
What Packets May Come: Automata for Network Monitoring

Karthikeyan Bhargavan

University of Pennsylvania

bkarthik@seas.upenn.edu

Satish Chandra

Bell Laboratories

schandra@bell-labs.com

Peter J. McCann

Bell Laboratories

mccap@bell-labs.com

Carl A. Gunter

University of Pennsylvania

gunter@cis.upenn.edu

Abstract

We consider the problem of monitoring an interactive de-
vice, such as an implementation of a network protocol, in
order to check whether its execution is consistent with its
speci�cation. At �rst glance, it appears that a monitor could
simply follow the input-output trace of the device and check
it against the speci�cation. However, if the monitor is able
to observe inputs and outputs only from a vantage point ex-
ternal to the device|as is typically the case|the problem
becomes surprisingly diÆcult. This is because events may
be bu�ered, and even lost, between the monitor and the de-
vice, in which case, even for a correctly running device, the
trace observed at the monitor could be inconsistent with the
speci�cation.

In this paper, we formulate the problem of external monitor-
ing as a language recognition problem. Given a speci�cation
that accepts a certain language of input-output sequences,
we de�ne another language that corresponds to input-output
sequences observable externally. We also give an algorithm
to check membership of a string in the derived language.
It turns out that without any assumptions on the speci�ca-
tion, this algorithm may take unbounded time and space.
To address this problem, we de�ne a series of properties of
device speci�cations or protocols that can be exploited to
construct eÆcient language recognizers at the monitor. We
characterize these properties and provide complexity bounds
for monitoring in each case.

To illustrate our methodology, we describe properties of the
Internet Transmission Control Protocol (TCP), and identify
features of the protocol that make it challenging to monitor
eÆciently.

1 Introduction

Computer networking protocols have always been appealing
candidates for applications of automata theory. Not only
are protocols commonly speci�ed as �nite-state automata,
much of the current technology of implementing and ver-

ifying protocols relies on application of automata theory.
Examples include Spin/Promela [5], Verisoft [4], Esterel [1],
etc.

We consider the problem of monitoring the execution of net-
work protocols. Suppose a given piece of computer equip-
ment claims to implement a certain network protocol through
one of its communication interfaces. We seek to introduce a
passive monitor outside this interface that can watch all the
bits traveling to and from the device under test, and check
them for some properties. Such a monitor could give impor-
tant information about the proper running of the protocol.
Monitoring is complementary both to the implementation
and to the veri�cation of network protocols.

A passive monitor would essentially mimic the actions that
the device is expected to take in response to the input that it
receives, except it would not actually put any output on the
wire. Rather, it would pick up the output generated by the
device under test, and compare the output that it computed
against the output it sni�ed from the wire. In this role, a
passive monitor is a language recognizer, where the language
that it understands is the input-output behavior of a given
networking protocol.

Passive monitors can observe many useful properties of real-
world protocols. We give examples of such properties for
the Internet protocol TCP in Section 6. Such a capability
can play a useful role in testing new implementations, and
also in guarding against network intrusion and other security
violations.

Several complications hamper our ability to construct pas-
sive monitors accurately and eÆciently in the real world.
The most important complication is the �delity of observa-
tion of traÆc by the monitor. In general, our monitor is
not located exactly at the device, in the sense that it does
not synchronously observe input and output actions of the
automaton inside the device. Therefore, the monitor might
fail to observe certain packets that the device sees, or might
see certain packets that the device fails to see. Also, be-
cause of bu�ers at the input and output ports of the device,
the monitor might observe a sequence of events in a dif-
ferent order than the device. Another complication is that
of under-speci�cation of protocols. For example, the TCP
speci�cation allows certain leeway as to how often a receiver
must generate an acknowledgment to a data packet. Because
of these complications, the input-output language that the
monitor must recognize could be signi�cantly di�erent from
the language that a given device processes, or claims to pro-
cess.

1

In this paper, we give a systematic presentation of passive
monitoring as a language recognition problem, while incor-
porating these real-world complications to the extent possi-
ble. Furthermore, the algorithms we present are suitable for
on-line monitoring of protocol execution, that is, we do not
collect traces and analyze them separately. Thus, speed of
monitoring is also an important concern. Most prior work in
network monitoring either performs o�-line monitoring [11],
or deals with real-world problems in ad hoc ways [12]. We
believe an automata-theoretic approach helps us achieve ro-
bust algorithms and also lets us understand the kind of prop-
erties that we can or cannot monitor eÆciently.

In the general case, we could perform on-line monitoring
using an expensive brute-force search algorithm, which is
essentially an ineÆcient \parser" for the \real world" version
of the language. In some cases, there is not even any a priori
upper bound on the amount of space this process may take.
However, for many kinds of properties that we may wish
to check, it is possible to create faster language recognizers.
In this paper, we also give a systematic exploration of the
space of properties that lets us construct eÆcient monitors.

We draw an analogy to the problem on constructing parsers
for the syntax of programming languages. In general, a
particular syntax could be a context-free grammar. How-
ever, parsers for general context-free grammars are expen-
sive: they may take O(n3) time in the size of the input.
Thus, most real syntax speci�cations require restrictions
on the grammar, such as the language should be LL(k),
LALR(1), etc. For grammars that obey such restrictions,
fast parsers can be constructed. We have de�ned an anal-
ogous range of languages for monitoring. If the language
of the protocol obeys certain properties, eÆcient monitor-
ing programs can be created. These language characteris-
tics could be used during the speci�cation process, to select
properties that can be easily monitored at run-time, or even
during the protocol design phase, if the designer is especially
concerned that a protocol be amenable to eÆcient monitor-
ing as might be the case with critical security protocols.

The contributions of our work are the following:

� We de�ne automata suitable for network monitoring,
taking into account real-world complications such as
bu�ering and packet loss.

� We classify properties of network protocols that let us
construct eÆcient monitors, and also point out cases in
which monitoring would necessarily be an intractable
problem.

� For an important real-world protocol, TCP, we identify
properties that can be eÆciently monitored based on
the theory that we develop.

The rest of the paper is organized as follows: in Section 2, we
give a description of the kinds of mismatches that can be ex-
pected between a trace collected by a monitor and the trace
actually seen by a device under test. In Section 3 we char-
acterize these di�erences formally, and in Section 4, we give
a brute-force approach to checking whether a given trace
collected at a monitor could have resulted from a correct
execution. We proceed in Section 5 to give special proper-
ties of speci�cations that, when satis�ed, allow us to con-
struct more eÆcient on-line property monitors. In Section 6
we show how our techniques could be applied to monitor-
ing real properties of TCP. Finally in Section 7 we discuss
connections to related work and conclude.

2 Fidelity in Network Monitoring

In the context of monitoring, the term �delity refers to the
closeness with which the sequence of input and output events
seen by the device under test matches the sequence of events
observed by the monitor. The extent of in�delity is deter-
mined by the performance of the monitor and its placement
in the network. A perfect �delity monitor, one that sees ex-
actly the inputs and outputs of the device under test, can be
obtained by instrumenting the protocol stack on the device
itself. Such a monitor is depicted as M1 in Figure 1. Such
a co-located monitor observes input and output actions of
the device synchronously with the device|it encounters no
�delity problems. Such monitors are hard to deploy because
of the need to put new software on the monitored system.

An alternative is to place the monitor somewhere in the
network and observe inputs and outputs as they pass across
the network links. While there are many possible points
at which a monitor could be placed (see Figure 1), a co-
networked monitor and a bottleneck monitor are particularly
useful, as they are able to observe all traÆc between the
device and the remote host. A co-networked monitor sits
outside the device on the physical network to which its net-
work interface card (NIC) is attached, whereas a bottleneck
monitor sits outside the NIC of the gateway of a local area
network. Of the two, a co-networked monitor can enjoy bet-
ter �delity, as there is no network element between it and
the device.

