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Abstract

Markov decision problems (MDPs) provide
the foundations for a number of problems
of interest to AI researchers studying au-
tomated planning and reinforcement learn-
ing. In this paper, we summarize results
regarding the complexity of solving MDPs
and the running time of MDP solution al-
gorithms. We argue that, although MDPs
can be solved e�ciently in theory, more study
is needed to reveal practical algorithms for
solving large problems quickly. To encourage
future research, we sketch some alternative
methods of analysis that rely on the struc-
ture of MDPs.

1 INTRODUCTION

A Markov decision process is a controlled stochastic
process satisfying the Markov property with costs as-
signed to state transitions. A Markov decision prob-
lem is a Markov decision process together with a per-
formance criterion. A solution to a Markov decision
problem is a policy , mapping states to actions, that
(perhaps stochastically) determines state transitions
to minimize the cost according to the performance
criterion. Markov decision problems (MDPs) pro-
vide the theoretical foundations for decision-theoretic
planning, reinforcement learning, and other sequential
decision-making tasks of interest to researchers and
practitioners in arti�cial intelligence and operations re-
search (Dean et al., 1995b). MDPs employ dynamical
models based on well-understood stochastic processes
and performance criteria based on established theory
in operations research, economics, combinatorial opti-
mization, and the social sciences (Puterman, 1994).

It would seem that MDPs exhibit special structure
that might be exploited to expedite their solution.
In investment planning, for example, often the ini-
tial state is known with certainty (the current price
for a stock or commodity) and as a result the set of
likely reachable states (future prices) and viable invest-

ment strategies in the near-term future is considerably
restricted. In general, notions of time, action, and
reachability in state space are inherent characteristics
of MDPs that might be exploited to produce e�cient
algorithms for solving them. It is important that we
understand the computational issues involved in these
sources of structure to get some idea of the prospects
for e�cient sequential and parallel algorithms for com-
puting both exact and approximate solutions.

This paper summarizes some of what is known (and
unknown but worth knowing) about the computa-
tional complexity of solving MDPs. Brie
y, any MDP
can be represented as a linear program (LP) and solved
in polynomial time. However, the order of the poly-
nomials is large enough that the theoretically e�cient
algorithms are not e�cient in practice. Of the algo-
rithms speci�c to solving MDPs, none is known to
run in worst-case polynomial time. However, algo-
rithms and analyses to date have made little use of
MDP-speci�c structure, and results in related areas of
Monte Carlo estimation and Markov chain theory sug-
gest promising avenues for future research. We begin
by describing the basic class of problems.

2 MARKOV DECISION PROBLEMS

For our purposes, a Markov decision process is a four-
tuple (
S ;
A; p; c), where 
S is the state space, 
A is
the action space, p is the state-transition probability-
distribution function, and c is the instantaneous-cost
function.

The state-transition function is de�ned as follows: for
all i; j 2 
S ; k 2 
A,

pkij = Pr(St = jjSt�1 = i; At = k)

where St (At) is a random variable denoting the state
(action) at time t. The cost cki is de�ned to be the cost
of taking action k from state i.

Let N = j
S j and M = j
Aj. For some of the com-
plexity results, it will be necessary to assume that p
and c are encoded using N � N �M tables of ratio-
nal numbers. We let B be the maximum number of
bits required to represent any component of p or c. In



this paper, we restrict our attention to discrete-time
processes in which both 
S and 
A are �nite.

A Markov decision process describes the dynamics of
an agent interacting with a stochastic environment.
Given an initial state or distribution over states and a
sequence of actions, the Markov decision process de-
scribes the subsequent evolution of the system state
over a (possibly in�nite) sequence of times referred to
as the stages of the process. This paper focuses on the
in�nite-horizon case, in which the sequence of stages
in in�nite.

A policy � is a mapping from states to actions. If the
policy is independent of the current stage, it is said to
be stationary.

A Markov decision problem (MDP) is a Markov de-
cision process together with a performance criterion.
The performance criterion enables us to assign a total
cost to each state for a given policy. A policy and a
Markov decision process, together with an initial state,
determine a probability distribution over sequences of
state/action pairs called trajectories. The performance
criterion assigns to each such trajectory a cost (deter-
mined in part by the instantaneous-cost function) and
the probability-weighted sum of these costs determine
the policy's total cost for that state.

