use for the analysis
described in Section 6.1.

6.4 Guaranteeing AODV Loop Freedom

Guided by the looping scenarios demonstrated in the previous sections, we describe
3 assumptions under which we claim that AODV will produce and maintain loop-
free routes. These assumptions are to be treated as recommendations for changes
to the AODYV protocol.

A1. When a node discovers that its route to a destination has expired or broken,
it increments the sequence number for the route.

A2. Nodes never delete routes.

A3. Nodes always immediately detect when a neighbor restarts its AODV process.
The restart is treated as if all links to the neighbor have broken.

We need to modify the AODVv2 pseudo-code in accordance with these assump-
tions, and the result is shown as the fourth modification to the pseudo-code de-
scribed in Appendix C. This modification guarantees assumptions A1l and A2. A3
is an environmental assumption and is not reflected in the pseudo-code. To ensure
A3, the environment must send NChange events to all neighbors of the restarted
node before the node comes up again (before the restart is completed).

Hereafter, we shall analyze the modified version of the AODV pseudo-code.

THEOREM 6.1. Consider an arbitrary network of nodes running AODVv2. If all
nodes conform to the assumptions A1-A3, there will be no routing loops formed.

To understand why this theorem is true, note that Al avoids looping scenario
LS2(b). Assumption A2 avoids the scenarios LS1 and LS2(a,c). Finally, A3 avoids
the scenario LS3.

As mentioned before, a hand proof of AODV loop-freedom is sketched in [Perkins
and Royer 1999]. That proof does not take into account many details of AODV like
route expiry. We provide a complete automated proof of Theorem 6.1 using the
SPIN model checker and HOL theorem prover. Moreover, the proof in [Perkins and
Royer 1999] was by contradiction, while our proof is a corollary of the preservation
of a key path invariant of the protocol. This invariant is also used to prove route
validity.

For arbitrary nodes n and d, we write seqno,(n)(t) to denote n’s sequence number
for the destination d at the time ¢. We use a similar notation for hops and next.
In non-temporal properties, we shall omit the time argument, when it is clear that
we are talking about the current values at some given time. Finally, restart(n)(t) is
true if and only if the node n was restarted at time ¢. Note that the time ¢ we use
in this notation is not real-time. It simply indicates points in the execution trace
of the model. In particular, if an event e occurs at time ¢, the event-handler(s) for
e are executed and finish execution at ¢ itself. The state at the node n at time ¢ is
the state after all event-handlers for events at ¢ have finished executing.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 27

The following is an invariant (over time) of the AODV process at a node n, for
every destination d:

THEOREM 6.2. If nexty(n) =n', then

(1) seqno,(n) < seqnoy(n'), and
(2) seqno,(n) = seqnoy(n') = hops,(n) > hops,(n').

The theorem says that the pair (—seqnoy, hops,) strictly decreases in the lexico-
graphic ordering when a nexty pointer is followed. This invariant has two important
consequences:

Loop Freedom. Consider the network at any instant and look at all the routing-
table entries for a destination d. Any data packet traveling toward d would have
to move along the path defined by the next; pointers. However, we know from
Theorem 6.2 that at each hop along this path, either the sequence number must
increase or the hop count must decrease. In particular, a node cannot occur at
two points on the path. This guarantees loop-freedom for AODV. In other words,
Theorem 6.2 implies Theorem 6.1. We prove this in HOL.

Route Validity. Loop-freedom in a finite network guarantees that data paths to a
destination are finite. This does not guarantee that the path ends at d, a property
we call route validity. However, if all the sequence numbers along a path are the
same, hop counts must strictly decrease (by Theorem 6.2). In particular, the last
node n; on the path cannot have hop count INFINITY. In AODV, a node with
non-infinite hop count must have a route to d. Since n; does not have a next
pointer for d, it must be equal to d.

To prove Theorem 6.2, we first prove the following properties about the routing
table at each node n, now considered as a function of time.

LEMMA 6.3. Ifty <t2, and Vit : t1 <t < ty.—restart(n)(t), then
seqno,(n)(t1) < seqnoy(n)(tz).

LEMMA 6.4. Ift; < t2, and seqnoy(n)(t1) = seqnoy(n)(t2), and
Vit : ¢y <t < tg.mrestart(n)(t), then hops,(n)(t1) > hops,(n)(ts).

Intuitively, Lemma 6.3 states that the sequence number for a single destination
never decreases over time, as long as the node is up and running. Lemma 6.4 says
that if the sequence number stays unchanged over some period of time, then the
hop count does not increase during that time.

