A LIGHTNING OVERVIEW OF THE PENN CIS UNDERGRADUATE CURRICULUM

March, 2015
Caveat

• Check the departmental web pages for up-to-date information.
Core Courses
CSCI Core Curriculum

- CIS 110: Introduction to Computer Programming
- CIS 120: Programming Languages & Techniques I
- CIS 121: Programming Languages & Techniques II

- CIS 160: Mathematical Foundations for Computer Science
- CIS 262: Automata, Computability, and Complexity
- CIS 320: Introduction to Algorithms

- CIS 240: Introduction to Computer Architecture
- CIS 371: Computer Organization and Design
- CIS 380: Computer Operating Systems

- CIS 400/401: Senior Design Project

(Exact requirements vary with the degree program)
CIS 120 (Fall, Zdancewic/ Spring, Weirich)

• Fast-paced introduction to programming for CIS majors
• Prerequisite: Some programming experience
 – e.g., a high-school programming course or CIS 110
• Topics:
 - program design, testing
 - lists, trees, recursion
 - abstraction, abstract datatypes: sets, maps, containers
 - heap-structured data, references, aliasing
 - object-oriented design
• Approach:
 - ½ OCaml, ½ Java
 - 10 projects, including: Phylogenetic trees, GUI implementation, Image Processing, Game
CIS 121: DATA STRUCTURES AND INTRODUCTION TO ALGORITHMS IN JAVA

(Fall: Callison-Burch, Spring: Gandhi)

Prerequisites: 120 and 160!

Themes:
- become an even better programmer
 - 4-5 weekly prog. hwks, 1 multiweek project, Eclipse, JUnit
- worry about efficiency, analyze running time (Big-O)
 - 2 math-like hwks, math-like questions on exams
- learn the “data structures” set of techniques
 - Stacks, Queues, Lists, Trees, Heaps, Search Trees, Graphs, Hash Tables

Grade: two midterms, final, homework, lab participation
CIS 160: Mathematical Foundations of Computer Science
(Fall, Gandhi/Spring, Tannen)

- An introduction to basic proof techniques and mathematical reasoning as used in computer science.
- An introduction to basic mathematical concepts and techniques used in computer science.
- Mathematical reasoning and proof principles; logic
- Set theory
- Relations, Functions, Partial Functions
- Induction on the natural numbers
- Composition of relations and functions
- Recursion on the natural numbers
- Injections, Surjections, Bijections
- Inverses of functions and relations
- Equinumerosity, Cantor’s Theorem
- Pigeonhole principle, Schroeder-Bernstein Theorem
- Strings, Multisets
- An amazing surjection: Hilbert space-filling curve
- Some counting problems
- Binomial coefficients, the binomial formula
CIS 160 (continued)

- Partial orders, lattices
- Well-founded orderings and complete induction
- Equivalence relations and partitions. Closures.
- Trees, multiset ordering, string and tree embedding
- Graphs (directed and undirected; unlabeled and labeled)
- Graph homomorphisms
- Baby number theory; divisibility, modular arithmetic
- more …

- 5 homework assignments, 2 midterms, one final exam.
- Partial collaboration allowed.

- Ultimate goal: Learn how to attack problems effectively and how to construct rigorous arguments to validate proposed solutions. No nonsense approach, learn how to use counter-examples.
CIS 262: Theory of Computation
Instructor: Alur, Fall/Gallier, Spring

- Prerequisite: 160

- The Science of Computing: Can we study computation abstractly (without worrying about specific programming language and computer platform)?
 - There are inherent limits to what can be computed (the notion of Undecidability)
 - Turing machines capture what can be computed
 - Finite automata capture what can be computed with finite memory (and are useful for query languages)
 - Tractable problems: What can be computed in polynomial-time (P vs NP question)
CIS 262: Theory of Computation

Topics:
- Finite automata and regular languages
- Context-free languages (CFL)
- Turing machines and recursive languages
- NP-completeness

Course emphasizes rigorous thinking and mathematical proofs
Prerequisites: CIS 120, 121, 160, 262.

- Algorithm design paradigms
 - Central themes in designing efficient algorithms.
 - Commonly used algorithmic building blocks.

- Modeling problems
 - Identifying the core computational task.
 - Relating seemingly different problems.