A policy �1 is said to dominate policy �2 if, for every
state i 2 
S the total cost of performing �1 starting in
state i is less than or equal to the total cost of perform-
ing �2 starting in state i, and if there is at least one
state j 2 
S from which the total cost of performing
�1 is strictly less than that of �2. A fundamental result
in the theory of MDPs is that there exists a stationary
policy that dominates or has equal total cost to every
other policy (Bellman, 1957). Such a policy is termed
an optimal policy and the total cost it attaches to each
state is said to be the optimal total cost for that state.
An �-optimal solution to a Markov decision problem
is a policy whose total cost, for every state, is within
� of the optimal total cost. For the problems we are
interested in, the optimal total-cost function (mapping
from states to their optimal total costs) is unique but
the optimal policy need not be.

We brie
y consider three popular performance crite-
ria: expected cost to target, expected discounted cumu-
lative cost, and average expected cost per stage. In the
expected cost-to-target criterion, a subset of 
S is des-
ignated as a target and the cost assigned to a trajec-
tory is the sum of the instantaneous costs until some
state in the target set is reached. In the expected dis-
counted cumulative cost criterion, the cost of a trajec-
tory is the sum over all t of 
t times the instantaneous
cost at time t, where 0 < 
 < 1 is the discount rate
and t indicates the stage.1 Under reasonable assump-
tions (Derman, 1970), the expected cost to target and
expected discounted cumulative cost criteria give rise

1When 
 is considered part of the input, it is assumed
to be encodable in B bits.

to equivalent computational problems. The average
expected cost per stage criterion is attractive because
it does not require the introduction of a seemingly ar-
bitrary discount rate, nor the speci�cation of a set of
target states. However, it is often a di�cult criterion
to analyze and work with.

This paper focuses on the expected discounted cumu-
lative cost criterion. To simplify the notation, suppose
that the instantaneous costs are dependent only upon
the initial state and action so that, for each i 2 
S

and k 2 
A, cki = cij(k) for all j 2 
S . The expected
discounted cumulative cost with respect to a state i for
a particular policy � and �xed discount 
 is de�ned by
the following system of equations: for all i 2 
S ,

E�(�
 ji) = c
�(i)
i + 


X
j2
S

p
�(i)
ij E�(�
 jj): (1)

The optimal total-cost function E�(�
 j�) is de�ned as

E�(�
 ji) = min
�

E�(�
 ji); i 2 
S ;

which can be shown to satisfy the following optimality
equations: for all i 2 
S ,

E�(�
 ji) = min
k2
A

2
4cki + 


X
j2
S

pkijE
�(�
 jj)

3
5 : (2)

This family of equations, due to Bellman (1957), is
the basis for several practical algorithms for solving
MDPs. There is a policy, ��, called the optimal pol-
icy , which achieves the optimal total-cost function. It
can be found from the optimal total-cost function as
follows: for all i 2 
S ,

��(i) = arg min
k2
A

2
4cki + 


X
j2
S

pkijE
�(�
 jj)

3
5 : (3)

3 GENERAL COMPLEXITY

RESULTS

There is no known algorithm that can solve general
MDPs in a number of arithmetic operations polyno-
mial in N and M . Such an algorithm would be called
strongly polynomial. Using linear programming, how-
ever, the problem can be solved in a number of arith-
metic operations polynomial in N , M , and B.

Papadimitriou and Tsitsiklis (1987) analyzed the com-
putational complexity of MDPs. They showed that,
under any of the three cost criteria mentioned earlier,
the problem is P-complete. This means that, although
it is solvable in polynomial time, if an e�cient parallel
algorithm were available, then all problems in P would
be solvable e�ciently in parallel (an outcome consid-
ered unlikely by researchers in the �eld). Since the
linear programming problem is also P-complete, this
result implies that in terms of parallelizability, MDPs



and LPs are equivalent: a fast parallel algorithm for
solving one would yield a fast parallel algorithm for
solving the other. It is not known whether the two
problems are equivalent with respect to strong polyno-
miality: although it is clear that a strongly polynomial
algorithm for solving linear programs would yield one
for MDPs, the inverse is still open.

