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Abstract

Many reinforcement learning approaches can be formulated us-
ing the theory of Markov decision processes and the associated
method of dynamic programming (DP). The value of this theoret-
ical understanding, however, is tempered by many practical con-
cerns. One important question is whether DP-based approaches
that use function approximation rather than lookup tables can
avoid catastrophic e�ects on performance. This note presents a
result of Bertsekas (1987) which guarantees that small errors in
the approximation of a task's optimal value function cannot pro-
duce arbitrarily bad performance when actions are selected by
a greedy policy. We derive an upper bound on performance loss
that is slightly tighter than that in Bertsekas (1987), and we show
the extension of the bound to Q-learning (Watkins, 1989). These
results provide a partial theoretical rationale for the approxima-
tion of value functions, an issue of great practical importance in
reinforcement learning.

Keywords: Reinforcement Learning, Markov Decision Processes, Function
Approximation, Performance Loss



1 Introduction

Recent progress in reinforcement learning has been made by forming con-
nections to the theory of Markov decision processes (MDPs) and the associ-
ated optimization method of dynamic programming (DP) (Barto et al., 1990;
Barto et al., 1991; Sutton, 1988; Watkins, 1989; Sutton, 1990; Werbos, 1987).
Theoretical results guarantee that many DP-based learning methods will �nd
optimal solutions for a wide variety of search, planning, and control prob-
lems. Unfortunately, such results often fail to assume practical limitations
on the computational resources required. In particular, DP-based methods
form value functions which assign numeric estimates of utility to task states.
A common theoretical assumption is that such functions are implemented as
lookup tables, i.e., that all elements of the function's domain are individually
represented and updated (e.g., Sutton, 1988; Watkins & Dayan, 1992; Barto
et al., 1991; however, see Bertsekas, 1987, and Bradtke, 1993, for approxima-
tion results for restricted classes of MDPs). If practical concerns dictate that
value functions must be approximated, how might performance be a�ected?
Is it possible that, despite some empirical evidence to the contrary (e.g.,
Barto et al., 1983; Anderson, 1986; Tesauro, 1992), small errors in approxi-
mations could result in arbitrarily bad performance? If so, this could raise
signi�cant concerns about the use of function approximation in DP-based
learning.

This note presents to the machine learning community a result of Bert-
sekas (1987) which guarantees that a good approximation of a task's optimal
value function will yield reasonable performance when actions are selected
according to a greedy policy. Using a natural de�nition of the loss in per-
formance due to approximation, we derive an upper bound on the loss which
is slightly tighter than the one indicated in Bertsekas (1987). We also show
the corresponding extension to Q-learning (Watkins, 1989). Although these
results do not address the issue of converging to good approximations, they
show that if good approximations of values are achieved, then reasonable
performance can be guaranteed.
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2 Problem Statement and Theorem

We consider stationary Markovian decision processes (MDPs, henceforth also
called tasks) that have �nite state and action sets (e.g., see Bertsekas, 1987,
Barto et al., 1990). Let X be the state set, A(x) be the action set for
state x 2 X, and Pxy(a) be the probability of a transition from state x
to state y, given the execution of action a 2 A(x). Let R(x; a) be the
expected payo� received on executing action a in state x. We consider only
stationary deterministic policies, � : X ! A, and in�nite-horizon tasks with
geometrically discounted payo�s, 
 2 [0; 1). A value function is any real-
valued function of states, V : X ! <. In particular, value function V�
measures policy �'s performance if, for all x 2 X,

V�(x) = E�

(
1X
t=0


t rt j x0 = x

)

= R (x; �(x)) + 

X
y2X

Pxy (�(x)) V�(y);

where xt and rt respectively denote the state and payo� received at time t,
and E� is the expectation given that actions are selected according to policy
�. The determination of V� for a given � is called policy evaluation.

The value function for an optimal policy is greater than or equal to that
of any other policy, i.e., if �� is an optimal policy and V � is its value function,
then for all policies �; V �(x) � V�(x), for all x 2 X. V � is the optimal value
function, and it is unique for this class of MDPs.