Suppose nextq(n)(t) = n'. Intuitively, this route must be the result of a route
update message sent to n by n’ at some earlier time. The following lemma captures
this intuition, in terms of this last update time (lut).

LEMMA 6.5. If nexty(n)(t) = n', then there exists a time lut < t, such that:

(1) seqno,(n)(t) = seqno,(n’)(lut), and
(2) hopsy(n)(t) =1+ hops,(n')(lut), and
(3) Vt' : lut < t' < t.—restart(n')(t).

This lemma says that if n points to n’, this must be a result of the last update
sent from n’ to n (at time lut). Moreover, n' cannot have restarted in the meantime,
because A3 assures us that if it had then n would no longer be pointing at n'.

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 . K. Bhargavan, D. Obradovic, and C.A. Gunter

It is not hard to see that the three lemmas together imply Theorem 6.2. First,
assume that at time ¢, nexty(n)(t) = n/. Then we have from Lemma 6.5 that Vi’ :
lut < ¢' < t.—restart(n')(t").

Now, we use Lemmas 6.3 and 6.5, applied to lut and ¢, yielding

seqnog () () = seqno(n')(lut) < seqno, (n') (t),

which is the first part of Theorem 6.2. Furthermore, if seqno,(n')(lut) = seqno,(n')(t),
then we have

hops;(n)(t) — 1 = hops,(n')(lut) > hops,(n')(t)

because of Lemmas 6.4 and 6.5. This shows that hops,(n)(t) > hops,(n')(t), which
is the second part of Theorem 6.2. As indicated earlier, Theorem 6.2 suffices to
guarantee loop freedom (Theorem 6.1).

6.5 Proof Details and Tool Support

In the previous section, we showed how loop-freedom for AODV networks (Theo-
rem 6.1) reduces to three local properties: Lemmas 6.3, 6.4, and 6.5. The proof
that these lemmas together imply Theorem 6.2 is carried out in HOL and involves
a few steps of simple deductive reasoning, along the lines of the informal argument
in the previous section. Using Theorem 6.2, we also prove Theorem 6.1 in HOL.
This proof is slightly longer and involves the definition of a loop and deductive
reasoning on how the loop-free invariant between neighbors (Theorem 6.2) extends
to loop-freedom over a path (Theorem 6.1). This again is just a formalization of
the argument presented in the previous section.

Each of the Lemmas 6.3, 6.4, and 6.5 is individually proved in SPIN. This is
possible because these lemmas express properties of the state at one or at most two
AODV processes.

We have earlier described how AODV processes are modeled in SPIN. For Lemma,
6.3, we take one AODV process and try to prove that the sequence numbers are
monotonically non-decreasing. This can be done by composing the AODV process
A with an environment process E that generates all possible messages as input
to A. Then, we wish to prove that, in this model, the sequence number of A
never decreases. As long as both the number of states of the AODV process and
the number of possible messages have low enough bounds, we can carry out the
automatic verification in SPIN. However, sequence numbers in AODV are 32-bit
integers, and exploring the entire sequence number space for this property is not
feasible.

We solve this problem by introducing a property-based abstraction for sequence
numbers and hop counts at every node. Note that all we need to show is that for
any state s, the sequence number at s is greater than or equal to the sequence
number at the next state s’. So we manually slice the Promela code with respect
to this property and discover that all the boolean conditions it depends on involve
comparisons between the current sequence number and hop count (at s) with the
sequence number and hop count in the message. Therefore, we abstract the state
and the messages as follows:

Let s = (seqno, hops, next). For every state s’ = (seqno’, hops', next’) or message
m' = (seqno’, hops'):

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 29

—Instead of the sequence number seqno’, we record only whether seqno’ > seqno,
seqno’ = seqno, or seqno’ < seqno. The abstract sequence number, abs_seqno €
{GR,EQ, LT} accordingly.

—Instead of the hop count hops’, we record only whether hops’ > hops, hops' =
hops, or hops' < hops. The abstract hop count, abs_hop_cnt € {GR, EQ, LT}
accordingly.

—Instead of the next pointer next’, we record only whether next’ = next or next’ #
next. The abstract next, abs_next € {EQ, NE} accordingly.

We then modify (abstract) the Promela code of the AODV process, so that it
reacts to abstract messages, and maintains the abstract state of the process. The re-
quired modifications are well-known for such abstractions [Clarke et al. 1994]. They
simply involve modifying all boolean conditions involving the abstracted variables,
and assignments to the abstracted variables. Observe that now both the state space
and the message space are very small. We can now ask SPIN to verify that the new
state after one transition must have sequence number greater than or equal to the
sequence number at s. SPIN compares the abstract AODV model with this prop-
erty, and verifies that it is true, by generating all possible (abstract) messages and
events and executing all the event-handlers in the AODV model. The events include
link-breakage and node-restart. Lemma 6.3 is thus proved. The same abstraction
is then used to prove Lemma 6.4 automatically in SPIN.