- Limits of efficient computation
 - Recognizing intractability, and dealing with it.
Some of what you will learn …

- How do you design a communication network?
- How do you find shortest paths in a map?
- How do you compress a large text file?
- How does diff3 work?
- How can you efficiently compute a good solution to the Traveling Salesman Problem (TSP)?
CIS240: Introduction to Computer Systems
(Taylor – Fall, Farmer – Spring)

• Prerequisite: CIS110

• Bottom-up, no-magic intro to systems
 • Data representation (1s and 0s)
 • Digital logic and hardware
 • Low-level programming and debugging
 • Compilers, operating systems, security

• Three programming projects
 • Operating system calls: in assembly
 • Game (Tetris, Maelstorm): in C
 • Binary utility: in C
CIS371: Computer Organization and Design
(Brown, Spring)

- Prerequisite: CIS240
- How hardware “really” works
 - Basic hardware tricks: caching, pipeline, speculation, parallelism
 - Performance, costs, and trade-offs
 - Experimental analysis
- Hardware prototyping project
 - Pipelined CPU using Verilog, FPGA
 - Ties in neatly with CIS240
CIS-380: Operating Systems (Blaze, Fall)

• Prerequisite: CIS-240 or EE-300
 – working knowledge of C programming essential

• What you’ll learn
 – How does software run, what’s an OS do?
 – Processes, memory, devices, storage, networks, security, distributed computing

• What you’ll do
 – 380 is course on OS principles (exams, projects)
CIS400 / 401: Senior Project
(Nenkova/Smith, Fall/Spring)

- Small groups work together on an engineering problem of their choice.
 - Showcase creativity and expertise
- It is what you make of it… ‘nuff said…
Project Electives
• Programming the essential geometric concepts underlying 2D and 3D computer graphics. Prerequisite CIS 120.

• C++, OpenGL, and QT/QT Designer.

• Extends programming beyond CIS120 (Java) into [significant] computer [graphics] programming projects
 – used in CIS 460.

• Stresses: code reuse, debugging, good program design, graphical user interfaces, challenge, “fun” visual assignments.

• Assignments build on one another: Geometric algorithms, scene graphs, keyframe editor, 3D camera viewer, polygon mesh editor, subdivision surfaces, deformations.
CIS 341: Compilers
(Zdancewic, Spring)

• Prerequisites:
 – CIS 121, 240

• Course topics:
 – Programming in Ocaml
 – Grammars, Lexing and Parsing, tools lex & yacc
 – Intermediate language representations
 – Syntax-directed translation, code generation
 – Implementing high-level features: loops, functions, closures, objects, exceptions
 – Optimization techniques: hoisting & code motion, CSE, constant propagation, strength reduction, register allocation,…
 – Memory management / garbage collection

• Heavily Project oriented: build the “Quaker OAT” compiler
 72% projects / 28% exams
Large-scale software engineering:
• Large versus small systems
• Project Scheduling: Planning vs. Reality
• Internal Communication & Documentation
• Programming in teams/groups
• Planning, Coding and Testing
• Tools – version control, HLL, toolkits
• Design methodologies – “Cathedral” vs. “Bazaar”, open source, commercial dev.
• Manuals, User Interfaces (look and feel)

Grading:
• 20% Project Plan
• 20% Mid-term exam
• 20% Final Exam
• 40% Project Evaluation

1 Lecture/week, 1 All-hands mtg./week

Project (currently Android focused):
• Run as a software startup
• 2-4 person groups
• System admin and test groups
• Application groups focus on adding new services, such as: ATMs near Penn, Food trucks, Facebook event planner, Career services events, etc.
• Weekly “all-hands” meetings with 5-slide presentations by each group
CIS450/550: Database Management Systems (Davidson, Fall / Ives, Spring)

- What’s the backbone of on-line reservation, registration, and retail systems (e.g. Amazon, eBay, Expedia,…)? Databases!
- Unlike other CS courses that focus on code, in this course the focus is on representing and managing data that lives beyond the lifetime of a program.
 - Reliable storage & recovery of 100s of GB
 - Querying/updating interface
 - Fast, optimized retrieval
 - Support for many concurrent users
 - APIs for web applications
- Course involves SQL, XQuery and other homeworks and a project (done in groups) involving relational db design, SQL, XML, Java programming
- Prerequisites are CIS121, 160
- ***FORMERLY CIS 330***
CIS 455/555 – Internet and Web Systems
(Ives, Fall / Haeberlen, Spring)

• How do the systems of the Internet and the Web work – and how do they scale to millions of users?
• How do we build reliable, high-performance systems like EBAY, Google, Facebook, 2nd Life, ...?
• How do we exchange and search for data in a distributed Web setting?
• How do we program large-scale distributed applications?