We have conducted initial experiments to determine the ex-
tent and nature of in�delities for co-networked monitors.
Our experiment consisted of taking a PC (400 MHz Pen-
tium II) running Linux and using it to monitor input to
another similar Linux PC over 100 Mbps Ethernet. The
monitor accepted traÆc o� an Ethernet hub that we intro-
duced between the device and the rest of the network. Our
experiments show that with proper operating system engi-
neering, a co-networked monitor could easily keep up with
inter-packet arrival time of about 20 microseconds, assum-
ing no expensive computation is performed per packet. At
these speeds, it is feasible to monitor typical TCP/IP pro-
tocol traÆc over 100 Mbps Ethernet, without the monitor
dropping any packets. Moreover, this is achieved using only
stock hardware (desktop PC's and an Ethernet hub1); extra
hardware support could handle heavier loads. Consequently,
we can assume the existence of a co-networked monitor that
does not drop packets for this kind of host and network.

The primary �delity challenges arise in dealing with bu�er-
ing on the device itself. If a protocol S is being run by the
device, then the goal of the monitor M is to determine if
S is properly implemented. However, this must be done by
observing behavior on the network, and there are input and
output bu�ers between the device and the network. The sit-
uation is depicted in Figure 2. The input and output bu�ers
may over-�ll and cause packet losses between the device
and the network, thus introducing in�delities between the
events observed at the device, and the co-networked mon-
itor M . Note that the over-�ll may be caused by packets
from some other protocol that the device is engaged in; the
monitor may never even look at these packets. Our experi-
ments showed that under heavy network loads this kind of
in�delity was quite possible for input bu�ers. However, the

1In this sense it is not exactly co-networked as de�ned above,
but we assume this hub repeats all traÆc to all ports. A truly co-
networked monitor would need special hardware support.

2

Other
Autonomous

DomainsLocal
Host

(DUT)

Autonomous Domains

Hosts

Network Elements

Remote
Host

M2
M3

M4
M1

Local Domain

Co−Located Co−Networked Bottleneck

ISP

M6M5

A

G

Figure 1: Monitor Placement: Monitor M1 is co-located with the device under test (DUT); it is unfeasible to deploy without
modifying DUT software. Monitor M2 is co-networked and monitor M4 is at a bottleneck location. Monitor M3 will not
observe traÆc passing through network element A. M5 is located at an Internet service provider (ISP), and M6 is located in
another service provider's network. Because the Internet Protocol may drop, duplicate, or re-order datagrams, M5 and M6
can experience signi�cant in�delities.

S

M

S

M

d

d

c
NIC

Device Under Test (DUT)

Input Buffer

Output Buffer

NIC

Device Under Test (DUT)

Input Buffer

Output Buffer

e

c eba

Figure 2: Bu�ers in the DUT. M may observe inputs and
outputs in a di�erent order than S. The second �gure shows
one possible execution sequence at the DUT.

kernel will ordinarily throttle the protocol implementation
to avoid loss in output bu�ers so we will assume in this paper
that outputs are not lost at a device's output bu�er.

Aside from input bu�er loss, the major in�delity between the
device and a co-networked monitor M arises from di�erent
perceptions of packet arrival and dispatch caused by the
input and output bu�ering. We describe this phenomena in
some detail in the next section. To see the issue brie
y, note
that it is impossible forM to tell in Figure 2 whether output
d of S was created by the device before or after the device
observed a or b, or even whether b was dropped before it
reached S.

3 Model

We assume that the device under test is a deterministic and
reactive automaton, following a speci�cation S. At each
step, either it consumes an input, or produces an output.
Outputs may be produced in reaction to inputs, or in reac-
tion to events such as timer expirations, that are not visible
to the outside. Our model of S is similar to a determin-
istic I/O Automaton [9]; it is a machine with a (possibly
in�nite) state space carrying out parameterized input and
output actions.

Let us denote input of a symbol a by the token ia and output
of a symbol a by the token oa. S recognizes certain �nite
sequences of tokens, for example, ia ib od. Call the set of
such �nite sequences LS .

We introduce a co-networked monitorM(S;m;n) with input
and output bu�ers between it and the device under test. The
system now contains three components: S; I, which is an in-
put bu�er of size m; and O, which is an output bu�er of size
n. For convenience, we will normally abbreviateM(S;m;n)
to M .

We introduce four new tokens. iqa corresponds to enqueing
of an input symbol a in queue I. ida corresponds to deletion
of a from head of I and simultaneous input into device. oda
corresponds to output of a from device and simultaneous
enqueuing into O. Finally, oqa corresponds to output of a
from the head of queue O. Note that M gets to see only
tokens iq and oq. We also assume that observation of iqa at
the monitor is simultaneous with enqueing of a into I, and
observation of oqa at the monitor is simultaneous with the
dequeing of a from O.

An execution of this system can be represented by a se-
quence of such tokens. Consider the sequence

iqa iqb iqc ida idb odd iqe oqd

This sequence represents the following events: a, b, and c
got enqueued in the input queue I; the device input a from
the head of the queue; the device input b from the head of

3

the queue and then produced output d, which went on the
output queue O; another symbol e came into I; and, �nally,
d left O. The monitor sees the sequence

iqa iqb iqc iqe oqd

and we will de�ne the language recognized by the moni-
tor in terms such sequences. We �rst introduce a notion of
admissible execution sequences under the bu�ering restric-
tions. We are interested in the admissible executions that
are allowed by S.

De�nition 1 (Admissibility) !, a string of iq, oq, id and
od tokens, is said to be an admissible execution sequence with
respect to M(S;m;n), if the following are true:

FIFO Input: the sequence of id tokens in ! is the same as
the sequence of iq tokens,

FIFO Output: the sequence of oq tokens in ! is the same
as the sequence of od tokens,

Causality: the k'th id token can only occur after the k'th
iq token, and the k'th oq token can only occur after the
k'th od token,

Input Bu�er Limit: in any pre�x of !, the number of iq
tokens minus the number of id tokens must not exceed
m, and

Output Bu�er Limit: in any pre�x of !, the number of
od tokens minus the number of oq tokens must not ex-
ceed n.

Now we have a way of de�ning the language recognized by
M . Essentially, a string � belongs to LM , if there is some ad-
missible sequence ! whose iq/oq projection is � , and whose
id/od projection belongs to LS . For each string s in LS , we
can construct several � that must be in LM . Let us �rst
construct an admissible sequence whose id/od projection is
s. We take each input token ia in s and split it into two
consecutive tokens iqa and ida. We split each output token
oa into two consecutive tokens oda and oqa. Clearly, this is
an admissible sequence (no bu�ering is carried out). But we
could also generate other sequences of tokens corresponding
to this execution. We can move each iq token backwards,
skipping over any number of tokens, as long as we do not
violate relative orders of iq events, and we do not violate
input bu�ering limits. Likewise, we can move each oq token
forward, as long as we do not violate relative orders of oq
events, and we do not violate output bu�ering limits. Every
such sequence ! yields a string � in the language recognized
by M (LM), simply by erasing out the id and od tokens.

Example. Consider the following string in S:

ia ib oc id oe if ig

We can arrive at the following admissible sequence (labeled
A). We shall normally ignore particular symbols a, b, etc.,
and instead label the various tokens by order of their ap-
pearance in the string, using the notation idk for the k'th
occurrence of id.

A : iq1 id1 iq2 id2 od1 oq1 iq3 id3 od2 oq2 iq4 id4 iq5 id5

Now, let us allow an input bu�er of three elements and an
output bu�er of two elements. Here are some additional
admissible strings:

B : iq1 iq2 id1 id2 od1 oq1 iq3 id3 od2 oq2 iq4 id4 iq5 id5

C : iq1 iq2 iq3 id1 id2 od1 oq1 id3 od2 oq2 iq4 id4 iq5 id5

D : iq1 iq2 iq3 id1 id2 od1 id3 od2 oq1 oq2 iq4 id4 iq5 id5

E : iq1 iq2 iq3 id1 id2 od1 iq4 iq5 id3 od2 oq1 oq2 id4 id5

The following string is not admissible because the input
queue cannot accommodate iq4.

F : iq1 iq2 iq3 iq4 id1 id2 od1 iq5 id3 od2 oq1 oq2 id4 id5

For each admissible string given above (A-E), we can arrive
at a string in LM by erasing the id and od tokens, as shown
below. Not each admissible string gives a unique string in
LM . Also, some non-admissible execution sequences can
yield the same string in LM , as an admissible sequence (e.g.
E and F).