Value functions can also give rise to policies in a straightforward fashion.
Given value function ~V , a greedy policy �~V can be de�ned by selecting for
each state the action that maximizes the state's value, i.e.,

�~V (x)
def
= arg max

a2A(x)

2
4R(x; a) + 


X
y2X

Pxy(a) ~V (y)

3
5 ;

where ties for the maximum action are broken arbitrarily. Evaluating a
greedy policy �~V yields a new value function V�

~V
, which we abbreviate as

V~V . Figure 1 illustrates the relationship between the derivation of greedy
policies and policy evaluation. Value function ~V gives rise to greedy policy
�~V which, when evaluated, yields V~V . In general, ~V 6= V~V . Equality occurs
if and only if ~V = V �, in which case any greedy policy will be optimal.
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Figure 1: Loss From Approximate Optimal-Value Functions. Given ~V , an
approximation within � > 0 of V �, derive the corresponding greedy policy
�~V . The resulting loss in value, V ��V~V , is bounded above by (2
�)=(1� 
).

For a greedy policy �~V derived from ~V de�ne the loss function L~V such
that for all x 2 X,

L~V (x)
def
= V �(x)� V~V (x):

L~V (x) is the expected loss in the value of state x resulting from the use of
policy �~V instead of an optimal policy. The following theorem gives an upper
bound on the loss L~V .

Theorem: Let V � be the optimal value function for a discrete-time MDP
having �nite state and action sets and an in�nite horizon with geomet-
ric discounting: 
 2 [0; 1). If ~V is a function such that for all x 2

X;
���V �(x)� ~V (x)

��� � �, and �~V is a greedy policy for ~V , then for all x,

L~V (x) �
2
�

1 � 

:

(Cf. Bertsekas, 1987, p. 236, #14(c): the preceding bound is tighter by a
factor of 
.)

proof: There exists a state that achieves the maximum loss. Call this
state z. Then for all x 2 X; L~V (z) � L~V (x). For state z consider an optimal
action, a = ��(z), and the action speci�ed by �~V , b = �~V (z). Because �~V is
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a greedy policy for ~V , b must appear at least as good as a:

R(z; a) + 

X
y2X

Pzy(a) ~V (y) � R(z; b) + 

X
y2X

Pzy(b) ~V (y): (1)

Because for all y 2 X, V �(y)� � � ~V (y) � V �(y) + �,

R(z; a) + 

X
y2X

Pzy(a) (V
�(y)� �) � R(z; b) + 


X
y2X

Pzy(b) (V
�(y) + �):

Therefore, we have that

R(z; a)�R(z; b) � 2
�+ 

X
y

[Pzy(b)V
�(y)� Pzy(a)V

�(y)] : (2)

The maximal loss is

L~V (z) = V �(z)� V~V (z)

= R(z; a)�R(z; b) + 

X
y

[Pzy(a)V
�(y)� Pzy(b)V~V (y)] : (3)

Substituting from (2) gives

L~V (z) � 2
�+ 

X
y

[Pzy(b)V
�(y)� Pzy(a)V

�(y)

+Pzy(a)V
�(y)� Pzy(b)V~V (y)]

L~V (z) � 2
�+ 

X
y

Pzy(b) [V
�(y)� V~V (y)]

L~V (z) � 2
�+ 

X
y

Pzy(b)L~V (y):

Because, by assumption, L~V (z) � L~V (y), for all y 2 X, we have

L~V (z) � 2
�+ 

X
y

Pzy(b)L~V (z):

Simplifying yields

L~V (z) �
2
�

1� 


Q.E.D.
This result extends to a number of related cases.
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Approximate payo�s The theorem assumes that the expected payo�s
are known exactly. If the true expected payo� R(x; a) is approximated by
~R(x; a), for all x 2 X and a 2 A(x), then the upper bound on the loss is as
follows.

Corollary 1: If for all
���V �(x)� ~V (x)

��� � �, for all x 2 X, and���R(x; a)� ~R(x; a)
��� � �, for all a 2 A(x), then

L~V (x) �
2
�+ 2�

1� 

;

for all x 2 X, where �~V is the greedy policy for ~V .

proof: Inequality (1) becomes

~R(z; a) + 

X
y2X

Pzy(a) ~V (y) � ~R(z; b) + 

X
y2X

Pzy(b) ~V (y);

and (2) becomes

R(z; a)�R(z; b) � 2
� + 2�+ 

X
y

[Pzy(b)V
�(y)� Pzy(a)V

�(y)] :

Substitution into (3) yields the bound. Q.E.D.