Papadimitriou and Tsitsiklis also show that for MDPs
with deterministic transition functions (the compo-
nents of p are all 0's and 1's), optimal total-cost func-
tions can be found e�ciently in parallel for all three
cost criteria (i.e., the problem is in NC). Further, the
algorithms they give are strongly polynomial. This
suggests that the stochastic nature of some MDPs has
important consequences for complexity and that not
all MDPs are equally di�cult to solve.

4 ALGORITHMS AND ANALYSIS

This section describes the basic algorithms used to
solve MDPs and analyzes their running times.

4.1 LINEAR PROGRAMMING

The problem of computing an optimal total-cost func-
tion for an in�nite-horizon discounted MDP can be for-
mulated as a linear program (LP) (D'Epenoux, 1963).
Linear programming is a very general technique and
does not appear to take advantage of the special struc-
ture of MDPs. Nonetheless, this reduction is currently
the only proof that MDPs are solvable in polynomial
time.

The primal linear program involves maximizing the
sum X

j2
S

vj

subject to the constraints

vi � cki + 

X
j2
S

pkijvj; (4)

for all i 2 
S ; k 2 
A, where vi for i 2 
S are the
variables that we are solving for and which, for an
optimal solution to the linear program, determine the
optimal total-cost function for the original MDP. The
intuition here is that, for each state i, the optimal
total cost from i is no greater than what would be
achieved by �rst taking action k, for each k 2 
A.
The maximization insists that we choose the greatest
lower bound for each of the vi variables.

It is also of interest to consider the dual of the above
program which involves minimizing the sumX

i2
S

X
k2
A

xki c
k
i

subject to the constraintsX
k2
A

xkj = 1 + 

X
i2
S

X
k2
A

pkijx
k
i ; (5)

for all j 2 
S . The x
k
j variables can be thought of as

indicating the amount of \policy 
ow" through state j
that exits via action k. Under this interpretation, the
constraints are 
ow conservation constraints that say
that the total 
ow exiting state j is equal to the 
ow
beginning at state j (always 1) plus the 
ow enter-
ing state j via all possible combinations of states and
actions weighted by their probability. The objective,
then, is to minimize the cost of the 
ow.

If fxki g is a feasible solution to the dual, thenP
i2
S

P
k2
A

xki c
k
i can be interpreted as the total

cost of the stationary stochastic policy that chooses
action k in state i with probability

xki =
X
k2
A

xki :

This solution can be converted into a deterministic
optimal policy as follows:

��(i) = arg max
k2
A

xki :

The primal LP as NM constraints and N variables
and the dualN constraints and NM variables. In both
LPs, the coe�cients have a number of bits polynomial
in B. There are algorithms for solving rational LPs
that take time polynomial in the number of variables
and constraints as well as the number of bits used to
represent the coe�cients (Karmarkar, 1984; Khachian,
1979). Thus, MDPs can be solved in time polynomial
in N , M , and B. A drawback of the existing polyno-
mial time algorithms is that they run extremely slowly
in practice and so are rarely used.

The most popular (and practical) methods for solving
linear programs are variations of Dantzig's (1963) sim-
plex method. The simplex method works by choosing
subsets of the constraints to satisfy with equality and
solving the resulting linear equations for the values of
the variables. The algorithm proceeds by iteratively
swapping constraints in and out of the selected sub-
set, continually improving the value of the objective
function. When no swaps can be made to improve
the objective function, the optimal solution has been
found. Simplex methods di�er as to their choice of
pivot rule, the rule for choosing which constraints to
swap in and out at each iteration.

Although simplex methods seem to perform well in
practice, Klee and Minty (1972) showed that one of
Dantzig's choices of pivoting rule could lead the sim-
plex algorithm to take an exponential number of it-
erations on some problems. Since then, other piv-
oting rules have been suggested and almost all have
been shown to result in exponential running times in
the worst case. None has been shown to result in
a polynomial-time implementation of simplex. Note
that these results may not apply directly to the use of
linear programming to solve MDPs since the set of lin-
ear programs resulting from MDPs might not include
the counterexample linear programs. This is an open
issue.



