CIS 620 - Advanced Topics in AI

Profs. M. Kearns and L. Saul
Problem Set 2
Distributed: Monday, January 28, 2002
Due: Wednesday, February 6, 2002 (start of class)

1. Bernoulli distribution

(a) Left-sided bound on large deviations

Consider N i.i.d. Bernoulli random variables $x_{i}(i=1 \ldots N)$ with mean μ. Let $\mu^{\prime}=\mu-\varepsilon$, where $\varepsilon>0$ and $\mu^{\prime}>0$. Show that:

$$
\operatorname{Pr}\left[\frac{1}{N} \sum_{i} x_{i} \leq \mu^{\prime}\right] \leq e^{-N d_{\mathrm{KL}}\left(\mu^{\prime}, \mu\right)},
$$

where $d_{\mathrm{KL}}\left(\mu^{\prime}, \mu\right)$ is the KL distance

$$
d_{\mathrm{KL}}\left(\mu^{\prime}, \mu\right)=\mu^{\prime} \log \left(\frac{\mu^{\prime}}{\mu}\right)+\left(1-\mu^{\prime}\right) \log \left(\frac{1-\mu^{\prime}}{1-\mu}\right) .
$$

(b) KL distance

Let μ and μ^{\prime} denote the means of Bernoulli random variables. Show that

$$
\frac{\partial^{2}}{\partial \mu^{2}}\left[d_{\mathrm{KL}}\left(\mu, \mu^{\prime}\right)\right] \geq 4 \quad \text { for all } \mu
$$

Use this inequality to derive the lower bound:

$$
d_{\mathrm{KL}}\left(\mu, \mu^{\prime}\right) \geq 2\left(\mu-\mu^{\prime}\right)^{2}
$$

(c) Hoeffding bound

Consider N i.i.d. Bernoulli random variables $x_{i}(i=1 \ldots N)$ with mean μ. Assuming the results in parts (a) and (b), derive the simplified bound:

$$
\operatorname{Pr}\left[\frac{1}{N} \sum_{i} x_{i} \leq \mu-\varepsilon\right] \leq e^{-2 N \varepsilon^{2}}
$$

2. Gaussian distribution
(a) Generating function

Compute the generating function $\mathrm{E}\left[e^{k x}\right]$ for a Gaussian random variable with mean μ and variance σ^{2} :

$$
\mathrm{E}\left[e^{k x}\right]=\int_{-\infty}^{\infty} d x p(x) e^{k x} \quad \text { where } \quad p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} .
$$

You may assume without proof that the distribution is properly normalized: $\int_{-\infty}^{\infty} d x p(x)=1$.
(b) KL distance

Evaluate the KL distance

$$
\mathrm{KL}\left(p_{1}, p_{2}\right)=\int d x p_{1}(x) \log \left[\frac{p_{1}(x)}{p_{2}(x)}\right]
$$

between two Gaussian distributions $p_{1}(x)$ and $p_{2}(x)$ with means μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2}.
(c) Large deviations

Consider N i.i.d. Gaussian random variables $x_{i}(i=1 \ldots N)$ with mean μ and variance σ^{2}. Show that:

$$
\operatorname{Pr}\left[\frac{1}{N} \sum_{i} x_{i} \geq \mu+\varepsilon\right] \leq e^{-N \varepsilon^{2} /\left(2 \sigma^{2}\right)} .
$$

3. Heavy-tailed distribution (extra credit)

The Cauchy distribution with mean zero and width α is given by:

$$
p(x)=\frac{\alpha}{\pi}\left(\frac{1}{x^{2}+\alpha^{2}}\right)
$$

(a) Width and tails

Show that $\operatorname{Pr}[|x| \leq \alpha]=\frac{1}{2}$ and that $\mathrm{E}\left[x^{2}\right]=\infty$.
(b) Stability

The sum of N i.i.d. Cauchy random variables with mean zero and width α is itself Cauchy distributed with mean zero and width $N \alpha$. (You are not asked to prove this.) Clearly, this process does not converge to a Gaussian distribution as $N \rightarrow \infty$. What assumption of the Central Limit Theorem is violated in this case?

4. MATLAB by example

Type these commands into MATLAB and use the help facility to understand the syntax. You will need to program in MATLAB for later problem sets.

```
% GAUSSIAN DISTRIBUTION
x = [-4:0.01:4];
figure(1); clf;
subplot(2,1,1); plot(x,exp(-x.*x/2)/sqrt(2*pi));
subplot(2,1,2); hist(randn(10000,1),32);
% KL DISTANCE FOR BERNOULLI
u = [0.001:0.001:0.999];
v = 0.5;
kl = u.* 另(u./v) + (1-u).*log((1-u)./(1-v));
figure(3); clf;
plot(u,kl,'b-',u,2*(u-v).^`2,'g-') ;
set(gca,'FontSize',18);
legend('KL distance','lower bound');
```


5. Lower bound on planning from a generative model.

Let A be any algorithm that uses a generative model for an MDP M as a subroutine, takes an arbitrary state \vec{x} and an arbitrarily small value $\epsilon>0$ as inputs, and outputs an action $a=A(\vec{x})$. (Note that the output of A may be stochastic due to sampling from the generative model.) Let the policy determined by A for any fixed $\epsilon>0$ satisfy

$$
V^{*}(\vec{x})-V^{A}(\vec{x}) \leq \epsilon
$$

simultaneously for all \vec{x}. Thus, the policy computed by A is near-optimal. (The sparse sampling algorithm described in class is an example of such an algorithm.) Construct an MDP M that gives the strongest lower bound you can on the number of calls A must make to the generative model as a function of the ϵ-horizon time $H_{\epsilon}=(1 /(1-\gamma)) \log (1 /((1-\gamma) \epsilon))$.