A;B : iq1 iq2 oq1 iq3 oq2 iq4 iq5

C;D : iq1 iq2 iq3 oq1 oq2 iq4 iq5

E;F : iq1 iq2 iq3 iq4 iq5 oq1 oq2

3.1 Eliminating Output Bu�ering

In this section, we give a construction that lets us assume
that the monitor M does not need to consider an output
bu�er, by suitably adjusting the size of the input bu�er.
This simpli�cation is useful in reasoning about properties of
protocols that permit eÆcient monitoring.

Theorem 1 LM(S;m;n) � LM(S;m+cU�n;0), where cU is a
constant dependent on S: cU is the maximum number of
input symbols without an intervening output symbol in any
string in LS.

We claim that a monitor similar to M , but that has an
associated input bu�er of size m + cU � n and no output
bu�er, can admit all the observable behaviors of M . That
is, if a sequence of tokens � observed by M can be derived
constructively for M using the procedure described in the
previous section from a string s 2 LS, then � can also be
derived constructively for this new monitor from the same
s. We denote this new monitor M(S;m+ cU � n; 0) by M

0.

In the monitoring process, we will make use of a consequence
of this theorem that � =2 LM0) � =2 LM . By construction
of LM , � =2 LM implies that the device is not following
S. Thus, by inferring � =2 LM0 , M 0 can infer that a cer-
tain input-output sequence it|or M|observes is de�nitely
inconsistent with S.

Sketch of Proof. The theorem does not trivially hold, be-
cause a string in LM may be a result of output bu�ering,
whereas there is no output bu�er in M 0.

First assume that every input to S generates an output
(cU = 1). Let � 2 LM . By construction, � is a result
of erasing id and od tokens from some admissible execution
! with respect to M . ! contains a unique execution s in
LS . We now show a transformation on ! that makes it ad-
missible with respect to M 0, while still containing the same
s (id/od projection) and the same � (iq/oq projection) in it.
Then, � 2 LM0 , because we can obtain � from s by �rst
constructing the transformed !, which is admissible with
respect to M 0, and then erasing id and od tokens from it.

We perform the following transformation on !. We start
from the end of !, proceeding backwards. On encountering

4

odk , the k'th occurrence of od, if odk is not immediately
followed by oqk , we move it forward some number of steps to
make it so. In doing this, we might skip over other iq and oq
tokens. Any id tokens in between odk and oqk are moved in
order after oqk . No od tokens can occur in between because
they must have already been moved to their appropriate
positions. By skipping over all the intermediate oq tokens,
we reduce the output bu�ering requirement to zero. For
every iq token that some id token skips over, we increase
the input bu�ering requirement by one. We argue that the
maximum increase in the input bu�ering requirement is n,
the size of the output bu�er O.

Consider the largest number of iq tokens between odk and
oqk . Suppose that at the position after the odk , there are p
elements in the input bu�er. There is at least one element
in the output bu�er (the content of odk). The �rst m � p
iq tokens �ll up the input bu�er. Every iq token after these
must be preceded by some id token, which produces an od.
Therefore, n� 1 such iq tokens will cause the output bu�er
to be �lled up. One more id and iq can also appear|in that
order|for whom the output has not yet been produced by
the device. No more iq's are allowed before oqk . After the
last such iq, the number of iq tokens minus the number of
id tokens can be at most (m� p+ n) + p, since we pushed
all the intermediate id tokens out. This will be admissible
in a monitor with input bu�er size m+ n.

In general, S need not expect an output for every input; the
above transformation no longer works. However, suppose
it is given that S cannot accept any more than cU inputs
before it must see an output. If we supplyM 0 with an input
bu�er of size m+cU �n, the theorem still holds. To see this,
we need to modify our previous counting argument, as to
how many iq tokens might occur between odk and oqk . The
�rst m�p iq tokens �ll up the input bu�er. The next cU �n
iq's must be preceded by cU �n id's, that produce n� 1 od's
�lling up the output bu�er. No more iq's are possible.

Example. Let m = 2 and n = 2. Consider the following !,
where cU = 2. This string is admissible with respect to M .

iq1 iq2 od1 id1 iq3 id2 iq4 od2 id3 iq5 id4 iq6 oq1 oq2

After moving the od tokens, we arrive at the following trans-
formed !. Note that the relative ordering of id, od tokens
must be maintained, otherwise we change the underlying
input to S.

iq1 iq2 iq3 iq4 iq5 iq6 od1 oq1 id1 id2 od2 oq2 id3 id4

This transformation increases the maximum input bu�ering
requirement to 6, which is admissible to M 0, which has an
input bu�er of size 6 (2 + 2 � 2).

3.2 Dealing with Loss

We now introduce into this model the possibility of losing a
packet between the co-located monitor and the device, i.e.,
the monitor observes some input packets that the device
does not. The model is as follows: we assume that the
output from the input queue I could either be absorbed by
a loss unit L, never to be seen again, or goes into the device
as before. We use token il to denote the loss event that
consumes the head of the input queue.

Example. Consider the following sequence:

iqa ila iqb iqc idb odd ilc oqd

In this sequence, S executes the following string:

ib od

Whereas, the monitor observes the following tokens:

iqa iqb iqc oqd

Inputs a and c are lost in the loss unit.

Note that theM toM 0 conversion of the previous subsection
would need to know about the maximum e�ective number of
inputs seen by the monitor before an output appears. This
implies that we must impose a limit on the number of il
tokens that can appear in a sequence without an id token.
If there can be only less than cL il tokens between two id
tokens, thenM 0 needs an input bu�er of size m+ cL � cU �n
to be able to eliminate the size n output bu�er.

Corollary 1 If S cannot accept more that cU id tokens
without an intervening od token, and there must be less than
cL il tokens between two id tokens, then,

LM(S;m;n) � LM(S;m+cU�cL�n;0)

For the remainder of the paper, we assume a monitor of the
formM 0, appropriately parameterized with the values of m,
n, cU and cL. Furthermore, we shall use B to refer to the
input bu�ering requirement (m+cU �cL�n). The admissible
strings ! may now also contain il tokens (in addition to iq,
id, od and oq), and their placement will follow conditions
mentioned here. We modify the de�nition of admissibility
to take il tokens into account: the FIFO input, causality,
and input bu�er limit clauses are updated appropriately,
treating il tokens just like id tokens. In addition, we have an
Input Loss Limit condition: in any pre�x of !, the number of
consecutive il's without an intervening id token is less than
cL.

Corollary 2 Consider a string admissible to M 0. Ignoring
any intervening id or il tokens, the maximum number of
iq tokens without an intervening od oq pair is bounded by
B + cU � cL.

The corollary holds because cU � cL id and iq pairs can ap-
pear in addition to B iq's, without increasing the e�ective
bu�ering requirement. (Another id must force an od.) The
importance of this corollary will become apparent in the al-
gorithms presented in Section 5.

4 Algorithm for Co-networked Monitoring

In general, we would like to check that a given device under
test is a proper implementation of a speci�cation S, given a
trace collected from a co-networked passive monitor. That
is, given a trace � of iq and oq events observed at a monitor
that is separated from the device by a loss unit (L), input (I)
and output bu�er (O) as speci�ed in Section 3, we would like
to determine whether the device is behaving in accordance
with S. The device is not incorrect as long as � 2 LM0 :
we can exhibit a sequence ! which is derived from � by the
addition of id, il, and od events and which is consistent with
the following set of conditions:

� ! is admissible with respect to M 0, and

5

� the projection of ! that includes only id and od tokens
(denoted [!]id,od) is consistent with the speci�cation

of S.

Assume we have a function g that checks S on a sequence �
of id and od tokens and tells us whether the sequence is in
LS ; g could be used directly as a co-located monitor for S.
We write the query to g in the form � 2 g. We assume that g
is a safety property: it is pre�x-closed, and can be checked
over �nite traces. Our problem is to construct a function
F (g; �), that given a trace � of iq and oq events collected by a
co-networked monitor and a function g, tells us whether the
trace corresponds to some proper execution with respect to
S. A non-deterministic algorithm for F is straight-forward.
Given a � , guess a sequence ! admissible with respect to
M 0, such that [!]iq,oq = � . If [!]id,od satis�es g, � is OK.

Otherwise, report failure.

A naive determinization of the above algorithm is brute-
force search: simply construct all possible !'s from � , check-
ing each admissible ! against g, until a match is found or
all possibilities are exhausted. Additionally, we would like
F to be computable on-line, meaning that it should make
only one pass over the input � . We give such a brute-force
breadth-�rst-search algorithm in Figure 3. We call this al-
gorithm BF (g; �).