Prerequisites:
 – Java skills, debugging skills, some familiarity with threads
 – CIS 121 & CIS 380
CIS 455 Topics and Projects

- Architectures for distributing computation and data
 - client-server, hierarchical, P2P, cloud, grid, sensor, ...
- Programming models for distributed computing
 - servlet, message-passing, remote procedure calls, map/reduce, XQuery
- Fundamental distributed algorithms
 - clock sync, consensus, concurrency, transactions, ...
- XML and its role in the Web
 - XML for interchange and integration, XPath, XQuery, Web Services
- Web search
 - Information retrieval, keyword ranking, PageRank, Google
- “Programming in the large” – progressively build components to main project:
 - Web server; pub-sub system with crawler; P2P cache for YouTube results
- Google clone – P2P crawler, index, search engine, PageRank, ...
CIS 553: Networked Systems
(Loo, Spring)

• How are networks designed, tested, and built? How do routers work? How can we build overlay networks over the Internet?
• Topics covered: Internet architecture, routers, transport protocols (TCP), network security, p2p networks, wireless networks, overlay networks, network testbeds (PlanetLab), network simulation/simulation tools
• Course pre-requisites: CSE 121 or equivalent.
• Students design and build a large networked system, layer-by-layer on a 24-node cluster:
 – Router implementation: Link state and Distance Vector protocols
 – Chord Distributed Hash Table over their routing code
 – P2P applications (e.g. keyword search, publish/subscribe) over Chord
CIS 553 Projects

• Undergraduates are welcomed!
 – 7 undergrads last year, out of 34 students. All did very well.
 – 3 Penn undergrads and 2 masters students working on independent studies with Prof. Blaze this semester.
 • One has submitted an ACM SIGCOMM workshop paper!
 • Another is doing summer internship at a startup company collaborating with Prof. Loo.

• Next year’s highlights:
 – TCP: students build a reliable transport protocol over their routing protocol implementation
 – Network Simulator (NS-3) open-source development
 • http://www.nsnam.org/
ESE350 Introduction to Embedded Systems

Ever wanted to build some a flying quadrotor, an arcade game or learn how to network wireless sensors, controllers and actuators?

ESE350 is where hardware marries software and the world of Embedded Systems begins.

A great course for CIS/CIT juniors and seniors. No hardware skills necessary just knowledge of basic C programming

Offered every Spring.
Check out http://www.seas.upenn.edu/~ese350/

The Internet of Things – when sensors, controllers and actuators talk to each other

Nintendo Hacking

NBA Arcade Games

Flying Quadrotors
CIS Undergraduate Electives
• One of the few Social Science category courses in SEAS.
• Co-Instructors: Norm Badler (CIS) and Clark Erickson (Anthropology and University Museum)
• Case studies, critiques, and methods of how archaeology and the past are represented, created, presented and used in movies, museums, games, the internet, and art.
• Projects span interactive, digital media using modeling and visualization tools, especially focused on human appearance, artifacts, rituals, and cultural activities.
• Focus on Inca civilization in South America (c. 1400-1500)
CIS 140 - Introduction to Cognitive Science
(Ungar, Fall)

Cross listed with: Cogs001, Phil044, Ling105, Psych107

How do minds work? This course surveys a wide range of answers to this question from disciplines ranging from philosophy to neuroscience. The course devotes special attention to the use of simple computational and mathematical models. Topics include perception, action, thought, learning, memory and social interaction.

Lyle Ungar & David Brainard
CIS140 Topics

- What is intelligence?
- How do brains work?
- Learning and memory
- Voles in Love
- Perception
- Bayes Rule
- Concept Learning
- Development and Plasticity
- Attention and Executive Function
- Reinforcement Learning
- Judgment and Decision Making
- Mind, language and computation
- Emotion
- Why computers are autistic
- Metaphor
- Consciousness

This is a broad survey course, covering a wide range of models of mind. Particular attention is given to the visual system and to the role of Bayesian modeling.
CIS 19X: Mini Courses
(Various - Fall/Spring)

• 1/2 credit, project-oriented, mostly skills and practice, not theory
• Prerequisites:
 – 120/121 (240 for C++ class)
• Each course covers a different topic:
 – 190 - C++
 – 191 - Unix skills
 – 192 - Python
 – 194 - Haskell
 – 195 - iPhone
 – 197 - Javascript
CIS 331: Intro. to Networks & Security
(Heninger, Spring)

• Basic concepts:
 – threat models, the security mindset
• Applied cryptography:
 – public and private key encryption, digital signatures and authentication, hash functions, secure channels
• Networks and network security:
 – IP, TCP, routing, network protocols, web architecture, web attacks, firewalls, intrusion detection
• Software security:
 – defensive programming, memory protection, sandboxing, virtual machines, buffer overflows, malware
• Broader issues:
 – privacy, security and the law, digital rights management, denial of service, ethics, etc.
Prerequisite: CIS 320.