Finally, to prove Lemma 6.5, we need to add some information to the abstract
state. We also need the following information for every state s’ = (seqno’, hops', next’)
or message m' = (seqno’, hops'):

—TFor the sequence number seqno’, whether seqno’ = seqno(n')(lut), or seqno’ #
seqno(n’)(lut). Now, the abstract sequence number:
abs_seqno € {GR,EQ, LT} x {EQ, NE}, where the first component is as before
and the second component represents the new information.

—For the hop count hops’, whether hops' = hops(n’)(lut)+1, or hops’ # hops(n')(lut)+
1. The new abstract hop count:
abs_hop_cnt € {GR, EQ, LT} x {EQ, NE} accordingly.

—For the next pointer next’, whether next’ = n’ or next’ # n/. The new abstract
next: abs_next € {EQ, NE} x {EQ, NE} accordingly.

Subsequently, Lemma 6.5 is also automatically verified by SPIN.

One aspect of the proof remains incomplete. How do we know that the abstrac-
tions described above are correct? We have argued informally that the abstraction
works for the particular case of the property described in Lemma 6.3. However, we
have not formally proved that the modifications are property-preserving. In fact,
it is not clear whether it is possible for an abstract AODV process to compute its
next abstract state based on the reduced information available about the messages
and previous state. In this case, we were able to manually modify the code in
accordance with the abstract state and messages. Instead, it would be desirable to
specify the modifications and prove them correct in HOL, and find an automated
strategy for carrying out the abstraction. However, in this case, we choose not to
carry out the proof, as it would require too much effort, not commensurate with
the expected gain. We acknowledge that the methodology we outlined for RIP has

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 . K. Bhargavan, D. Obradovic, and C.A. Gunter

limitations in applicability as the protocols grow more complex. For larger pro-
tocols like AODV, formally specifying all abstractions and carrying out complete
end-to-end proofs may not be feasible with current tools.

6.6 Alternative Strategies

In Section 6.4, we proposed a way to address loop-freedom problems in the AODVv2
standard based on the assumptions A1-A3. We then proved that the modified
specification, as shown in Appendix C, is loop-free. However, there are certainly
other ways to ensure loop-freedom without making a strong assumption like A2
(Nodes never delete routes). In fact, at the time of this writing, the AODV standard
has been revised to version 10, and from version 5, it contains alternative strategies,
proposed by us, for addressing the issues that we have found.
In particular, A2 is replaced by a weaker assumption:

A2’ A node n does not delete its route as long as some other node is using the
route (In'.nexty(n') = n).

However, it is not obvious how assumptions like A2’ and A3 are to be guaranteed.
One possibility is to add some reliability to the routing protocol: ensure that error
messages always reach the intended recipient. However, this would involve substan-
tial changes to the protocol, such as adding new kinds of packets. Our proposal to
the AODV standard team involved using existing timers in the protocol to guar-
antee the assumptions. Informally, we ensure A2’ by making sure that whenever
nextq(n') = n, the lifetime of the route of n' is less than the lifetime of the route
of n. In this way, n will never delete its route before n’ does. To ensure A3, we
stipulate that when a node n restarts, it must idly wait for a long enough period
so that all routes using n expire. Essentially, n must wait for a time interval of
max{lifetimey(n’) | nexty(n') = n}.

These changes are different from those described in this paper but try to achieve
the same logical behavior by using subtle relationships between timers. A full
formal analysis of AODVv5 or later versions would require tools that can analyze
real-time behavior beyond what SPIN, as it currently stands, is able to achieve. Ar-
guably, the standard should have been modified to aid simpler reasoning strategies
based on assumptions like A1-3 rather than more minimal but subtler conditions
on timers. Progress in addressing this kind of balance should be an area of research
for achieving higher assurance in networking standards.