Data Type.
 is a set of pairs (admissible string, string
of input symbols). Initially,
 = f(�; �)g

Event Handlers. On receiving

� iqx:

1. 8(!; b) 2
:

delete (!; b) from
;
check-add (! :: iqx; b :: iqx) to
.

2. iterate until no more additions to
:

8(!; iqy :: b) 2
:

check-add (! :: idy; b) to
;
check-add (! :: ily; b) to

� oqx:

1. 8(!; b) 2
:

delete (!; b) from
;
check-add (! :: odx :: oqx; b) to
.

2. iterate until no more additions to
:

8(!; iqy :: b) 2
:

check-add (! :: idy; b) to
;
check-add (! :: ily; b) to

where check-add adds (!; b) to
 if and only if:

� jbj < B, and

� [!]id,od 2 g

� in any pre�x of !, the number of consecutive
il's without an intervening id token is less than
cL.

If
 = � after executing either event handler,
ag
an error.

Figure 3: Brute-Force Monitoring Algorithm

Theorem 2 BF (g; �) produces a set
 containing all the
strings ! that satisfy the following:

C1 [!]iq;oq = � .

C2 [!]id;od 2 g.

C3 ! is admissible (with respect to M 0).

There are two sources of ineÆciencies in BF (g; �). First, we
might maintain a large number of plausible sequences. Sec-
ond, we need to examine the suitability of each candidate
extension of each sequence with respect to the abstract spec-
i�cation. If there is no additional information about g, then
there is no bound on the amount of computation required at
each event. Suppose that Niq input and Noq output events

have taken place. Then the amount of work done at each
event is essentially the size of
 at that point. The size of

is exponential in Niq + Noq, even in the absence of loss. To

see this, notice that the number of placements of matching
id tokens relative to a sequence of iq tokens is itself exponen-
tial in Niq; possibility of loss factors in another Niq binary

choices between id and il. Therefore, even in the absence of
loss, the computation that needs to be performed at each
event grows with the number of events that have occurred.
For an e�ective online procedure, we must arrive at a more
eÆcient monitor process that bounds this per-event com-
putation. We shall exploit properties of g that allow us to
achieve this optimization.

5 Property Based Optimization

The algorithm given in Figure 3 exhibits space and time
complexity that is exponential in the number of inputs and
outputs in the trace. Clearly, for a long trace � , the al-
gorithm will quickly become intractable. However, some as-
sumptions allow us to prune large sections of the brute-force
search. In the following subsections, we examine properties
of g, and assumptions on the input-output traces that allow
e�ective online monitoring.

A notable feature that is common to many (but not all) of
the algorithms presented in this section is that they sim-
ply bu�er iq tokens as they appear, and take interesting
action only when oq tokens are observed. This is in contrast
to the brute-force algorithm, in which an iteration is per-
formed after each iq event to consume the pending bu�er
in all possible ways. If this iteration is not performed, up
to B + cU � cL iq tokens must be bu�ered between outputs
in the worst case, following Corollary 2. However, after an
output, the maximum number of bu�ered iq tokens cannot
be more than B.

5.1 No Loss

Each of the following sub-sections describes a class of g's
that can be e�ectively monitored if we assume there is no
loss between the monitor and the device, i.e. cL = 1. This
is an assumption of the network behavior, which when true,
allows us to use very eÆcient algorithms for monitoring.

5.1.1 P1: Counting Properties

A very basic kind of property is a simple constraint on the
number of inputs that must be consumed before an output

6

is produced. If g speci�es that every output must consume
between cmin and cmax inputs without placing any additional
constraints on the allowed sequences, then g satis�es:

8�; �; odx; ody : � 2 g ^ (� = � _ � ends in some od)
^ � has only id's ::

� � ody 2 g () cmin � j�j � cmax

That is, a string is in g if and only if it is constructed from
another string that is also in g, which is itself empty or ends
in an output event, by adding between cmin and cmax input
events.

An algorithm for checking such g's in the presence of bu�ers
is shown in Figure 4. This algorithm maintains two integers,

Constants. cmax; cmin are integers.

Data Type. bufmin and bufmax are integers.
e is a boolean.
Initially, bufmin = bufmax = 0 and e = false.

Event Handlers. On receiving

� iqx:
bufmax = bufmax + 1, bufmin = bufmin + 1
if (bufmin > B + cmax) then e = true
else bufmax = min(bufmax; B + cmax)

� oqx:
if (bufmax < cmin) then e = true
else bufmax = min(B; bufmax � cmin);

bufmin = max(0; bufmin � cmax)

If e is true after executing either event handler,
ag
an error.

Figure 4: Algorithm for checking P1

bufmin and bufmax, representing the minimum and maximum
number of inputs that are currently bu�ered between the
monitor and the device under test. If bufmin ever grows too
large, it indicates that the particular iq; oq string seen so far
could not be a valid execution without additional bu�ering
between the monitor and the device. That is, too few out-
puts have been seen to account for all the inputs seen so
far. Similarly, if bufmax ever becomes too small, it indicates
that the particular iq; oq string seen so far could not re
ect
a valid execution because even if each output has consumed
the minimum number of inputs, there have not been suf-
�cient inputs to account for every output given that each
output must consume at least cmin inputs. In each case an
error
ag e is set.

To prove the correctness of this algorithm, we can do a re-
duction from the brute-force algorithm of Figure 3 to the
one in Figure 4. The reduction proceeds by de�ning a map-
ping between the two state spaces and showing that it is
maintained when each algorithm takes a step in response to
the same event. The proof is given in the appendix; we omit
proofs of the remaining properties.

5.1.2 P2: Independent Inputs and Outputs

If g checks a composition of two independent properties,
one of the input trace and the other of the output trace,

then construction of the monitor can be greatly simpli�ed.
Formally, we say that:

([!]id 2 g ^ [!]od 2 g), [!]id,od 2 g

For example, suppose we want to check that as long as there
is no loss and all data is acked, the TCP sender we are mon-
itoring will keep pumping out new data. First we check that
every output data segment has a sequence number strictly
greater than that of the last output. However, this needs to
be true only as long as all data is acked by the receiver. So
in conjunction, we need to check that every input ack has a
sequence number strictly greater than that of the last out-
put. As long as both of these are true, the sender is behaving
correctly. If the second property fails, our assumption has
been violated, and the sender is assumed correct by default.

The monitoring algorithm for P2 simply needs to check that
the sequence of idx events corresponding to the iqx events, as
well as the sequence of odx events corresponding to the oqx
events, is acceptable according to g. In addition, if we wish
to monitor more complex properties, they can be checked
independently, since P2 does not place any restrictions on
the relative orderings of od's and id's. The procedure feeds
one token to g at every event and needs to maintain no state
extraneous to g. The algorithm is as shown in Figure 5.

Data Type. !i is a string of id's.
!o is a string of od's.
e is a boolean.
Initially, !i = !o = � and e = false.

Event Handlers. On receiving

� iqx:
!i = !i :: idx;
if !i 62 g then e = true;

� oqx:
!o = !o :: odx;
if !o 62 g then e = true;

If e is true after executing either event handler,
ag
an error.

Figure 5: Algorithm for checking P2

5.1.3 P3: Periodic Outputs

Suppose the speci�cation requires that the device produces
an output exactly every P inputs, we can have an eÆcient
algorithm to parse a trace; no other assumptions on g are
required. The condition can be given as follows:

8�; � : � consists only of inputs ^ j�j > 0 ^
(� = � _ � ends in some od) ::
(� � ody 2 g)) j�j = P

Many protocols have a periodic output behavior. For in-
stance, ICMP echo protocol has an output period (P) of 1:
every input must be responded to by an output. Some TCP
implementations maintain a P of 2. P3 can be thought of a
restricted counting property (cmin = cmax = P) in conjunc-
tion with a (possibly) complex property.

7

The algorithm we use is that any time an output event is
seen by the monitor, it feeds exactly P bu�ered inputs to
g, and then checks that the output is enabled at this point.
The algorithm is as shown in Figure 6.

Constants. P is the number of inputs consumed by g
before each output.

Data Type. ! is a string of id's and od's.
b is a string of iq's.
e is a boolean.
Initially, ! = b = � and e = false.