- A powerful algorithmic resource, like space and time.
- Simple algorithms that match/exceed the performance of complex deterministic algorithms.
- Algorithms and protocols for problems that we are unable to solve deterministically.
Some of what you will learn ...

- How do you check if two large documents are identical by examining a small number of bits?
- How do you check the output of a program without actually doing the computation yourself?
- How does Google compute Pagerank?

Learn about some neat research areas: approximation algorithms, data streaming, interactive proofs, online algorithms, random walks, secure computation.
CIS 390
(Robotics, Daniliidis, Fall)

Main topics:
1) kinematics of robot
2) computer vision for estimation and control
3) planning motions for mobile robots
4) learning for improving performance

Robotics is a fast moving field. Making a robot think and act is no longer science fiction. Honda's Asimo Humanoid robot, Sony Aibo robotic dogs and DARPA Grand Challenge robotic cars are exciting examples. It is an interdisciplinary topic covering concepts from computer science, electrical engineering and mechanical engineering. One goal of this course is to expose students to the connections among CS, EE and ME through a sequence of hands-on projects which involving designing, building and controlling a mobile robot. Students will be encouraged to form interdisciplinary teams across different majors.

Project demo: http://www.youtube.com/watch?v=LIWKXva4d10
• Prerequisites: CIS 121
• Focus: Artificial Intelligence as Building Rational Agents
 – Learn methods & programming techniques to build rational agents:
 Programs that can achieve a set of goals or maximize a payoff,
 given the available information
What You’ll Learn & Build

0. Introduction & Python Programming
1. Search Strategies, Constraint Satisfaction, Adversarial Games
 • Build a bot that competes against other game bots to play a simple board game (Kingdoms)
 • Build a solver for any Sudoku problem
2. Knowledge Representation and Logic
 • Build an agent that plays Hunt the Wumpus using propositional logic theorem proving
3. Machine Learning: Perceptrons, Naïve Bayes, etc.
 • Build a spam filter using Naïve Bayes machine learning
CIS 399: Algorithms for Data Streams (Guha – Spring)

• An introduction to Randomized and Approximation Algorithms

• How will your program cope if cannot store all the input? How do you answer:
 – Which two nodes in a graph are communicating the most without tracking all n^2 pairs?
 – If the graph currently connected (if edges are inserted and deleted) without storing all history?
 – Does a random graph have a Hamiltonian cycle?

• Textbook (augmented with research papers)
 – *Probability and Computing: Randomized algorithms and Probabilistic Analysis* by Mitzenmacher & Upfal

• CoRequisites: CIS 320 or equivalent. Some familiarity with probability.
CIS 399 Open-Source Software Development
(Murphy, Fall)

• Students work on open-source projects for academic credit under supervision of faculty member and industry mentor
• Mentor provides guidance on process, feedback on code, etc.
• Weekly meetings with faculty member to discuss progress and address issues
• Students must apply to be admitted to course; an email about this will go out soon
CIS 419/519: Intro. to Machine Learning
(Eaton, Fall)
www.seas.upenn.edu/~cis519

Introduces machine learning algorithms and concepts, emphasizing the practical application of ML to real problems

Format: Individual written/implementation assignments, exams, and a team project applying ML to open problems

Prerequisites: CIS 121
Statistics or linear algebra would be helpful, but not required
CIS441/CIS541: Embedded Software for Life-Critical Applications (Lee, Fall)

- **Prerequisite:** CIS240; ESE350 recommended
- **The course is**
 - The course is to study principles, methods, and techniques for building *Cyber-Physical Systems* that are safety critical.
- **The goal is**
 - to give students greater design and implementation experience in life-critical embedded software development, and
 - to teach them how to model, design, optimize, verify, implement, and validate safety critical systems in a principled manner.
- **Topics covered include**
 - Cyber physical systems, distributed real-time systems, real-time programming, assurance cases, modeling and verification, testing and validation, software architecture...
- **The team project is to design and implement a life-critical system such as a pacemaker, and consists of six tasks:**
 1. modeling
 2. verification
 3. implementation
 4. validation
 5. demo
 6. a written report based on assurance case.
CIS 460/560: Computer Graphics
(DMD Required: Badler, Fall)

- Conceptual and programming overview of computer graphics focusing on 3D modeling and realistic rendering.
- Geometric transformations, geometric algorithms, software systems (OpenGL), 3D object models (surface and volume), visible surface algorithms, image synthesis, shading and mapping, ray tracing, radiosity, volume rendering, global illumination, photon mapping, and anti-aliasing.
- Prerequisite: CIS 277 (C++) or equivalent programming experience (1 year+).
- Programming assignments: scene graph or building editor, 3D modeler, ray-tracing, volume (“cloud”) rendering.
CIS 462/562: Computer Animation
(DMD Required: Lane, Fall)