7. CONCLUSION

This paper demonstrates the feasibility and value of automated verification of rout-
ing protocols. Our results show that it is possible to provide formal analysis of
correctness for routing protocols from IETF standards and drafts with reasonable
effort and speed, thus demonstrating that these techniques can effectively supple-
ment other means of improving assurance such as manual proof, simulation, and
testing. Specific technical contributions include: the first proof of the correctness
of the RIP standard, statement and automated proof of a sharp real-time bound
on the convergence of RIP, and an automated proof of loop-freedom for AODV.
Table 7 summarizes some of our experience with the complexity of the proofs
in terms of our automated support tools. The complexity of an HOL verification

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 31

Table ITI. Protocol Verification Effort

Task | HOL | SPIN

Modeling RIP 495 lines, 19 defs, 20 lemmas 141 lines

Proving Lemma 4.3 Once 9 lemmas, 119 cases, 903 steps

Proving Lemma 4.3 Again | 29 lemmas, 102 cases, 565 steps | 207 lines, 439 states
Proving Lemma 4.4 Reuse Lemma 4.3 Abstractions 285 lines, 7116 states
Proving Lemma 5.1 Reuse Lemma 4.3 Abstractions 216 lines, 1019 states
Proving Lemma 5.2 Reuse Lemma 4.3 Abstractions 221 lines, 1139 states
Proving Lemma 5.4 Reuse Lemma 4.3 Abstractions 342 lines, 21804 states
Modeling AODV 95 lines, 6 defs 302 lines

Proving Lemma 6.3 173 lines, 5106 states
Proving Lemma 6.4 173 lines, 5106 states
Proving Lemma 6.5 157 lines, 721668 states
Proving Theorem 6.2 4 lemmas, 2 cases, 5 steps

Proving Theorem 6.1 4 lemmas, 5 cases, 49 steps

for the human verifier is described with the following statistics measuring things
written by a human: the number of lines of HOL code, the number of lemmas
and definitions, and the number of proof steps. Proof steps were measured as the
number of instances of the HOL construct THEN. The HOL automated contribu-
tion is measured by the number of cases discovered and managed by HOL. This
is measured by the number of THENL’s, weighted by the number of elements in
their argument lists. The complexity of SPIN verification for the human verifier is
measured by the number of lines of Promela code written. The SPIN automated
contribution is measured by the number of states examined and the amount of
memory used in the verification. As we mentioned before, SPIN is memory bound;
each of the verifications took less than a minute and the time is generally propor-
tional to the memory used. Most of the lemmas consumed the SPIN-minimum
of 2.54MB of memory; Lemma 6.5 required 22.8MB. The figures were collected
for runs on a lightly-loaded Sun Ultra Enterprise with 1016MB of memory and 4
CPU’s running SunOS 5.5.1. The tool versions used were HOL90.10 and SPIN-
3.24. We carried out parallel proofs of Lemma 4.3, the Stability Preservation
Lemma, using HOL only and HOL together with SPIN. The HOL proof scripts
and SPIN models used in this paper are available for reference on the World Wide
Web (www.cis.upenn.edu/verinet/RoutingVerification).

Perhaps because of the difficulties in adapting unbounded or infinite state veri-
fication to finite state verification tools, there have been relatively few attempts at
verifying routing protocols. However, there are successful efforts that verify specific
configurations or search for defects. One study [Jackson et al. 1999] used a tool
called Nitpick (www.cs.cmu.edu/ nitpick) to discover the possibility of caching
loops in the internetwork protocol Mobile IPv6. Another study [Cypher et al. 1998]
analyzed the ATM network routing protocol PNNI using SPIN as the verification
tool and Promela as the specification language. A verification [Wang et al. 2000] of
an active network routing protocol for a specific network configuration was given
using the Maude system (maude.csl.sri.com). Our own work on bug searching
has focused on the analysis of network simulation traces. A toolset called Verisim

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 . K. Bhargavan, D. Obradovic, and C.A. Gunter

for logical testing of network simulations is described in [Bhargavan et al. 2002]
and applied to AODV. If an error is found in an implementation, it is important to
know whether it comes from an incorrectly implemented standard or from a flaw in
the standard itself. We provided an automated approach to making this determina-
tion using a technique we call Fault Origin Adjudication [Bhargavan et al. 2000c].
A broader survey of tool-specific issues for specification, verification and testing
of routing protocols can be found in [Bhargavan et al. 2000b]. A classification of
logical testing techniques is presented in [Bhargavan et al. 2000a].

APPENDIX

We provide pseudo-code for the RIP and AODYV protocols in this appendix. The
pseudo-code for a protocol process is broken down into six sections. Constants lists
some fixed or locally configured constants that the routing process uses. State de-
scribes information that the router keeps in variables and tables as well as timers
that generate timeout events after a certain amount of time has passed. Initially
describes the initial state of the variables. Ewvents lists the events that the routing
process recognizes. Utility functions describes functions that the routing process
can invoke; these may cause events recognized by other routing processes. FEvent
handlers describes how the events recognized by the process are dealt with. Events
and their handlers generally fall into two categories: receipt of a packet and expi-
ration of a timer. The former is represented abstractly here as an event with some
associated data, typically the contents of the received packet.