There are two ways to consider speeding up the so-
lutions of MDPs: �nding improved methods for solv-
ing LPs or using solution methods that are speci�c to
MDPs. While progress has been made on speeding up
linear programmingalgorithms (such as a subexponen-
tial simplex algorithm which uses a randomized pivot-
ing rule (Bland, 1977; Kalai, 1992)), MDP-speci�c al-
gorithms hold more promise for e�cient solution. We
address such algorithms, speci�cally policy iteration
and value iteration, in the following sections.

4.2 POLICY ITERATION

The most widely used algorithms for solving MDPs
are iterative methods. One of the best known of these
algorithms is due to Howard (1960) and is known as
policy iteration. Policy iteration alternates between a
value determination phase, in which the current policy
is evaluated, and a policy improvement phase, in which
an attempt is made to improve the current policy.

Policy improvement can be performed in O(MN2)
arithmetic operations (steps), and value determina-
tion in O(N3) steps by solving a system of linear
equations.2 The total running time, therefore, is poly-
nomial if and only if the number of iterations required
to �nd an optimal or �-optimal policy is polynomial.
This question is addressed later in the section.

The basic policy iteration algorithm works as follows:

1. Let �0 be a deterministic stationary policy.

2. Loop

(a) Set � to be �0.

(b) Determine, for all i 2 
S , E�(�
 ji) by solv-
ing the set of N equations in N unknowns
described by Equation 1.

(c) For each i 2 
S , if there exists some k 2 
A

such that2
4cki + 


X
j2
S

pkijE�(�
 jj)

3
5 < E�(�
 ji);

then set �0(i) to be k, otherwise set �0(i) to
be �(i).

(d) Repeat loop if � 6= �0

3. Return �.

Step 2b is the value determination phase and Step 2c
is the policy improvement phase.

Since there are only MN distinct policies, and each
new policy dominates the previous one (Puterman,
1994), it is obvious that policy iteration terminates
in at most an exponential number of steps. We are
interested in �nding a polynomial upper bound or in

2In theory, value determination can probably be done
somewhat faster, since it primarily requires inverting a
N�N matrix, which can be done in O(N2:376) steps (Cop-
persmith and Winograd, 1987).
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Figure 1: Simple policy iteration requires an expo-
nential number of iterations to generate an optimal
solution to the family of MDPs illustrated here (af-
ter (Melekopoglou and Condon, 1990)).

showing that no such upper bound exists (i.e., that the
number of iterations can be exponential in the worst
case).

While direct analyses of policy iteration have been
scarce, several researchers have examined a sequential-
improvement variant of policy iteration, in which the
current policy is improved for at most one state in
Step 2c. A detailed analogy can be constructed be-
tween the choice of state to update in sequential-
improvement policy iteration and the choice of pivot
rule in simplex. Denardo (1982) shows that the feasi-
ble bases for the primal LP (Equation 4) are in one-to-
one correspondence with the stationary deterministic
policies.

As with simplex, examples have been constructed
to make sequential-improvement policy iteration re-
quire exponentially many iterations. Melekopoglou
and Condon (1990) examine the problem of solving
expected cost-to-target MDPs using several variations
on the sequential improvement policy iteration algo-
rithm. In a version they call simple policy iteration,
every state is labeled with a unique index and, at each
iteration, the policy is updated at the state with the
smallest index of those at which the policy can be im-
proved. They show that the family of counterexamples
suggested by Figure 1, from a particular starting pol-
icy, takes an exponential number of iterations to solve
using simple policy iteration.

A counterexample can be constructed for each even
number, N (N = 10 in the �gure). The states are
divided into three classes: decision states (labeled 0
through N=2 � 1), random states (labeled 10 through
(N=2 � 1)0), and an absorbing state. From each de-
cision state i, there are two actions available: action
0 (heavy solid lines) results in a transition to decision
state i+1 and action 1 (dashed lines) results in a tran-
sition to random state (i+ 1)0. From random state i0,
there is no choice of action and instead a random tran-
sition with probability 1=2 of reaching random state
(i + 1)0 and probability 1=2 of reaching decision state
i+ 1 takes place. Actions from decision state N=2� 1
and random state N=2 � 1 both result in a transition
to the absorbing state. This transition has a cost of
+1 in the case of decision state N=2� 1 and all other
transitions have zero cost.