Event Handlers. On receiving

� iqx:
b = b :: iqx;
if jbj > B + P then e = true;

� oqx:
if jbj < P then e = true;
else

1. iterate P times:

delete the �rst element iqy from b;
! = ! :: idy;

2. ! = ! :: odx;
if ! 62 g then e = true;

If e is true after executing either event handler,
ag
an error.

Figure 6: Algorithm for checking P3

5.1.4 P4: Deterministic Placement of Outputs

Suppose g has the property that the placement of outputs
in a sequence of inputs has no leeway: there is exactly one
position at which each output could be placed such that the
resulting string is in g. Formally, the deterministic output
placement property can be given as follows:

8�; � : � consists only of inputs ^ j�j > 0 ::
� odk 2 g) � � odk 62 g

In practice, we only need that � � odk 62 g for j�j < B. A
property in P4 is checked by maintaining a bu�er of uncon-
sumed inputs. On getting an output, we feed inputs from the
bu�er to g until the �rst point where the output is enabled,
and then we feed the output to g. This works, because P4
guarantees that the output could not occur after any other
input in the future. This algorithm maintains bu�er b of
inputs of size (B + cU). At each output we feed the �rst
jbj �B inputs to g, followed by at most B strings (of length
at most B).

In general, �nite-state machines do not satisfy P4. However,
some do, and speci�c instances of other kinds of automata
(PDA etc.) could satisfy P4 too. For example, the following
grammar obeys P4:

G! �
G! G G
G! H oSTOP
H ! iA
H ! iLPAREN H iRPAREN

5.1.5 P5: Contiguously Enabled Commutative Outputs

Sometimes, there is a range of positions in a bu�ered input
stream where one could reasonably place an output. Con-
sider the following two restrictions: the range of positions
over which the output is enabled is contiguous, in the sense
that the input is enabled at every point in the input stream
between the �rst and last positions it is enabled. Also, we
require that the output commute with each of the inputs
in this contiguous window, such that if the output is con-
sumed and then the input, we arrive at a state which is in-
distinguishable from consuming the input �rst and then the
output. These two conditions are embodied in the following
formula:

8�; � : � consists only of inputs ::
(� � odx 2 g) ^ (� odx � 2 g))
(8Æ1; Æ2 : Æ1 Æ2 = � ::
(� � odx �g � Æ1 odx Æ2))

where
� �g � � (8
 : �
 2 g () �
 2 g)

An example of such a speci�cation is TCP
ow control. If
a TCP ack odx is allowed just before data segment idk and
just after idk+p , then it must be allowed at all points in
between, since none of them matter to the ack. Moreover,
the receiver's window is the same whether this ack occurs
before or after any of these data segments in the window
idk : : : idk+p .

For g in P5, we can work with a credit scheme. We always
place output at the �rst place it is enabled, but remember
the credit we get for not placing it at a later place. If at
some point in the future, the bu�er over
ows because we
consumed too few inputs, we can then use up this credit,
i.e. eat up that many input tokens.

The algorithm for P5 (Figure 7) maintains a bu�er of inputs
of size (B + cU), and one integer indicating the credit: the
range of positions where the last output could have taken
place. At each output we feed the �rst jbj �B inputs to g,
followed by at most B strings (of length at most B).

5.1.6 P6: Output-checkpointed Automata

We say that g is an output-checkpointed automaton if, start-
ing from a state, for each output odx, there is at most one
next state that g can be in. In terms of strings, if two
strings � and � are equivalent with respect to g, and if they
are concatenated with di�erent strings of inputs followed by
the same output odx, then the two strings ending in odx are
still equivalent with respect to g. Formally,

8�; � :
(� �g �))
(8odx; Æ1; Æ2 : Æ1; Æ2 consist only of inputs ::
((� Æ1 odx 2 g) ^ (� Æ2 odx 2 g)))
(� Æ1 odx �g � Æ2 odx))

An instance of P6 is a protocol in which each output gives
complete information about the state in which it is enabled.
For example, some transport layer protocols have a notion
of selective acknowledgments (sack's) where data receivers
send information about all data received up to that point.
Although we need to check if the sack was allowed, once it

8

Data Type. !; !0 are strings.
b; b0 are strings of inputs.
credit is an integer.
e is a boolean.
Initially, ! = b = �, credit = 0 and e = false.

Event Handlers. On receiving

� iqx:
b = b :: iqx;
if (jbj > (B + cU) ^ credit > 0) then

delete the �rst element iqy of b;
! = ! :: idy;
credit = credit� 1;

if (jbj > (B + cU) ^ credit = 0) then e = true;

� oqx:

1. repeat until
((jbj � B) ^ (! :: odx 2 g _ b = �)):

delete the �rst element iqy of b;
! = ! :: idy;

2. if b 6= � then

b0 = b;
delete the �rst element iqy of b0;

!0 = ! :: idy;
credit = 0;
repeat until !0 :: odx 62 g or b0 = �:

credit = credit+ 1;
delete the �rst element iqy of b0;

!0 = !0 :: idy;

3. ! = ! :: odx;
if ! 62 g then e = true;

If e is true after executing either event handler,
ag
an error.

Figure 7: Algorithm for checking P5

has happened, the state at the receiver is completely known
to us. So we can carry out our analysis output to output,
forgetting everything that occurred before the last output.

The algorithm for monitoring P6 maintains just one admis-
sible string ! because after an output occurs, all strings
allowed by g must be equivalent; we just need to keep one of
them, and we keep the one with the �rst possible placement
of that output. In addition, we maintain a bu�er b of inputs
of size (B + cU), and B bits indicating positions at which
the last output could also have happened.

At each output, we need to concatenate every sub-string of
bu�ered inputs, starting from these positions, to ! and check
if the output is allowed after this string. There may be up
to B2 such input strings (of length at most (B + cU)) that
need to be checked. This gives us a bound for the per-event
computation, polynomial in the length of the bu�ers.

5.1.7 P7: Finite State Machines

If g is known to be a �nite state machine with a set of states
�, then there is a bound to which the brute-force search set

 can grow. Suppose g = (�;�; Æ; s0;Err), where � consists
of all id,od symbols, � is the �nite set of states, Æ is the de-

terministic transition relation, s0 is the initial state, and Err
is the set of error states. Each (!; b) in
 can be represented
as (s; b) where s = Æ�(s0; !). Now, b must contain some suf-
�x of the iq elements in !, of length at most B. However,
every ! in
 must contain the same sub-sequence of iq's and
oq's. Therefore, every b in
 must be a suÆx of the same
B-element string. This gives us a bound of j�j �B elements
for
. This means that we may have to feed up to j�j � B2

elements to g at each output. The bound is polynomial in
the number of states and the size of the bu�ers. Moreover,
it gives us a way of executing the general brute-force algo-
rithm with an eÆcient representation of the string ! as the
state s. The algorithm is as shown in Figure 8. Notice that,
because we perform an iteration after an iq event, as in the
brute-force algorithm, we cap the bu�ering requirement by
B.

Constants. g = (�;�; Æ; s0;Err).

Data Type.
 is a set of pairs (state, list of input sym-
bols). Initially,
 = f(s0; [])g

Event Handlers. On receiving

� iqx:

1. 8(s; b) 2
:

delete (s; b) from
;
check-add (s; b :: iqx) to
.

2. iterate until no more additions to
:

8(s; [iqy :: b]) 2
:

check-add (Æ(s; idy); b) to
;

� oqx:

1. 8(s; b) 2
:

delete (s; b) from
;
check-add (Æ(s; odx); b) to
.

2. iterate until no more additions to
:

8(s; [iqy :: b]) 2
:

check-add (Æ(s; idy); b) to
;

where check-add adds (s; b) to
 if and only if:

� b obeys the bu�ering constraints (jbj < B), and

� s is not an error state of g (s 62 Err).

If
 = � after executing either event handler,
ag
an error.

Figure 8: Algorithm for checking P7

5.2 Dealing with Loss

Allowing loss of input events between the monitor and the
device introduces additional complexity to our search algo-
rithm. However, as before, we can derive eÆcient algorithms
for some classes of g. In each of the following sub-sections,
we describe a property of g that allows us to monitor it ef-
fectively even in the presence of loss. We will see that the
classes of g that were eÆciently monitorable without loss,
become less eÆcient or even unfeasible when loss is allowed.