Timers can be thought of as ‘stopwatches’. A timer is a special kind of variable
that continuously decreases its value as long as it is greater than zero. When a
timer reaches zero, it generates a timeout event. Just like a stopwatch, one can
set a timer to a specific value, or deactivate it. The current value of a timer (the
remaining time before timeout) can be read at any moment.

Our syntax for any kind of ‘packet send’ operation requires that contents of the
packet be enclosed in rectangular brackets. Our packet format generally reflects
logical, rather than physical structure. In some cases, AODV needs to use the IP
destination field of an IP packet. We include that field at the end, after the logical
contents. A typical packet is hence denoted as [logical contents; DestIP].

A. RIP PSEUDO-CODE
process RIPRouter

state:
me // ID of the router
interfaces // Set of router’s interfaces
known // Set of destinations with known routes
hopsgest // Estimated distance to dest
nextRouter .s: // Next router on the way to dest
nextlface est // Interface over which the route advertisement was received
timer ezpiredes: // Expiration timer for the route
timer garbageCollecty.st // Garbage collection timer for the route
timer advertise // Timer for periodic advertisements
initially:

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 33

{

known < the set of all networks to which the router is connected.
for dest € known
{

hopSdest = 1

nestRouterj.ee = me

nextlfacey.s = the interface that connects the router to dest.

}

set advertise to 30 seconds

}

events:
receive RIP (router, dest, hopCnt) over iface
timeout (eTpiredest)
timeout (garbageCollectqest)
timeout (advertise)

utility functions:
broadcast(msyg, iface)

{

Broadcast message msg to all the routers attached to the network on the other side
of interface iface.

}

event handlers:
receive RIP (router, dest, hopCnt) over iface
{
newMetric < min (1 + hopCnt, 16)
if (dest & known) and (newMetric < 16) then

known < known U {dest}

hopSdest — newMetric

nestRouter . <— router

nextlfaceyes < iface

set exrpireqest to 180 seconds
} else

{

if (hopsgest < 16 and router = nextRouterges:) or (newMetric < hopsdest)
{
hopSdest <— newMetric
nestRouteryes: < router
nextlfaceqest < iface
if (newMetric = 16) then
{
deactivate erpireges:
set garbageCollectyes: to 120 seconds
} else
{
deactivate garbageCollectyest
set erpiresest to 180 seconds

}

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 . K. Bhargavan, D. Obradovic, and C.A. Gunter

}
}
}

timeout (eTpireqest)

{

hopSdest < 16
set garbageCollectyes: to 120 seconds

}
timeout (garbageCollectqest)
{

known < known — {dest}
}

timeout (advertise)

for each dest € known do
for each i € interfaces do

if (i # nestlfaceqes:) then

{
broadcast ([RIP(me, dest, hopsaest)],)
} else
{
broadcast ([RIP(me, dest, 16)], i) // Split horizon with poisoned reverse
}
}
set advertise to 30 seconds

B. AODVV2 PSEUDO-CODE
process AODVRouter

constants:
oo (INFINITY) = 255 // Maximum expected network diameter
NET_DIAMETER =35 // Set according to network size
NODE_TRAVERSAL_TIME = 40 milliseconds // Set according to link characteristics
RREP_WAIT_TIME = 3%« NODE_TRAVERSAL_TIME % NET_DIAMETER
ACTIVE_ROUTE_TIMEOUT = 3000 malliseconds
MY_ROUTE_TIMEOUT = 6000 milliseconds
BAD_LINK_LIFETIME = 2% RREP_WAIT_TIME
REV_ROUTE_LIFE = RREP_WAIT_TIME
BCAST_ID_SAVE = 30000 milliseconds

state:
me // ID of the router
mySeqno // Router’s own sequence number
myBcastID // Router’s current broadcast ID

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 35

known // Set of destinations with known routes

neighbors // Set of known neighbors

S€qNOgest // Last destination sequence number known for dest
hopsdest // Distance in hops to dest

nextiest // Next hop toward dest

activedest // Set of active neighbors using route to dest

timer lifetimeges: // Route expiration timer

timer activeTimerses:,, // Active neighbor timer

events:

receive RREQ(hopCnt, becastID, dest, destSeqno, source, sourceSeqno) from sender

// Received a Route Request broadcast by some neighbor
receive RREP (hopCnt, dest, destSeqno, lifetime); DestIP from sender

// Received a Route Reply, to be forwarded to DestIP
receive NChange // Triggered when the set of neighbors change
receive Packet; DestIP from sender [/ Received a IP packet that is not an RREP,

// to be forwarded to DestIP

timeout (lifetimegest) // Triggered when lifetimeges: times out
timeout (activeTimergest,n) // Triggered when activeTimerg.s:,» times out

utility functions:
seen (source, beastID)
{
Determines whether a RREQ from source with the same or more recent broadcast ID as
beastID has already been received by the router within the last BCAST_ID_SAVE milliseconds.