The initial policy is �0(i) = 0, so every decision state i



selects the action which takes it to decision state i+1.
In the optimal policy, ��(i) = 0 for i 6= N=2 � 2 and
��(N=2 � 2) = 1. Although these two policies are
highly similar, Melekopoglou and Condon show that
simple policy iteration steps through 2N=2�2 policies
before arriving at the optimal policy. We remark that
although this example was constructed with the ex-
pected cost-to-target criterion in mind, it also holds
for the discounted cumulative cost criterion regardless
of discount rate.

When the policy is improved at all states in parallel,
policy iteration no longer has a direct simplex ana-
logue. It is an open question whether this can lead to
exponential running time in the worst case or whether
the resulting algorithm is guaranteed to converge in
polynomial time. However, we can show that this more
popular version of policy iteration is strictly more e�-
cient than the simple policy iteration algorithm men-
tioned above.

Let �n be the policy found after n iterations of pol-
icy iteration. Let E�n (�
 ji) be the total-cost function
associated with �n. Let En(�
 ji) be the total-cost
function found by value iteration (Section 4.3) starting
with E�0 (�
 ji) as an initial total-cost function. Puter-
man (1994) (Theorem 6.4.6) shows that E�n (�
 ji) al-
ways dominates or is equal to En(�
 ji) and therefore
that policy iteration converges no more slowly than
value iteration for discounted in�nite-horizon MDPs.
When combined with a result by Tseng (1990) (de-
scribed in more detail in the next section) which
bounds the time needed for value iteration to �nd an
optimal policy, this shows that policy iteration takes
polynomial time, for a �xed discount rate. Further-
more, if the discount rate is included as part of the
input as a rational number with the denominator writ-
ten in unary, policy iteration takes polynomial time.
This makes policy iteration a pseudo-polynomial-time
algorithm.

Thus, whereas policy iteration runs in polynomial time
for a �xed discount rate, simple policy iteration can
take exponential time, regardless of discount rate.
This novel observation stands in contrast to a com-
ment by Denardo (1982). He argues that block piv-
oting in simplex achieves the same goal as parallel
policy improvement in policy iteration and therefore
that one should prefer commercial implementations of
simplex to home-grown implementations of policy it-
eration. His argument is based on the misconception
that one step of policy improvement on N states is
equivalent in power to N iterations of simple policy
iteration. In fact, one policy improvement step on N
states is more like 2N iterations of simple policy itera-
tion, in the worst case. Thus, policy iteration has not
yet been ruled out as the preferred solution method
for MDPs. More empirical study is needed.

4.3 VALUE ITERATION

Bellman (1957) devised a successive approximation al-
gorithm for MDPs called value iteration which works
by computing the optimal total-cost function assum-
ing �rst a one-stage �nite horizon, then a two-stage
�nite horizon, and so on. The total-cost functions so
computed are guaranteed to converge in the limit to
the optimal total-cost function. In addition, the policy
associated with the successive total-cost functions will
converge to the optimal policy in a �nite number of
iterations (Bertsekas, 1987), and in practice this con-
vergence can be quite rapid.

The basic value-iteration algorithm is described as fol-
lows:

1. For each i 2 
S , initialize E
0(�
 ji).

2. Set n to be 1.

3. While n < maximum number of iterations,

(a) For each i 2 
S and k 2 
A, let

En(�
 ji; k) =

2
4cki + 


X
j2
S

pkijE
n�1(�
 jj)

3
5 :

En(�
 ji) = min
k2
A

En(�
 ji; k)

(b) Set n to n+ 1.

4. For each i 2 
S ,

�(i) = arg min
k2
A

En(�
 ji; k):

5. Return �.

The maximum number of iterations is either set in
advance or determined automatically using an appro-
priate stopping rule. The Bellman residual at step n
is de�ned to be

max
i2
S

��En(�
 ji)� En�1(�
 ji)
�� :

By examining the Bellman residual during value itera-
tion and stopping when it gets below some threshold,
�0 = �(1�
)=(2
), we can guarantee that the resulting
policy will be �-optimal (Williams and Baird, 1993).