Q-learning If neither the payo�s nor the state-transition probabilities are
known, then the analogous bound for Q-learning (Watkins, 1989) is as fol-
lows. Evaluations are de�ned by

Q�(xt; a)
def
= R(xt; a) + 
E fV�(xt+1)g ;

where V�(x) = maxaQ�(x; a). Given function ~Q, the greedy policy � ~Q is
given by

� ~Q(x)
def
= arg max

a2A(x)

~Q(x; a):

The loss is then expressed as

L ~Q(x)
def
= Q�(x; ��(x))� ~Q(x; � ~Q(x)):
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Corollary 2: If
���Q�(x; a)� ~Q(x; a)

��� � �, for all x 2 X and a 2 A(x), then
for all x 2 X,

L ~Q(x) �
2�

1� 

:

proof: Inequality (1) becomes ~Q(z; a) � ~Q(z; b), which gives

Q�(z; a)� � � Q�(z; b) + �

R(z; a) + 

X
y

Pzy(a)V
�(y)� � � R(z; b) + 


X
y

Pzy(b)V
�(y) + �

R(z; a)�R(z; b) � 2�+ 

X
y

[Pzy(b)V
�(y)� Pzy(a)V

�(y)] :

Substitution into (3) yields the bound. Q.E.D.

Bounding � As Williams and Baird (1993) have pointed out, the bounds
of the preceding theorem and corollaries cannot be computed in practice be-
cause the determination of � requires knowledge of the optimal value function,
V �. Nevertheless, upper bounds on approximation losses can be computed
from the following upper bound on � (Porteus, 1971). Let

C(x)
def
= V 0(x)� ~V (x)

= max
a2A(x)

2
4R(x; a) + X

y2X

Pxy(a) ~V (y)

3
5� ~V (x); (4)

and let � = maxx2X C(x); then � � �

1�
 . Replacing � by �

1�
 in the bounds
of the theorem and corollaries yields new bounds expressed in terms of a
quantity, �, that can be computed from successive value function approxi-
mations, V 0 and ~V of Equation (4), which arise naturally in DP algorithms
such as value iteration. In model-free algorithms such as Q-learning, � can be
stochastically approximated. See Williams and Baird (1993) for the deriva-
tion of tighter bounds of this type.

3 Discussion

The theorem and its corollaries guarantee that the in�nite-horizon sum of
discounted payo�s accumulated by DP-based learning approaches will not
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be far from optimal if (a) good approximations to optimal value functions
are achieved, (b) a corresponding greedy policy is followed, and (c) the dis-
count factor, 
, is not too close to 1:0. More speci�cally, the bounds can be
interpreted as showing that greedy policies based on approximations can do
no worse than policies whose expected loss at each time step is about twice
the approximation error.

It should be pointed out that incurring only \small losses" in the sum
of discounted payo�s need not always correspond to the intuitive notion of
\near success" in a task. For example, if a task's sole objective is to reach a
goal state, then a su�ciently small discount factor might yield only a small
di�erence between a state's value under a policy that would lead optimally
to the goal and the state's value under a policy that would never lead to the
goal. In such cases, care must be taken in formulating tasks, e.g., in choosing
the magnitudes of payo�s and discount factors. One must try to ensure that
policies meeting important performance criteria will be learned robustly in
the face of small numerical errors.

Although the above bounds on the loss function can help to justify DP-
based learning approaches that do not implement value functions as lookup
tables, there are currently few theoretical guarantees that such approaches
will, in fact, obtain good approximations to optimal-value functions (i.e.,
small values of �, or �). Indeed, informal reports by researchers indicate that
it can be quite di�cult to achieve success with DP-based approaches that
incorporate common function approximation methods. Thus, the theoretical
and empirical investigation of function approximation and DP-based learning
remains an active area of research.
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