}

updateRoute (dest, destSeqno, hopCnt, nextHop, ltime)

Update the routing table with a new route to dest, which is hopCnt hops long,

continues via nextHop and has the attached destination sequence number destSeqno.

If no previous route to dest exists or if the new route is better than a previously existing one,
install the new route with lifetimeges: timer set to ltime and include dest in known.

}

updateTable ()

{

Invalidate all entries in the routing table that use a non-neighbor as their neztHop
by setting their hops to infinity and their lifetime to BAD_LINK_LIFETIME.

}

broadcast (msg)
{ Broadcast the message msg to all neighboring nodes. }

neighborcast (msg,n)
{ Send the message msg to the neighbor n. }

computeNeighbors ()
{ Return the current (most recent) set of neighbors. }

Journal of the ACM, Vol. V, No. N, Month 20YY.

36 . K. Bhargavan, D. Obradovic, and C.A. Gunter

event handlers:
receive RREQ(hopCnt, becastID, dest, destSeqno, source, sourceSeqno) from sender

{

if not seen(source, bcastID)
{
hopCnt < maz(hopCnt + 1,00)
if (dest = me) then
{
updateRoute (source, sourceSeqno, hopCnt, sender, ACTIVE_ROUTE_TIMEOUT)
mySeqno < maz(mySegno, destSeqno)
neighborcast ([RREP(0,me, mySeqno,MY_ROUTE_TIMEOUT); source], nextsource)
} else
{
updateRoute (source, sourceSeqno, hopCnt, sender, maz(REV_ROUTE_LIFE, lifetimesource))
if (dest € known) and (hopsgest < 00) and (seqnogest > destSegno) then
{
neighborcast ([RREP(hopSdest, dest, $€qnogest, lifetimegest); source], nextsource)
n < nextiest
aCtiVesource <— GCtVEsource U {n}
set activeTimersource,n to ACTIVE_LROUTE_TIMEOUT
} else
{
broadcast ([RREQ(hopCnt, beastID, dest, destSeqno, source, sourceSeqno)))
}
}
}
}

receive RREP (hopCnt, dest, destSeqno, lifetime); DestIP from sender
{
// The standard does not specify exactly how to handle incoming RREPs.
// They are supposed to be forwarded towards DestIP with incremented hopCnt.

}

receive NChange

{
newNeighbors <— computeNeighbors ()
disconnected < neighbors — newNeighbors
neighbors <— newNeighbors
mySeqno < mySeqno + 1
for dest € known

if (nestyest € disconnected)

for n € activeqest

{
neighborcast ([RREP (oo, dest, 1 + seqnogest, 0); n], n)
}
}
}

updateTable ()

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 37

}

receive Packet; DestIP from sender
if (DestIP # me)
if (DestIP € known) then

activepesiip < activepessrp U {sender}

set lifetimepcstp to ACTIVE_LROUTE_TIMEOUT

set activeTimerpestp sender to ACTIVE_LROUTE_TIMEOUT

neighborcast ([Packet; DestIP], nextpesrp) // Forward the packet towards DestIP
} else
{

myBcastID < myBcastID + 1

broadcast ([RREQ (0, myBcastID, DestIP, seqnopestip, me, mySeqno)])

Queue the packet and forward it upon establishing a route to DestIP.

}
}
}

timeout (lifetimeqest)

{

if (hopsgest = o) then

Mark entry for dest as ‘erasable’. Erasable entries can be garbage collected.
Garbage collecting sets seqnoges: to 0, and neztses: to some undefined value.
} else
{
hopsgest ¢— 00
known < known — {dest}
set lifetimeqess to BAD_LINK_LIFETIME

}
}
timeout (activeTimerdest,n)
{
activedest — activeqess — {n}
}

C. MODIFIED AODV PSEUDO-CODE

Below we list four modifications to the original AODVv2 pseudo-code. The first
three modifications account for the ambiguities in the standard that needed to be
filled in before the verification. These ambiguities are discussed in Section 6.3. The
last modification is a real addition to the standard that is needed to prevent loops.
It is based on the recommendations A1l and A2 from Section 6.4.

(1) We include the initialization section.

initially:
Journal of the ACM, Vol. V, No. N, Month 20YY.