The running time for each iteration is O(MN2), thus,
once again, the method is polynomial if and only if the
total number of iterations required is polynomial. We
sketch an analysis of the number of iterations required
for convergence to an optimal policy below; more de-
tailed discussion can be found in Tseng's paper.

1. Bound the distance from the initial total-cost
function to the optimal total-cost function.
Let M = maxi2
S;k2
A jc

k
i j, the magnitude of the

largest instantaneous cost. The total-cost func-
tion for any policy will have components in the
range [�M=(1� 
);M=(1 � 
)]. Thus any choice
of initial total-cost function with components in
this range cannot di�er from the optimal total-
cost function by more than 2M=(1 � 
) at any
state.



2. Show that each iteration results in an improve-
ment of a factor of at least 
 in the distance be-
tween the estimated and optimal total-cost func-
tions.

This is the standard \contraction mapping" result
for discounted MDPs (Puterman, 1994).

3. Give an expression for the distance between es-
timated and optimal total-cost functions after n
iterations. Show how this gives a bound on the
number of iterations required for an �-optimal pol-
icy.

After n iterations the estimated total-cost func-
tion can di�er from the optimal total-cost function
by no more than 2M
n=(1�
) at any state. Solv-
ing for n and using the result relating the Bellman
residual to the total cost of the associated policy,
we can express the maximumnumber of iterations
needed to �nd an �-optimal policy as

n� �
B + log(1=�) + log(1=(1� 
)) + 1

1� 

: (6)

4. Argue that there is a value for � > 0 for which an
�-optimal policy is, in fact, optimal.

The optimal total-cost function can be expressed
as the solution of a linear program with rational
components of no more than B bits each (Sec-
tion 4.1). A standard result in the theory of linear
programming is that the solution to such a linear
program can be written as rational numbers where
each component is represented using a number of
bits polynomial in the size of the system and B,
B� (Schrijver, 1986).

This means that if we can �nd a policy that is
� = 1=2B

�+1-optimal, the policy must be optimal.

5. Substitute this value of � into the bound to get a
bound on the number of iterations needed for an
exact answer.

Substituting for � in Equation 6 reveals that run-
ning value iteration for a number of iterations
polynomial in N , M , B, and 1=(1 � 
) guaran-
tees an optimal policy.

This analysis shows that, for �xed 
, value iteration
takes polynomial time. It is also useful for constructing
an upper bound for policy iteration (see Section 4.2).
Although it is not known whether the dependence on
1=(1�
) (which can be quite large as 
 approaches 1)
can be dropped for policy iteration, we can show that
value iteration can indeed take that long.

Figure 2 illustrates a family of MDPs for which discov-
ering the optimal policy via value iteration takes time
proportional to 1=(1 � 
) log(1=(1 � 
)). It consists
of 3 states, labeled 0 through 2. From state 0, ac-
tion 1 causes a deterministic transition to state 1 and
action 2 causes a deterministic transition to state 2.
Action 1 has no instantaneous cost but once in state
1, there is a cost of +1 for every time step thereafter.
Action 2 has an instantaneous cost of 
2=(1� 
) but

+1

+0

+0

γ2

1 γ–
-----------+

0

1

2

Figure 2: Value iteration requires number of iterations
proportional to 1=(1�
) log(1=(1�
)) to generate an
optimal solution for this family of MDPs.

state 2 is a zero-cost absorbing state.3 The discounted
in�nite-horizon cost of choosing action 1 from state
0 is 
=(1 � 
) whereas the total cost for action 2 is

2=(1� 
) (smaller, since 
 < 1). If we initialize value
iteration to the zero total-cost function, the estimate
of the costs of these two choices are: 
(1�
n)=(1�
)
and 
2=(1� 
) at iteration n > 1. Therefore, value it-
eration will continue to choose the suboptimal action
until iteration n� where:

n� �
log(1 � 
)

log 

�

1

2
log

�
1

1� 


�
1

(1� 
)
:

Thus, in the worst case, value iteration has a running
time that grows faster than 1=(1� 
).