9

5.2.1 Counting Properties (P1 revisited)

As mentioned before, properties based solely on the number
of inputs and outputs consumed are often used to charac-
terize protocols. For such g, monitoring in the presence of
loss is very similar to the loss-less case. Suppose that we
know that no more than cL inputs can be lost in succession.
Then in order to check that each output must consume be-
tween cmin and cmax inputs, we follow the same procedure of
maintaining bufmax and bufmin, except that we allow bufmax

and bufmin to grow up to m+ cmax � cL � (n+ 1) during iq
processing. We leave the oq processing unchanged. There is
clearly a constant amount of work to be done at each event.

5.2.2 P2o: Independent Output Properties

Properties about the output stream can be checked even in
the presence of loss because by assumption outputs never
get lost. The checking procedure simply involves checking g
against the trace seen at M . No bu�ering is needed.

An example of a P2o property is output monotonicity: every
output contains a sequence number that is strictly greater
than that of the last output. This just involves storing an
output and comparing it with the next one. We feed g at
most one token at every output.

5.2.3 P8: Insert-closed Commutative Outputs

We describe a class of monitorable properties that are im-
pervious to the presence of input loss. Essentially, if a string
ending in odx is acceptable, so is the string with an arbitrary
string of inputs Æ inserted before odx. Moreover, odx com-
mutes with every input in Æ. In e�ect, this says that if g
enables odx at the end of the string �, it remains enabled
forever, and it can be placed at any point after � with the
same e�ect.

(8�; odx : � odx 2 g)
((8idy : � idy odx 2 g)^
(8Æ1; Æ2 consisting only of inputs :
� odx Æ1 Æ2 �g � Æ1 odx Æ2)))

Note that P8 is really a special case of P5. The fact that out-
puts once enabled are enabled forever implies the contiguously-
enabled property, in addition to which we already have com-
mutativity of outputs. An instance of P8 is a containment
property on outputs. For example, a property could state
that every output contains a �eld bytes-received that is less
than the sum of the sizes of inputs received.

The algorithm for checking P8 is simple. Always assume
that no inputs have been lost and place the output after the
�rst input where it is enabled. To keep track of the suc-
ceeding positions where the output could have occurred, we
maintain a credit as in the algorithm for P5. Suppose in
reality, some of the inputs between two outputs were lost,
then we have generated a string that has some extra inputs
inserted between these outputs. However, P8 tells us that
inserting these inputs still keeps the string in g. Next, sup-
pose that an output that we placed after an input idk in
the input stream, did not in reality occur until idk+p . Here
again, P8 assures us that the output commutes with the in-
puts idk ; idk+1 : : : ; idk+p . Finally, note that the string we
construct is an admissible string: one in which no losses oc-
cur. Therefore, as long as this string belongs to g, we must

accept it. The algorithm is as shown in Figure 9. This al-
gorithm feeds g with at most (B + cU � cL) input tokens at
each output.

Data Type. ! is a string.
b is a strings of inputs.
credit is an integer.
e is a boolean.
Initially, ! = b = �, credit = 0 and e = false.

Event Handlers. On receiving

� iqx:
b = b :: iqx;
if (jbj > (B + cU � cL) ^ credit > 0) then

delete the �rst element iqy of b;
! = ! :: idy;
credit = credit� 1;

if (jbj > (B + cU � cL) ^ credit = 0) then

e = true;

� oqx:

1. repeat until
((jbj � B) ^ (! :: odx 2 g _ b = �)):

delete the �rst element iqy of b;
! = ! :: idy;

2. ! = ! :: odx;
if ! 62 g then e = true;

3. credit = jbj;

If e is true after executing either event handler,
ag
an error.

Figure 9: Algorithm for checking P8

5.2.4 Finite State Machines (P7 revisited)

If g is an FSM, we can bound the amount of state that
we need in order to model loss in the brute-force search
strategy. In fact, the bound on
 is exactly the same as in
the absence of loss. There can be at most j�j � B elements
in
. As before, this bound means that we can e�ectively
execute the brute force algorithm to monitor g. However,
in this case we have to consider all 2B lossy substrings of
the bu�er at each event. Therefore, we may need to feed as
many as j�j � B2 � 2B�1 tokens to g at each event.

5.2.5 P9: Deterministic Stateless Transducers

Let us assume that all the inputs that the monitor sees will
be distinct. This restriction forbids the environment from
producing duplicate inputs for the lifetime of the monitor.
Under this assumption, we can describe a g that speci�es a
stateless transducing behavior. Suppose that an output ody
can occur after an input idx. Then, in every string allowed
by g that contains ody, it must occur immediately after idx.
Moreover, any string ending in an idx ody pair is equivalent
to the string idx ody. This means that g is stateless: all it
cares about are idx ody pairs.

10

8�; idx; ody : � 2 g)
(idx ody �g � idx ody)^
(idx ody 2 g)
(8idz 6= idx : idz ody 62 g)^
(ody 62 g)

The condition that each input is distinct is a rather strong
one. In practice, what we need to impose is that no input is
repeated within a space of (B + cU � cL) iq tokens, which is
the maximum number of inputs that the monitor needs to
analyze at a time.

An example of P9 is the speci�cation of the ICMP (ping)
protocol. In a ping session, all inputs (ICMP Requests) are
unique because they have monotonically increasing sequence
numbers. Given an ICMP Reply, we can map it uniquely
to an ICMP Request on the basis of the sequence number.
Moreover, once we have mapped the Reply to a request,
there is nothing that we need to remember about the anal-
ysis up to that point.

P9 can be checked eÆciently even in the presence of loss.
Essentially, each output ody points to at most one input idx
that triggered it and we do not need to check any other
input. If idx is not in the bu�er, and ody cannot occur with-
out an input, then there is an error, otherwise, everything
up to idx can be dropped from the bu�er. This algorithm
feeds g at most (B+ cU � cL) elements at every output. The
algorithm is as shown in Figure 10.

Data Type. ! is a string.
b is a string of inputs.
e is a boolean.
Initially, ! = b = � and e = false.

Event Handlers. On receiving

� iqx:
b = b :: iqx;
if (jbj > (B + cU � cL)) then e = true;

� oqx:
if b = � then e = true;
else

delete the �rst element iqy of b;
repeat until
((jbj � B) ^ (idy :: odx 2 g _ b = �)):

delete the �rst element iqy of b;

! = ! :: idy :: odx;
if ! 62 g then e = true;

If e is true after executing either event handler,
ag
an error.

Figure 10: Algorithm for checking P9

5.2.6 P10: Output-checkpointed Stateful Transducers

In P9, the statelessness assumption allowed us to forget
about the history of the monitoring, once an output had
been placed in the input stream. We can generalize this no-
tion, by taking a hint from output-checkpointed automata
(P6). Instead of saying that the state of g after consuming

� idy odx must be the same as the state after consuming just
idy odx, we say that starting from a state, if odx is allowed
after some inputs then there is a unique state that g can be
in after consuming odx.

As before, all inputs in � must be distinct. Formally, g is
expressed as a conjunction of P6 with a generalization of
P9:

8�; � :
(� �g �))
(8odx; Æ1; Æ2 : Æ1; Æ2 consist only of inputs ::
((� Æ1 odx 2 g) ^ (� Æ2 odx 2 g)))
(� Æ1 odx �g � Æ2 odx))^

8�; idx; ody; Æ1; Æ2 : Æ1; Æ2 consist only of inputs ::
(� Æ1 idx ody 2 g))
(8idz 6= idx : � Æ2 idz ody 62 g)^
(� ody 62 g)

An example of such a g is a protocol in which there are two
kinds of inputs: data inputs containing integers and ack-
request inputs that contain unique magic numbers. The
protocol is supposed to send an output when it receives an
ack-request, and the output contains the magic number of
the request and a sum of all inputs seen since the last output.
Clearly, every output has a unique input (the ack-request)
after which it can occur. Moreover, it contains information
that is compatible only with some sub-sequences of inputs
since the last output.

The P6 part of P10 allows us to just maintain one state af-
ter each output. Moreover, the P9 part tells us that we can
uniquely place the output in the input stream. In conjunc-
tion, this gives us a simple algorithm for checking P10. At
each output, we place it in the sequence of bu�ered inputs
as in P9. Once we have found a position, we must search
for a lossy sub-sequence of the inputs before that position
that makes the string acceptable to g. If both these tests
succeed, we can proceed with a single next state and a single
bu�er to monitor the rest of the string.