38 . K. Bhargavan, D. Obradovic, and C.A. Gunter

{

mySeqno < 0
myBcastID < 0
known < 0

}

(2) We include the handler for RREP events, which was missing in the standard.
Given the rest of the specification, we believe that the following code accurately
describes the desired functionality.

receive RREP (hopCnt, dest, destSeqno, lifetime); DestIP from sender
if (DestIP = me) then
if (hopCnt = oo) and (dest € known) and (seqnoges: < destSeqno) then

updateRoute (dest, destSeqno, oo, sender, BAD_LINK_LIFETIME)
for n € activegest
{
neighborcast ([RREP (oo, dest, destSeqno, 0); n], n)
}
}

else

hopCnt < maz(hopCnt + 1,00)
updateRoute (dest, destSeqno, hopCnt, sender, lifetime)
}
}

else

hopCnt < maz(hopCnt + 1,00)
updateRoute (dest, destSeqno, hopCnt, sender, lifetime)
neighborcast ([RREP (hopCnt, dest, destSeqno, lifetime); DestIP], nextpestip)
}
}

(3) If a local topology change breaks the node’s route to some destination, the
node should increase the sequence number for that destination. Notice that
this is consistent with the sequence number that the node advertises in an
unsolicited RREP in that case. Below is the modified pseudo-code for the
NChange handler. The shaded part is the addition.

receive NChange

newNeighbors < computeNeighbors ()
disconnected < neighbors — newNeighbors
neighbors <— newNeighbors

mySeqno < mySeqno + 1

for dest € known

{

if (netxtses: € disconnected)

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols . 39

{

for n € activegest

neighborcast ([RREP (oo, dest, I + seqnoges:, BAD_LINK_LIFETIME); n], n)
5eqNO0dest < S€qNOJest + 1

}
}

updateTable ()

}

(4) Nodes should never ‘forget’ sequence numbers unless they restart the AODV
process. This simplifies the handler for route expiry, which only disables the
route and increases the sequence number.

timeout (lifetimegest)

{
hopSdest < co
SeqNO0gest — S€qNOGest + 1
known < known — {dest}

}

ACKNOWLEDGMENTS

We would like to thank the following people for their assistance and encouragement:
Roch Guerin, Elsa L. Gunter, Luke Hornof, Sampath Kannan, Insup Lee, and
Charles Perkins. We also thank anonymous referees for their input. This research
was supported by NSF Contract CCR-~9505469, and DARPA Contract F30602-98-
2-0198.

REFERENCES

BERTSEKAS, D. P. AND GALLAGER, R. 1991. Data Networks. Prentice Hall.

BuarcavaN, K., GunTER, C., KM, M., LEg, I., OBrADOVIC, D., SOKOLSKY, O., AND
VISWANATHAN, M. 2002. Verisim: Formal Analysis of Network Simulations. IEEE Transactions
on Software Engineering 28, 2 (February), 129-145. Originally appeared in Proc. International
Symposium on Software Testing and Analysis (ISSTA), 2000.

BHARGAVAN, K., GUNTER, C. A., AND OBRADOVIC, D. 2000a. A Taxonomy of Logical Network
Analysis Techniques. Tech. Rep. MS-CIS-00-14, University of Pennsylvania.

BHARGAVAN, K., GUNTER, C. A., AND OBRADOVIC, D. 2000b. An Assessment of Tools used in
the Verinet Project. Tech. Rep. MS-CIS-00-15, University of Pennsylvania.

BHARGAVAN, K., GUNTER, C. A., AND OBRADOVIC, D. 2000c. Fault Origin Adjudication. In
Formal Methods in Software Practice (FMSP). Portland, OR.

CHIANG, C. 1997. Routing in Clustered Multihop, Mobile Wireless Networks with Fading Channel.
In Proceedings of IEEE SICON ’97. 197-211.

CLARKE, E. M., GRUMBERG, O., AND LONG, D. E. 1994. Model Checking and Abstraction. ACM
Transactions on Programming Languages and Systems 16, 5, 1512-1542.

CYPHER, D., LEE, D., MARTIN-VILLALBA, M., PrRINS, C., AND Su, D. 1998. Formal Specification,
Verification, and Automatic Test Generation of ATM Routing Protocol: PNNI. In Formal

Description Techniques € Protocol Specification, Testing, and Verification (FORTE/PSTYV)
IFIP.

Journal of the ACM, Vol. V, No. N, Month 20YY.

40 . K. Bhargavan, D. Obradovic, and C.A. Gunter

FRrREIER, A. O., KARLTON, P., AND KOCHER, P. C. 1996. Secure Socket Layer. IETF Draft.
home .netscape.com/eng/ssl3.