5 ALTERNATIVE METHODS OF

ANALYSIS

We know that MDPs can be solved in time polynomial
in N ,M and B. Unfortunately, the degree of the poly-
nomial is nontrivial and the methods that are guar-
anteed to achieve such polynomial-time performance
do not make any signi�cant use of the structure of
MDPs. Furthermore, as with the multi-commodity

ow problem (Leighton et al., 1991), the existence of
a linear programming solution does not preclude the
need for more e�cient algorithms, even if it means
�nding only approximately optimal solutions. This
section sketches some directions that could be pursued
to �nd improved algorithms for MDPs.

An in-depth empirical study of existing MDP algo-
rithms might be fruitful. In addition to the solution
methods discussed earlier, there are numerous elabora-
tions and hybrids that have been proposed to improve
the convergence speed or running time. Puterman and
Shin (1978) describe a general method called modi�ed
policy iteration that includes policy iteration and value
iteration as special cases. The structure of modi�ed
policy iteration is essentially that of policy iteration
where the value determination step is replaced with

3Note that these costs can be speci�ed by B �

log(
2=(1 � 
)) = O(log(1=(1� 
))) bits.



an approximation that closely resembles value itera-
tion with a �xed policy. Bertsekas (1987) describes
variations on value and policy iteration, called asyn-
chronous dynamic programming algorithms, that in-
terleave improving policies and estimating the value
of policies. These methods resemble techniques used
in the reinforcement-learning �eld where MDPs are
solved by performing cost update computations along
high probability trajectories. A promising approach
from this literature involves a heuristic for dynami-
cally choosing which states to update in value itera-
tion according to how likely such an update would be
to improve the estimated total-cost function (Moore
and Atkeson, 1993; Peng and Williams, 1993). Before
embarking on such a study, we need to compile a suite
of benchmark MDPs that re
ects interesting classes of
problems.

Fast �-approximation algorithms could be very useful
in trading o� solution accuracy for time. For exam-
ple, approximation algorithms have been designed for
solving linear programs. One is designed for �nding �-
optimal solutions to a certain class of linear programs
which includes the primal linear program given in Sec-
tion 4.1 (Plotkin et al., 1991). Although this partic-
ular scheme is unlikely to yield practical implementa-
tions (it is most useful for solving linear programs with
exponentially many constraints) the application of ap-
proximate linear-programming approaches to MDPs is
worth more study.

Probabilistic approximations might also be desirable
in some applications, say if we could �nd an �-
optimal solution with probability 1 � �, in some low-
order polynomial in N , M , 1=�, 1=�, and 1=(1 � 
).
Fully-polynomial randomized approximation schemes
(FPRAS) such as this are generally designed for prob-
lems that cannot be computed exactly in polynomial
time (e.g., (Dagum and Luby, 1993)), but researchers
are now developing iterative algorithms with tight
probabilistic performance bounds that provide reliable
estimates (e.g., the Dagum et al. (1995) optimal stop-
ping rule for Monte Carlo estimation).

Work on FPRAS has identi�ed properties of graphs
and Markov chains (e.g., the rapid mixing property
for Markov chains used by Jerrum and Sinclair (1988)
in approximating the permanent) that may allow us to
classify MDPs into easy and hard problems. A related
observation is made by Bertsekas (1987) in the context
of an algorithm that combines value iteration with a
rule for maintaining error bounds. He notes that the
convergence of this algorithm is controlled by the dis-
count rate in conjunction with the magnitude of the
subdominant eigenvalue of the Markov chain induced
by the optimal policy (if it is unique). This value could
be used to help characterize hard and easy MDPs.

Some work has already been done to characterize
MDPs with respect to their computational proper-
ties, including experimental comparisons that illus-
trate that there are plenty of easy problems mixed in

with extraordinarily hard ones (Dean et al., 1995a),
and categorization schemes that attempt to relate
measurable attributes of MDPs such as the amount of
uncertainty in actions to the type of solution method
that works best (Kirman, 1994).