The algorithm maintains a input bu�er b of size (B + cU �
cL). Then at each output, we may need to check g against

2(B+cU�cL) input sequences. The maximum number of to-
kens to be fed to g is (B + cU � cL) � 2

(B+cU�cL)�1.

5.2.7 Output-checkpointed Automata (P6 revisited)

P6 can be handled in the presence of loss by doing some
further exploration of bu�er strings. However, no explo-
ration of g's state space needs to be done. We maintain a
set of positions in the bu�er where the last output could
have happened. Then for the next output, we need to �nd
all sub-sequences starting from these positions that enable
the output. We are guaranteed that all these sub-sequences
will end in the same state, so we will just need to remem-
ber the positions where we can place the output and the
common next state. If there is no position where we can
place the output, there is an error. This algorithm would
require us to check a maximum of 2(B+cU�cL) input strings
against g at each output, where (B + cU � cL) is the size
of the input bu�er. We may have to feed a maximum of
(B + cU � cL) � 2

(B+cU�cL)�1 tokens to g.

11

5.3 Property Relationships

In this section, we describe the relationships between all the
classes of g that we have discussed in this section. In Table 1,
we summarize the complexities of the algorithms described
for the various property classes. We assume that g has been
written in a way that allows us to feed it input and out-
put tokens one by one, and it will take a constant amount
of time to analyze each token. Then the complexity of the
monitoring is the number of tokens that need to be fed to g
at any step. Note that most of the complexities are in terms
of the size of the bu�er B. The value of B is dependent on
the sizes of the input (m) and output (n) bu�ers, protocol
entities like the maximum number of inputs allowed between
two outputs (cU), and environmental entities like the max-
imum number of inputs that can be lost in succession (cL),
between the monitor and the system. We de�ne the bu�er
size in the absence of loss as B = m + cU � n, and in the
presence of loss as B = m+ cU � cL � n.

Table 1: Monitoring Complexities for Property Classes of g

Property Without loss With loss
All Unbounded Unbounded
P7 � �B2 � �B2 � 2B

P6 B3 B � 2B

P5 B2 Unbounded
P4 B2 Unbounded
P8 B2 B2

P3 P Unbounded
P10 B B � 2B

P9 B B
P2 1 Unbounded
P2o 1 1
P1 1 (just count) 1

As Table 1 shows, most of the properties described in this
section belong to di�erent complexity classes for monitoring.
Many of the properties are in fact inclusions of each other.
The inclusion relationships are as shown in Figure 11. How-
ever, there are some other interesting relationships as well.
In going from the no-loss to the lossy case, properties P3, P4
and P5 become very ineÆcient to monitor. Therefore, we
need to pick �ner subsets of P5: P8, P9 and P10, that will
still lend themselves to eÆcient monitoring in the presence
of loss. These subsets collapse to similar complexities as P3,
P4 and P5 in the no-loss case.

Properties P5, P6, and P7 are three orthogonal ways of
reigning in the unbounded size of
 in the brute-force search.
It is possible to combine some of these properties to arrive
at a property that relates to a real-world protocol. For ex-
ample, we combine P6 and P7 in the next section to arrive
at a TCP property. It may also be possible to combine
one of more of these properties with some protocol-speci�c
knowledge to reduce the size of
. Therefore, if a protocol
property that one wishes to monitor does not fall in one of
P5, P6, or P7, it does not immediately rule out an eÆcient
procedure, contrary to what seems to be the case by looking
at Figure 11 (\All" category). Whether there are other use-
ful protocol-independent properties that are orthogonal to
the three above, is an open question, one we hope to address
in future work.

P5 P6 P7

P2 P10P8 P4

P3P2o P9 P1

All

Figure 11: Relationships between Properties of g. An arrow
from property Q to property R means that Q implies R.

6 Monitoring TCP

We now show how to use the techniques described in the
previous sections in order to monitor TCP [15] implemen-
tations. For reasons of space, we consider only the receiver-
side behavior.

TCP implements a \sliding window" protocol to implement
reliable, in-order delivery. To transfer a large bu�er of data,
a TCP sender breaks it into small �xed-sized segments and
sends each numbered segment in a separate message. Ini-
tially, the sender assumes that the receiver is ready for the
�rst segment, and that the receiver can accept a certain
count of segments in its \window". It may send some of
these segments out on the network to the receiver. The re-
ceiver acknowledges (acks) these messages, with a sequence
number of the segment immediately after the contiguously
received part of the bu�er. Thus, if segments 1, 2, 4, and 5
have been received, where segment 3 was delayed or lost in
transit, TCP receiver may generate acks 2, 3, 3, and 3. The
sender forms a judgment of which segments (e.g. 3) got lost
in transit, and resends them. If the receiver now receives
segment 3, it generates an ack with sequence number 6, be-
cause segments 1-5 have been all received. Occasionally, the
receiver also gives an indication of newly available capac-
ity in its window, once some pre�x of the earlier contiguous
packets are consumed by the receiving application.

The TCP speci�cation prescribes the sequence number that
must be contained in an ack, based on the state of the re-
ceiver window as described above. It, however, allows a lee-
way that receivers may generate an ack at least every two
messages, so an implementation may decide to not ack every
single message.

Typically, we may wish to monitor TCP properties such as
the following:

1. The implementation is generating an ack for at least
every other message it receives.

2. Ack sequence numbers are non-decreasing.

3. Acks always acknowledge exactly the contiguously re-
ceived set of segments.

12

Each such property falls in a di�erent class of g, and hence
entails di�erent complexities in the monitoring process. Con-
sider data segments as input symbols and acks as output
symbols.

� TCP property 1 describes a g that is a counting prop-
erty, g 2 P1, with cmin = 1 and cmax = 2. This
property is easy to monitor both in the presence and
absence of loss.

� TCP property 2 describes a g in which inputs and
outputs are independent. Since g 2 P2o, even in the
presence of loss this property is easy to check. More-
over, property 2 can be checked independently of the
other properties.

� TCP property 3 describes a g that falls in class P5.
In the absence of loss between the monitor and device,
we can check this eÆciently using the algorithm in Fig-
ure 7. Interestingly, we can eÆciently check property 1
in conjunction with property 3, because the algorithms
for P1 and P5 compose well. Both de�ne ranges over
which the last output could have taken place, the al-
gorithm for the conjunction simply maintains the in-
tersection for these ranges.

� The algorithm described above does not work if there
is loss between the monitor and device. However, prop-
erty 3 can also be expressed as the composition of an
output-checkpointed property (P6) and a �nite state
property (P7). In order to see this, note that the
TCP monitor's state could be seen as a triple of the
form (unacked-data, contig-recd, recv-window), where
unacked-data is the number of unacknowledged data
packets since the last ack, contig-recd is the largest se-
quence number in the contiguously received data, and
recv-window is the data that has been received in the
window but is missing some segments. Here (unacked-
data,contig-recd) is output-checkpointed: when you
see an ack for sequence number s + 1, unacked-data
must be 0, and contig-recd must be s. On the other
hand, the recv-window is �nite-state, and its state
space can be as large as 2W�1, where W is the win-
dow size. So to monitor property 3 (together with
property 1) we can compose the algorithms for P6 and
P7. The complexity of such an algorithm is the sum
of the complexities of the two algorithms as shown in
Table 1, which is essentially the complexity of the P7
part (2W �B2 � 2B).

7 Conclusions and Related Work

This paper is most closely related to work on passive test-
ing [7]. They also use on-line monitoring to test protocol im-
plementations, but do not address the problems of in�delity
of traces. To our knowledge this paper is the �rst attempt
to create an abstract model of the in�delities that can arise
when monitoring a remote device under test, and to formally
specify conditions under which eÆcient correctness-checking
algorithms can be deployed.

Paxson [13] gives a good empirical overview of sources and
manifestations of in�delity, with a focus on wide-area net-
works. Our work concentrates on in�delity in a local-area
network setting and is a more formal treatment.

Most of the other literature devoted to network monitoring
is targeted toward network security concerns. Paxson's Bro

system [12] and the Network Flight Recorder [14] are good
examples of practical monitoring tools that must deal with
remote monitoring of trusted and untrusted devices. These
tools o�er high performance and customizability with the
addition of new speci�cation scripts, but such scripts are
developed in an ad-hoc manner and must take in�delity into
account by hand.