GAO, L. AND REXFORD, J. 2000. Stable Internet Routing Without Global Coordination. In ACM
SIGMETRICS.

GorDON, M. J. C. AND MELHAM, T. F., Eds. 1993. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press.

GRIFFIN, T. G. AND WILFONG, G. 1999. An Analysis of BGP Convergence Properties. In Proceed-
ings of ACM SIGCOMM 99 Conference, G. Parulkar and J. S. Turner, Eds. Boston, 277-288.

GRIFFIN, T. G. AND WILFONG, G. 2000. A Safe Path Vector Protocol. In Proceedings of INFO-
COM 2000 Conference. Tel Aviv, Israel.

HEITMEYER, C., KIRBY, J., AND LaBAw, B. 1998. Applying the SCR Requirements Method to
a Weapons Control Panel: An Experience Report. In Formal Methods in Software Practice.
ACM SIGSOFT.

HeNDRICK, C. 1988. Routing Information Protocol. RFC 1058, IETF. June.

HorzMmANN, G. J. 1991. Design and Validation of Computer Protocols. Prentice Hall.

HorzMANN, G. J. 1997. The SPIN model checker. IEEE Transactions on Software Engineer-
ing 23, 5 (May), 279-295.

HuiTEMA, C. 1995. Routing in the Internet. Prentice Hall.

ISO 8473 1990. Intermediate System to Intermediate System Intra-Domain Routeing Exchange
Protocol for Use in Conjunction with the Protocol for Providing the Connectionless-mode Net-
work Service. ISO 8473.

Jackson, D., Na, Y., AND WING, J. 1999. A Nitpick Analysis of Mobile IPv6. Formal Aspects
of Computing 11, 6 (November), 591-615.

MALKIN, G. 1993. RIP Version 2 Carrying Additional Information. RFC 1388. January.

MALKIN, G. 1994. RIP Version 2 Carrying Additional Information. RFC 1723, IETF. November.

MANNA, Z. AND PNUELI, A. 1991. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag.

MiITCHELL, J. C., SHMATIKOV, V., AND STERN, U. 1998. Finite-State Analysis of SSL 3.0. In
Seventh USENIX Security Symposium. USENIX, San Antonio, 201-216.

Moy, J. 1994. OSPF Version 2. RFC 1583, IETF. March.

MURTHY, S. AND GARCIA-LUNA-ACEVES, J. 1996. An Efficient Routing Protocol for Wireless
Networks. ACM Mobile Netowrks and Applications Journal. Special Issue on Routing in
Mobile Communication Networks.

OBRADOVIC, D. 2002. Real-time Model and Convergence Time of BGP. In Proceedings of IEEE
INFOCOM 2002. New York.

PERKINS, C. E. AND BHAGWAT, P. 1994. Highly Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers. Computer Communications Review, 234—244.

PERKINS, C. E. AND ROYER, E. M. 1998. Ad Hoc On Demand Distance Vector (AODV) Routing.
Internet-Draft Version 2, IETF. March.

PERKINS, C. E. AND ROYER, E. M. 1999. Ad-Hoc On-Demand Distance Vector Routing. In
Proceedings of the 2nd IEEE Workshop on Mobile Computer Systems and Applications. 90—
100.

PERLMAN, R. 1985. An algorithm for distributed computation of spanning trees in an extended
LAN. In Proceedings of the Ninth Data Communications Symposium. 44—53.

PERLMAN, R. 1992. Interconnections: Bridges and Routers. Addison-Wesley.

REKHTER, Y. AND L1, T. 1995. A Border Gateway Protocol 4 (BGP-4). RFC 1771, IETF. March.

ROYER, E. M. AND ToH, C.-K. 1999. A Review of Current Routing Protocols for Ad Hoc Mobile
Wireless Networks. IEEE Personal Communications, 46-55.

VARADHAN, K., GOVINDAN, R., AND ESTRIN, D. 1996. Persistent Route Oscillations in Inter-
Domain Routing. ISI Technical Report 96-631, USC/Information Sciences Institute.

WANG, B.-Y., MESEGUER, J., AND GUNTER, C. A. 2000. Specification and Formal Verification
of a PLAN Algorithm in Maude. In Proceedings of the 2000 ICDCS Workshop on Distributed
System Validation and Verification, T. Lai, Ed. IEEE Computer Society, E:49-E:56.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Formal Verification of Standards for Distance Vector Routing Protocols : 41

Received ; revised ; accepted

Journal of the ACM, Vol. V, No. N, Month 20YY.