Description:
Solid technical foundation for developing, animating and controlling articulated systems used in interactive computer games, virtual reality simulations and high-end animation applications

Topics include:
• Principals of Animation and Keyframing
• Motion capture
• Procedural animation
• Facial animation
• Computer simulation
• Crowd animation
• Intelligent agents
• Forward and inverse kinematics
• Dynamic systems and control
• And others…
CIS 462/562: Computer Animation

Student Projects

Simple Particle System of shooting rockets and generating sparks

Motion Capture, Forward Kinematics
Inverse Kinematics, Motion Blending

Also:
• A curve editor using Bezier curve, Hermite curve and B-spline
• An agent/crowd simulator

Prerequisites:
CIS 120
Familiarity with linear algebra (or EAS 205)
CIS 277 preferred
This course is primarily meant for undergraduate and graduate students from Linguistics, Psychology, Philosophy, and Biology.

CIS undergraduates will be allowed only if they agree to do a substantial term project involving computational linguistics.

-- This requirement is there because a lot of the mathematical work in this course is already familiar to the CIS undergraduates.

-- This course is not a substitute for CIS 160, 261, or 2XX (Introduction to Computational Linguistics).

http://www.seas.upenn.edu/~cse477
How many interpretations for

I ate sushi with tuna
I ate sushi with tuna

I bet you didn’t think of this interpretation before!
CIS 497: DMD Senior Design (DMD Required) (Badler: Fall/Spring)

- The goal of this course is to provide an opportunity to define, design, and execute an individualized project.
- Evaluation is based on ability to:
 - select an interesting topic
 - Communicate objectives in writing and presentations
 - accurately gauge what resources are required to complete chosen task
 - Execute the plan.
The Singh Program on Networked & Social Systems

- First-of-its-kind program centered around the CS (and beyond) topics of the Internet Age!
 - The study of systems and humans with incentives interacting through a network
 - Game theory, recommendations, influence, optimization, authority, privacy, algorithms, and much more!

- Accepting freshmen and rising sophomores for Fall
 - GPA of 3.3+ over 8+ CUs
 - PHYS 150 and at least 2 of: MATH 104, 114, CIS 160
 - CIS 110/120 preferred

- For more details and the transfer application: www.seas.upenn.edu/mkse/transfers.php
NETS112: NETWORKED LIFE (Kearns, Fall)

• Networked Life will explore recent scientific efforts to explain social, economic and technological structures -- and the way these structures interact -- on many different scales, from the behavior of individuals or small groups to that of complex networks such as the Internet and the global economy.

• This course covers computer science topics and other material that is mathematical, but all material will be presented in a way that is accessible to an educated audience with or without a strong technical background.

• The course is open to all majors and all levels, and is taught accordingly. There will be ample opportunities for those of a quantitative bent to dig deeper into the topics we examine. The majority of the course is grounded in scientific and mathematical findings of the past two decades or less.
NETS 150: Market & Social Systems on the Internet *(Spring, Sheth)*

- How do social networks make recommendations?
- How has Google rewritten the rules of advertising, using concepts from auctions and game theory?
- How does a search engine work?
- How does the Internet work?
- If you’ve wondered about any of these... then NETS 150 is the course for you!
 - It’s about networks – social networks, information networks, commerce networks, communications networks
- Prerequisites: CIS 110; co-requisites: CIS 120; 160 rec.
NETS 212: Scalable + Cloud Computing (Haeberlen – Fall)

- **What you will learn:**
 - How large-scale web services such as Google or Facebook work behind the scenes
 - How to build extremely large-scale services (such as the file system Google uses)
 - How to write massively parallel programs and work with massive amounts of data
 - How to do social network analysis, e.g., to recommend videos on YouTube
 - ... and much more!
 - Projects: Mini-Facebook, LiveJournal visualizer, MapReduce on EC2

- **About the course:**
 - Prerequisites: CIS120, CIS160; co-requisite: CIS 121
NETS 213: Crowdsourcing and Human Computation
(Callison-Burch, Spring)

• Intersection of CS and economics
 – How can people solve tasks that are beyond the capabilities of AI?
 – Incentivize work through micropayments or games with a purpose

• Has resulted in new trends in
 – Machine learning
 – Human-computer interaction
 – Natural language processing
 – Programming languages
NETS 412: Algorithmic Game Theory (Roth - Spring)

- **Topics:**
 - Game Theory, Game Dynamics
 - Linear Programming, zero sum games, Nash equilibria
 - Mechanism Design
 - Market equilibria, auctions, ...