One thing not considered by any of the algorithms
mentioned above is that, in practice, the initial state
is often known. Thus it may be possible to �nd near-
optimal solutions without considering the entire state
space (e.g., consider the case in which 
 is relatively
small and it takes many stages to reach more than
log(N ) states from the initial state). Dean, Kaelbling,
Kirman, and Nicholson (1993) solve MDPs using an
algorithm that exploits this property but provide no
error bounds on its performance. Barto, Bradtke, and
Singh's RTDP (real-time dynamic programming) al-
gorithm (1995) exploits a similar intuition to �nd an
optimal policy without necessarily considering the en-
tire state space.

Structure in the underlying dynamics should allow
us to aggregate states and decompose problems into
weakly-coupled subproblems, thereby simplifying com-
putation. Aggregation has long been an active topic
of research in operations research and optimal con-
trol (Schweitzer, 1984). In particular, Bertsekas and
Casta~non (1989) describe adaptive aggregation tech-
niques that might be very important for large, struc-
tured state spaces, and Kushner and Chen (1974) de-
scribe how to use Dantzig-Wolfe LP decomposition
techniques (1960) for solving large MDPs. More re-
cently, researchers in planning (Boutilier et al., 1995b;
Dean and Lin, 1995) and reinforcement learning (Kael-
bling, 1993; Moore and Atkeson, 1995) have been
exploring aggregation and decomposition techniques
for solving large MDPs. What is needed is a clear
mathematical characterization of the classes of MDPs
for which these techniques guarantee good approxima-
tions in low-order polynomial time.

Finally, our preoccupation with computational com-
plexity is not unjusti�ed. Although, in theory, MDPs
can be solved in polynomial time in the size of the
state space, action space, and bits of precision, this
only holds true for so-called 
at representations of the
system dynamics in which the states are explicitly enu-
merated. Boutilier et al. (1995), consider the advan-
tages of structured state spaces in which the represen-
tation of the dynamics is some log factor of the size of
the state space. An e�cient algorithm for these MDPs
would therefore need to run in time bounded by a poly-
nomial in the logarithm of the number of the number
of states|a considerably more challenging endeavor.

6 SUMMARY AND CONCLUSIONS

In this paper, we focus primarily on the class of MDPs
with an expected-discounted-cumulative-cost perfor-
mance criterion and discount rate 
. These MDPs
can be solved using linear programming in a number



of arithmetic operations polynomial in N (the num-
ber of states), M (the number of actions), and B (the
maximumnumber of bits required to encode instanta-
neous costs and state-transition probabilities as ratio-
nal numbers). There is no known strongly-polynomial
algorithm for solving MDPs. The general problem is
P-complete and hence equivalent to the problem of
solving linear programs with respect to the prospects
for exploiting parallelism.

The best known practical algorithms for solving MDPs
appear to be dependent on the discount rate 
. Both
value iteration and policy iteration can be shown to
perform in polynomial time for �xed 
, but value it-
eration can take a number of iterations proportional
to 1=(1 � 
) log(1=(1 � 
)) in the worst case. In ad-
dition, a version of policy iteration in which policies
are improved one state at a time can be shown to re-
quire an exponential number of iterations, regardless of

, giving some indication that the standard algorithm
for policy iteration is strictly more powerful than this
variant. We note that neither value iteration nor pol-
icy iteration makes signi�cant use of the structure of
the underlying dynamical model.

The fact that the linear programming formulation of
MDPs can be solved in polynomial time is not par-
ticularly comforting. Existing algorithms for solving
LPs with provable polynomial-time performance are
impractical for most MDPs. Practical algorithms for
solving LPs based on the simplexmethod appear prone
to the same sort of worst-case behavior as policy iter-
ation and value iteration.

We suggest two avenues of attack on MDPs: �rst, we
relax our requirements for performance, and, second,
we focus on narrower classes of MDPs that have ex-
ploitable structure. The goal is to address problems
that are representative of the types of applications and
performance expectations found in practice in order to
produce theoretical results that are of interest to prac-
titioners.

In conclusion, we �nd the current complexity results of
marginal use to practitioners. We call on theoreticians
and practitioners to generate a set of alternative ques-
tions whose answers will inform practice and challenge
current theory.
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