Testing of reactive systems from abstract speci�cations is
also an area of active research. Bhargavan et al. [3] give an
overview of networking-related analysis techniques. Formal
speci�cation and automatic veri�cation have also been used
in the context of telecommunications systems [6, 4]. Our
work di�ers from these in that we are not attempting to
generate test cases but rather to monitor the correctness of
an implementation during deployment. O'Malley et al. [10]
discuss the creation of property checking automata from
a graphical speci�cation notation. Event speci�cations [8]
have been used for run-time property veri�cation, and the
Verisim tool [2] applies this work to properties of network
protocols. However, all of these systems assume a co-located
style of speci�cation|that is, they assume that the device
under test can be directly instrumented and properties can
be checked in a synchronous manner. If the device under
test cannot be directly instrumented then the speci�cations
used must be transformed to take the resulting in�delity
into account. This paper has been a systematic exploration
of such transformations.

References

[1] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics, implemen-
tation. Science of Computer Programming, 19(2):87{
152, November 1992.

[2] Karthikeyan Bhargavan, Carl A. Gunter, Moonjoo
Kim, Insup Lee, Davor Obradovic, Oleg Sokolsky, and
Mahesh Viswanathan. Verisim: Formal analysis of net-
work simulations, August 2000. To appear in: Interna-
tional Symposium on Software Testing and Analysis.

[3] Karthikeyan Bhargavan, Carl A. Gunter, and Davor
Obradovic. A taxonomy of logical network analysis
techniques. Technical Report MS-CIS-00-14, Univer-
sity of Pennsylvania, 2000.

[4] Patrice Godefroid. Model checking for programming
languages using VeriSoft. In Proceedings of the 24th
ACM Symposium on Principles of Programming Lan-
guages, pages 174{186, January 1997.

[5] Gerard J. Holzmann. Design and Validation of Com-
puter Protocols. Prentice Hall, 1991.

[6] L. J. Jagadeesan, A. Porter, C. Puchol, J. C. Ram-
ming, and L.G.Votta. Speci�cation-based testing of re-
active software: Tools and experiments. In Proceedings
of the International Conference on Software Engineer-
ing, May 1997.

[7] D. Lee, K. Sabnani, A. Netravali, B. Sugla, and
A. John. Passive testing and its applications to net-
work management. In Proceedings of the International
Conference on Network Protocols, 1997.

[8] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M.Viswanathan. Runtime assurance based on formal

13

speci�cations. In Proceedings International Conference
on Parallel and Distributed Processing Techniques and
Applications, 1999.

[9] Nancy A. Lynch and Mark R. Tuttle. An introduction
to input/output automata. CWI Quaterly, 2(3):219{
246, 1989.

[10] T.O. O'Malley, D.J. Richardson, and L.K. Dillon. Ef-
�cient speci�cation-based test oracles. In Second Cali-
fornia Software Symposium (CSS'96), April 1996.

[11] V. Paxson. Automated packet trace analysis of TCP
implementations. Computer Communication Review,
27(4), October 1997.

[12] V. Paxson. Bro: A system for detecting network intrud-
ers in real-time. Computer Networks, 31(23-24):2435{
2463, December 1999.

[13] V. Paxson. End-to-end internet packet dynamics.
IEEE/ACM Transactions on Networking, 7(3):277{
292, June 1999.

[14] M.J. Ranum, K. Land�eld, M. Stolarchuk,
M. Sienkiewicz, A. Lambeth, and E. Wall. Implement-
ing a generalized tool for network monitoring. In Pro-
ceedings of the Eleventh Systems Administration Con-
ference (LISA XI), pages 1{8, 1997.

[15] W. Richard Stevens. TCP/IP Illustrated, Volume
1: The Protocols. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

Appendix: Proof for P1

De�nition 2 (iqtail) Let iqtail(!) equal the sequence of iq
elements in ! that are prior to the last oq element but which
were not consumed before the oq, that is, which do not have
a corresponding id element before the oq, plus all iq's that
appear after the last oq element, regardless of whether the
corresponding id is in !. If ! does not contain any oq's,
then iqtail(!) is just the sequence of iq's in !.

De�nition 3 (idtail) Let idtail(!) equal the sequence of id
elements in ! that appear after the last od element. If ! does
not contain any od's, then idtail(!) is just the sequence of
id's in !.

State Space Mapping. The mapping is given by the fol-
lowing inductive hypothesis:

: e =) (8i :: bufmin � i � bufmax ()
(9(!; b) 2
 :: jiqtail(!)j = i))

^ e()
 = �

Base Case. Initially,
 contains only one element, which
has a zero length ! and a zero length b. The initial con-
ditions for bufmax, bufmin, and e are all consistent with the
state space mapping.

Inductive Step. Consider the input actions in each algo-
rithm corresponding to iq events. In Figure 3, this action
deletes each member of
 and adds a new member with the
iq action added to both ! and b, as long as ! is admissible
and its projection [!]id,od is in g. In Figure 4, an input event

increments both bufmin and bufmax, checks for an error condi-
tion, and then adjusts bufmax if necessary. We need to show
that the state space mapping still holds. First, note that if
any (!; b) 2
 has an ! such that jiqtail(!)j >= B+cmax, it
will be deleted from
 because the result of adding the iq to
! will be inadmissible according toM 0, which recall is equal
toM(S;m+c�n; 0). In this case c = cmax and B = m+c�n.
! will be inadmissible because at most cmax id's can appear
after the last od; oq by way of property P1. The remaining
B iq's �ll up the bu�er and adding one more causes it to
over
ow, removing the resulting string from consideration.

If bufmin >= B + cmax before the input action, this implies
(by the inductive hypothesis) that every (!; b) 2
 has a
iqtail(!) whose size is at least B+ cmax. When the iq event
is added, all will be deleted and
 will be empty. This
corresponds to setting e to true in Figure 4. If bufmin <
B + cmax before the input action, then there is at least one
(!; b) 2
 such that jiqtail(!)j = i for every i between bufmin

and bufmax. Each will be removed and replaced with an
(!; b) pair with exactly one iq event added to each of ! and
b, except for those that become inadmissible with respect
to M 0. This corresponds exactly to bufmin and bufmax being
incremented by one, and bufmax being capped at B + cmax

in Figure 4. The iteration step 2 in Figure 3 has no e�ect
on the mapping because it only adds id events to ! and
does not modify iqtail(!). Note, however, that this iteration
guarantees that every pattern of idtail(!) such that 0 �
jidtail(!)j � min(cmax; bufmax) will be generated. This is
because each element of the iqtail(!) will be converted to
an id and check-added to
. Those with more than cmax

id's will be discarded, since they are not in g, but all others
will be accepted due to property P1. The longest iqtail has
length bufmax, leading to the upper bound.

Next, consider the output actions in each algorithm corre-
sponding to the oq events. In Figure 3, this action �rst
deletes every element of
, replacing each with one that has
the od; oq event pair added. Then the same iteration dis-
cussed previously is repeated. Note that if any (!; b) has
an idtail(!) < cmin, it will be deleted because the result of
adding the od will not be in g, according to P1. In Figure 4,
if bufmax < cmin, then all idtail(!) must have length less
than cmin, because idtail(!) < iqtail(!) < bufmax.
 thus
becomes empty after the �rst step. This corresponds to set-
ting e to true in Figure 4. Otherwise, Figure 4 decrements
bufmax by cmin, but caps bufmax at B because even though
iqtail can grow larger than B, the new iqtail will be at most
B because it consists of only the un-consumed iq events in
!, of which there can be at most B. The algorithm also
decrements bufmin by cmax, setting it to zero if it goes neg-
ative. This corresponds to the fact that pairs (!; b) will be
deleted from
 if they violate the cmin and cmax limits given
by g, which means that the new minimum and maximum
values of iqtail(!) will be given when the maximum number
of inputs are consumed from the minimum previous iqtail
and the maximum number of inputs are consumed from the
maximum previous iqtail. These consumptions are justi�ed
because we have a guarantee that every pattern idtail(!),
such that 0 � jidtail(!)j � min(cmax; bufmax), will have been
generated at the end of the previous iq or oq event.

14