- **Prerequisites:**
 - CIS 320 (may be taken concurrently)
CIS-125: Technology and Public Policy
(Smith, Spring)

- How does technology affect our society? What’s the right way to deal with disruptive advances in technology? Can engineers be more powerful than politicians?
- We look at different technologies each week
 - Policy issues examined from engineering perspective
 - Engineering issues examined from policy perspective
- Non-engineers welcome
- Substantial writing and discussion
- Counts as TBS
CIS-125 (continued)

- Specific topics vary each semester, e.g.,
 - Privacy & surveillance
 - Nuclear weapons & arms control
 - And how to build your own bomb
 - Radio spectrum
 - Electronic voting
 - Nanotechnology
 - Biotechnology
 - Copyright and digital publishing
 - Regulating and funding science
CIS 261 - Discrete Probability, Stochastic Processes, and Statistical Inference
(Mintz, Fall)

• Prerequisite(s): CIS 160
• The purpose of this course is to provide a 1 CU educational experience which tightly integrates the theory and applications of discrete probability, discrete stochastic processes, and discrete statistical inference in the study of computer science.
EAS 205, Applications of Numerical Methods
(TBA / Fall)

What do the following topics all have in common?

- Computer Graphics
- Robotics
- Image Compression
- Control Theory
- Audio Processing

- They all revolve around numbers and numerical algorithms!
EAS 205, Course Goals

• Explain how numerical methods are used to solve a variety of canonical problems such as:
 – Transform and lighting computation
 • Used in graphics, robotics, vision
 – Signal coding
 • Used in JPEG coding, Audio coding
 – PageRank
 – Face Recognition
 – Simulating Dynamical Systems

• Course will revolve around 5 or 6 projects and will cover the underlying mathematics and show how the theory is actually applied.

• Prerequisites - Math 114 and CIS 110 or equivalent
• Counts as a mathematics course
CIS 398 - Quantum Computer and Information Science
(Mintz, Spring)

• Prerequisite(s): CIS 160, CIS 262, and Math 240.
• The purpose of this course is to introduce undergraduate students in computer science and engineering to quantum computers and quantum information science. This course is meant primarily for juniors and seniors in CIS. No prior knowledge of quantum mechanics is assumed.
• Counts as a Natural Science
EAS 590: Commercializing Software (1CU)
Mondays 6-9pm
[weebly link]

- work on a real startup
- hands on learning
- technology + business
- work in teams of four
- mobile/web product
- not a technical class

- EENT Minor elective
- TBS category elective
- free elective
- CSI/MSE and MCIT: Non-CIS Course Elective

Examples:
[website links]

Information and Networking sessions: Skirkanich 508

- Tue 3/27 4-5pm
- Wed 4/9 6-7pm

Information

- Tue 4/3 4-5pm
- Wed 4/16 6-7pm

Networking

Contact Prof. Tomas Isakowitz
[email]

Advanced Elective Courses
CIS 500, Software Foundations

(Pierce, Spring)

- A rigorous introduction to the theory of programming languages
 - functional programming
 - constructive logic and the Coq proof assistant
 - reasoning about programs (program equivalences, Hoare logic)
 - type systems and type safety
- Prerequisites: 121, 160, 262; substantial mathematical maturity
CIS520: Machine Learning
(Ungar, Fall)
How does your email know what is spam?
or your camera focus on faces?
or your phone recognize what you said?
or helicopter-robot fly upside down?
How can you make machines learn to work better?
Course content
– Learning algorithms, theory and applications
– Some topics: regression, support vector machines,
 boosting, neural nets, generalization bounds, EM,
 k-means, PCA, dimensionality reduction, HMMs,
 graphical models, reinforcement learning, ...
Fine print (prerequisites)
– Multivariate calculus, linear algebra, elementary probability
– Programming experience (C, Java, or Matlab)
CIS 530: Computational Linguistics (Nenkova, Fall)

Grand Challenge: For computers to use NL as effectively as people
- Reading and writing text: Summarizing, Extraction into Databases
- Interactive Dialogue: Natural, effective access to computer systems; Informal Speech Input and Output
- Translation: Input and Output in Multiple Languages

Topics:
- **I – Intro & Word–Based Methods**: Introduction to Python, Statistics; Statistical Part of Speech Tagging; Speech Recognition
- **II – Parsing**: Introduction to Syntactic Analysis; Statistical Parsing
- **III – Extracting Meaning**: Automatic Word Sense Disambiguation, Sense Role Labeling, Discourse Structure
- **IV – Putting the Pieces Together**: Machine Translation, Summarization

