While running an election sounds simple, it is in fact extremely challenging. Not only are there millions of voters to be authenticated and millions of votes to be carefully collected, counted, and stored, there are now millions of "voting machines" containing millions of lines of code to be evaluated for security vulnerabilities. Moreover, voting systems have a unique requirement: the voter must not be given a "receipt" that would allow them to prove how they voted to someone else---otherwise the voter could be coerced or bribed into voting a certain way. This lack of receipts makes the design of secure voting system much more challenging than, say, the security of banking systems (where receipts are the norm).
We discuss some of the recent trends and innovations in voting systems, as well as some of the new requirements being placed upon voting systems in the U.S., and describe some promising directions for resolving the conflicts inherent in voting system requirements, including some approaches based on cryptography.
Brief Bio:
Professor Ronald L. Rivest is the Viterbi Professor of Computer Science in MIT's Department of Electrical Engineering and Computer Science. He is a member of MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL), a member of the lab's Theory of Computation Group and is a leader of its Cryptography and Information Security Group. He is also a founder of RSA Data Security. (RSA was bought by Security Dynamics; the combined company has been renamed to RSA Security); he is also a co-founder of Verisign and of Peppercoin.He has also worked extensively in the areas of computer algorithms, machine learning, and VLSI design.
For a more detailed version of Professor Rivest's Bio please visit: http://people.csail.mit.edu/rivest/bio.html
_____________________________________________________________________________________________________