
CIS 620 — Advanced Topics in AI
Profs. M. Kearns and L. Saul
Problem Set 2
Distributed: Monday, January 28, 2002
Due: Wednesday, February 6, 2002 (start of class)

1. Bernoulli distribution

(a) Left-sided bound on large deviations
ConsiderN i.i.d. Bernoulli random variablesxi (i = 1 : : : N ) with mean�. Let�0 = �� ",
where" > 0 and�0 > 0. Show that:
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wheredKL(�0; �) is the KL distance

dKL(�
0; �) = �0 log

�
�0

�

�
+ (1� �0) log

�
1� �0

1� �

�
:

(b) KL distance
Let � and�0 denote the means of Bernoulli random variables. Show that
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Use this inequality to derive the lower bound:

dKL(�; �
0) � 2(�� �0)2:

(c) Hoeffding bound
ConsiderN i.i.d. Bernoulli random variablesxi (i = 1 : : : N ) with mean�. Assuming the
results in parts (a) and (b), derive the simplified bound:
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2. Gaussian distribution

(a) Generating function
Compute the generating functionE[ekx] for a Gaussian random variable with mean� and vari-
ance�2:
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You may assume without proof that the distribution is properly normalized:
R
1

�1
dx p(x) = 1.

(b) KL distance
Evaluate the KL distance

KL(p1; p2) =

Z
dx p1(x) log
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�

between two Gaussian distributionsp1(x) andp2(x) with means�1 and�2 and variances�21
and�22 .
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(c) Large deviations
ConsiderN i.i.d. Gaussian random variablesxi (i = 1 : : : N ) with mean� and variance�2.
Show that:
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3. Heavy-tailed distribution(extra credit)
TheCauchydistribution with mean zero andwidth� is given by:
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�
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(a) Width and tails
Show thatPr[jxj � �] = 1

2 and thatE[x2] =1.

(b) Stability
The sum ofN i.i.d. Cauchy random variables with mean zero and width� is itself Cauchy
distributed with mean zero and widthN�. (You are not asked to prove this.) Clearly, this
process does not converge to a Gaussian distribution asN ! 1. What assumption of the
Central Limit Theorem is violated in this case?

4. MATLAB by example
Type these commands into MATLAB and use thehelpfacility to understand the syntax. You will need
to program in MATLAB for later problem sets.

% GAUSSIAN DISTRIBUTION
x = [-4:0.01:4];
figure(1); clf;
subplot(2,1,1); plot(x,exp(-x.*x/2)/sqrt(2*pi));
subplot(2,1,2); hist(randn(10000,1),32);

% KL DISTANCE FOR BERNOULLI
u = [0.001:0.001:0.999];
v = 0.5;
kl = u.*log(u./v) + (1-u).*log((1-u)./(1-v));
figure(3); clf;
plot(u,kl,’b-’,u,2*(u-v).ˆ2,’g-’);
set(gca,’FontSize’,18);
legend(’KL distance’,’lower bound’);

5. Lower bound on planning from a generative model.
LetA be any algorithm that uses a generative model for an MDPM as a subroutine, takes an arbitrary
state~x and an arbitrarily small value� > 0 as inputs, and outputs an actiona = A(~x). (Note that the
output ofA may be stochastic due to sampling from the generative model.) Let the policy determined
byA for any fixed� > 0 satisfy

V �(~x)� V A(~x) � �

simultaneously for all~x. Thus, the policy computed byA is near-optimal. (The sparse sampling
algorithm described in class is an example of such an algorithm.) Construct an MDPM that gives
the strongest lower bound you can on the number of callsA must make to the generative model as a
function of the�-horizon timeH� = (1=(1 � 
)) log(1=((1 � 
)�)).
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