Prerequisites: An intro to AI, Machine Learning, Cognitive Science or Natural Language syntax *or* permission of the instructor
CIS 534: Multicore Programming

• Prerequisites: CIS371, CIS380
 • C++ experience recommended

• Dominant paradigm for next 5-10 years: multi-core chips
 • CPUs: few cores today, dozens tomorrow
 • GPUs: already highly parallel

• How do we program them?
 • Active area of research

• Course topics
 • Identifying & extracting parallelism, parallel hardware, data-, task-, thread-level parallelism, synchronization, performance tuning, hands on projects
CIS 540: Principles of Embedded Computation (Alur, Spring)

- Prerequisite: mathematical maturity (ESE 210 or CIS 262)
- Principles underlying design and analysis of computing elements that interact with physical environment
 - Reactive: Interaction of a component with its environment via inputs/outputs
 - Communication, Concurrency, Real-time response
 - Sensors, actuators, computers all together
 - Canonical examples: Cruise control software
CIS 540: Principles of Embedded Computation

- Theory + Assignments in MATLAB
- Topics
 - Model-based Design
 - State machines, Dynamical systems, Hybrid systems
 - Models of Interaction
 - Asynchronous, Dataflow, Time-triggered
 - Specification and Verification
 - Requirements, Analysis techniques, Model checking
 - Modeling Performance
 - Probabilistic models, Steady-state analysis, Quantitative properties (e.g. power usage)
Instructor: Smith, Fall

• Prerequisites:
 – Java (CIS 120 / 121)
 – C or C++ helpful (CIS 240)
 (but not necessary - you can pick up what you need to know)
 – Some computer networks experience (helpful but not required)

• Projects:
 – Buffer overflow attack
 – Network intrusion detection (filter TCP traffic)
 – Simplified DES implementation
 – Simulated ATM: authentication, authorization, key exchange, signatures

• 2 Midterms and a Final
CIS 551 Course Topics

- **Software Security / Malicious Code**
 - Buffer overflows, viruses, worms, protection mechanisms

- **System Security**
 - Hacker behavior, intrusion & anomaly detection, hacker and admin tools

- **Networks & Infrastructure**
 - TCP/IP, Denial of Service, IPSEC, TLS/SSL

- **Internet Security**
 - Viruses, worms, spam, web security (XSS), phishing

- **Basic Cryptography**
 - Shared Key Crypto (AES/DES), Public Key Crypto (RSA)

- **Crypto Software & Applications**
 - Cryptographic libraries, authentication, digital signatures

- **Covert Channels**
CIS 552: Advanced Programming
(Weirich, Fall)

- Goals:
 - to take good programmers and turn them into excellent ones
 - to introduce a range of modern software engineering practices

- Content: Mindbending projects in Haskell, an advanced functional programming language

- Prerequisites: Four courses involving significant programming and a discrete mathematics or modern algebra course

- Audience: Juniors and Seniors, Grad students

http://www.seas.upenn.edu/~sweirich/cis552/
CIS 556 Cryptography

(Heninger, Fall)

- **Symmetric cryptography** Block ciphers, stream ciphers, hash functions
- **Public-key cryptography** number theory, public key encryption, digital signatures
- **Cryptographic security** network security protocols, side-channel attacks
- **Magical crypto tricks** secret sharing, commitments, zero-knowledge proofs
- **Research topics** privacy-enhancing technologies, lattices, etc.

Prerequisites: *Mathematical maturity*, comfort with both proofs and programming. CIS 320+262 is probably sufficient, Math 371 is helpful.
CIS 559: Programming and Problem Solving
(Swapneel Sheth, Fall)

• No lectures, no reading assignments, no exams!
• Work on 4 projects (roughly 3 weeks each) in groups of 2-3
• Open-ended problems; discuss and analyze solutions; implement them
• Improve programming ability and problem solving skills

• Previous year’s website (taught by Chris Murphy)
CIS 563: Physically Based Animation

When: Spring, Kavan

Description:
• Learn state-of-the-art techniques used to produce highly realistic special effects for:
 movies
 video games
 surgical simulation systems

These are examples of what you will learn to simulate!
CIS 563: Physically Based Animation

Learn Physically Based Modeling techniques for the animation of:

- fluids and gases
- explosions
- virtual characters
- rigid and deformable solids
- cloth
- fire and other systems

Prerequisites:
Good knowledge of object-oriented programming
Familiarity with linear algebra and physics
Intended for undergraduate students!
CIS 564 (Lane, Summer/Spring)

Game Design and Development

- Course Overview
 - Provides students with a solid theoretical understanding of the core creative principles, concepts, and game play structures underlying most game designs (i.e. "Theory of Games")
 - Course also examines game development from an engineering point of view, including:
 - game play mechanics,
 - game engine software and hardware architectures,
 - user interfaces,
 - design documents, play-testing and production methods
1. Understanding of the GPU as a graphics pipeline
2. Understanding of the GPU as a high performance massively parallel multi-core compute device
3. Understanding of various GPU architectures
4. Programming in: CG, CUDA and OpenCL
5. Exposure to many core graphics effects performed on GPUs
6. Exposure to many core parallel algorithms performed on GPUs that enable dramatic increases in computing performance
CIS 568 (Lane, Fall/Spring)
Game Design Practicum

- Prerequisites: CIS462/562, CIS277 or CIS460/560, Co-requisite: CIS564
- Experience designing and developing 3D computer games.
- Work in teams of three or four, brainstorm an original game concept, write a formal game design document then develop a fully functional prototype consisting of a playable level of the game.
- Create original art and animation assets for the game.
- Develop technical features including: a novel game mechanic and/or user interaction model, game physics (i.e., particle systems and rigid body dynamics), character animation, game AI (i.e., movement control, path planning, decision making, etc.), sound effects and background music, 2D graphical user interface (GUI) design and optional multiplayer networking capabilities.
- Use C++, Python, Lua, industry middleware and game engines.
- Execute design iteration through user feedback and play-testing, and assess what makes a game *fun* to play.
CIS 573 Software Engineering (Murphy, Fall)

- Focus: “What is good code?”
- Considers quantitative aspects of software quality (internal and external)
- Emphasis on refactoring and testing
- Project in which students continue development of existing Android app
- Pre-req: CIS 350 or significant industry experience
Grading Policy: Homeworks 50%, Midterm 20%, Final 30%
Homeworks on paper and using Matlab.
Midterm is on paper.
Final is a project including paper calculations and Matlab.

Zisserman and Hartley, Multiple View Geometry
CIS 581: Computer Vision and Computational Photography
(Shi, Fall)

Main Topics:
1) Image features: edge detection
2) Image morphing
3) Image matching and stitching
4) Image recognition

This course is intended to provide you a hands-on experience with interesting things to do on images/videos. The world is becoming image-centric. Camera are now found everywhere, in our cell phones, automobiles, even in medical surgery tools. Computer vision technology has lead to latest innovations in areas such as Hollywood movie production, medical diagnosis, biometrics, and digital library. This course is suited for students with all Engineering background, who has the basic knowledge of linear algebra and programming, and a lot of imagination.

Grading Policy: 3 homeworks/projects 60%, Midterm 20%, Final Project 20%.
Computer Engineering Major
Computer Engineering

• Computer Engineering (CMPE)
 – Revamped Fall 2009
 – Focus on navigating the HW/SW interface
 – Hands on, lab oriented, intense
 – Can switch in as a sophomore (easy from CIS)

• CPG
 – CIS 120, 121, 160, 240, 371, 380
 – ESE 215 (electronics), 370 (digital circuits)
 – Embedded HW/SW (e.g., iPhone): ESE150, 350
 – Life critical CIS441, concurrency: CIS455 or 565
 – Networking: ESE407 or CIS553
ESE150: Digital Audio Basics

• Informally: Understanding iPod/iPhone -- overview of the technology behind cell phones and MP3 players
• 1 CU course, Spring semester
• Pre-req.: programming course (CIS110 ok)
• Farmer
• Part of Computer Engineering Major
• Lead-in to revised ESE350 where can build a complete digital-audio platform
• Good course to take in Freshman Spring to decide among EE/CMPE/CSCI

http://www.seas.upenn.edu/~ese250/
Coda
2 linux labs, 4 Windows labs
Free Microsoft software via MSDNAA for enrolled students (everything except Office)
Pennkey-protected web pages
Opt-in CGI (PHP, perl, wiki, etc.)
Backups, snapshots
Remote access to Virtual Windows lab
Mount unix filesystem on Windows lab computers
Lifetime email forwarding via alumni system
Study Abroad

• Many options for study abroad:
 – Edinburgh, Scotland
 – Hong Kong University of Science & Technology
 – AIT Budapest, Hungary

• Plan early, seek advice about course equivalencies
The Dining Philosophers: Undergrad CS Club

- We aim to create a CS community at Penn – curriculum talks, research presentations, invited speakers, programming contests, even just hanging out and talking about anything!
- We’re looking for new members! Leadership opportunities are available to anyone
- Meetings: Weds. Nights, 9pm, Rodin lobby
- General info session w/ free food in the next few weeks – watch your email
- Coming soon: a special breakfast with a technology industry VIP for members only