
Exact Inference of Hidden Structure
from Sample Data in Noisy-OR Networks

Michael Kearns

AT&T Labs
180 Park Avenue, Room A235

Florham Park, New Jersey 07932
mkearns@research.att.com

Yishay Mansour

Tel Aviv University
Department of Computer Science

Tel Aviv, Israel
mansour@math.tau.ac.il

1 Introduction

In the literature on graphical models, there has been
increased attention paid to the problems of learning
hidden structure (see Heckerman [H96] for a survey)
and causal mechanisms from sample data [H96, P88,
S93, P95, F98]. In most settings we should expect
the former to be di�cult, and the latter potentially
impossible without experimental intervention. In this
work, we examine some restricted settings in which
the ideal can be obtained: e�cient algorithms that
perfectly reconstruct the hidden structure solely on the
basis of observed sample data.

In our framework, we assume that the unknown \tar-
get" network is a two-layer, noisy-OR network meeting
a number of assumptions detailed in the paper; brie
y,
the assumptions limit the \fan-in" of each output node
(the number of inputs that can in
uence that node)
and the number of possible values for the weights in
the network. Learning algorithms observe indepen-
dent draws of the output units only; the values of the
input units are always unobserved. Rather than just
approximate the output distribution (a perfectly rea-
sonable goal), our algorithms exactly reconstruct the
directed graph from the inputs to the outputs (the hid-
den structure), and do so in time polynomial in the size
of the target network (and other parameters detailed
below).

There are two main ideas behind our algorithms:

� The integration of accurate structural information
about many \small subnetworks" of the target
network in order to obtain the correct structure
for the entire network.

� The acquisition of accurate structural information
about the small subnetworks from the passively
observed values on the outputs.

The strength of our results is indicative of the strength
of our assumptions, as we do not expect results of this
type to be possible in all but the most fortunate situa-
tions. Nevertheless, the assumptions do not trivialize
the problem | there are still exponentially many net-
works meeting our restrictions | and we hope that
some of the underlying mathematical tools we intro-
duce may lead to more widely applicable heuristics.

The outline of the paper is as follows. In Section 2,
we give de�nitions for the types of networks we ex-
amine, and introduce the restrictions on them that
we will require. In Section 3, we introduce an ab-
straction that we call Subnetwork Equivalence Queries
that allows us to describe the �rst main idea behind
our algorithms, the integration of accurate structural
information about many small pieces of the unknown
network. Section 4 examines the conditions required
to implement such queries from sample data, and gives
the overall description of our algorithms.

2 De�nitions and Preliminaries

We will use the standard de�nitions for two-layer
noisy-OR belief networks. Such a network has n in-
puts X1; : : : ; Xn and m outputs Y1; : : : ; Ym. For each
input Xi and output Yj there is an associated weight
�ij 2 [0; 1], and we say that Xi and Yj are connected
if and only if �ij 6= 1. In our framework, the inputs
Xi will be hidden variables, whose values are never ob-
served in the data available to our learning algorithms.
The outputs Yj will be fully observable.

With each output Yj we associate the set Sj of (indices
of) inputs Xi that are connected to Yj , and we say the
network has fan-in k if jSij � k for all 1 � i � m.

We use the standard de�nition for the conditional dis-



tribution of Yj given values for its parents:

Pr[Yj = 0jX1; : : : ; Xn] =

nY
i=1

�Xi

ij =
Y
i2Sj

�Xi

ij :

Another way of describing the way such a network gen-
erates a distribution on its outputs, given values for
the inputs, is as follows. We associate with each input
Xi and output Yj that are connected a binary random
variable Rij , where Pr[Rij = 0] = �ij . The output
variable Yj is set to

Yj = _i2SjXiRij : (1)

Thus, we de�ne a noisy-OR network N to consist of
the connection parameters �ij between every input Xi

and output Yj . The network N does not yet specify a
probability distribution; to specify the joint distribu-
tion de�ned by N it remains only to assign indepen-
dent biases pi to the input units Xi. In this paper,
we will restrict our attention to distributions obtained
by setting all of the pi to some common value p, and
we shall denote the resulting joint distribution on the
outputs Yj by Np.

With the networks of interest now speci�ed, we can
describe the learning model we will study. Our learn-
ing algorithms will be given independent output draws
from a distribution de�ned by an unknown two-layer
noisy-OR target network Np. Each draw observed
by the learning algorithm consists of values for the
outputs Y1; : : : ; Yn only | the values for the inputs
X1; : : : ; Xm that generated the observed outputs are
always hidden. In the terminology of the graphical
models literature, we are in the partially observed data,
unknown structure setting.

A perfectly reasonable goal for a learning algorithm in
this setting would be to use the data to learn an ap-
proximation of the unknown target distribution over
the Yj only, since these are the only variables that are
observed. In such a model, we do not ask the learn-
ing algorithm to explicitly derive the assumed causal
relationships between the Xi and the Yj . Indeed, the
learning algorithm is free to not represent the Xi at
all, since only an accurate approximation of the out-
put distribution is required. There are many works
that either implicitly or explicitly take this view of
distribution learning. The closest in spirit to the cur-
rent work is [K94], in which a \PAC-like" model for
distribution learning was formalized.

In this paper, however, we study a much more de-
manding criterion for learning. Under some strong as-
sumptions on the unknown target network generating
the observed output draws, we give algorithms that

will, with high probability, exactly recover the struc-
ture of the target network, and furthermore, will do
so in time polynomial in the size of the target net-
work. Thus, not only will the resulting approximation
of the output distribution be perfect (Kullback-Leibler
divergence 0 to the target distribution), but the true
underlying directed graph of the target network will
be inferred. This can be viewed as a demonstration
of a restricted setting in which it is in fact possible to
recover the exact structure on the basis of passively ob-
served data, a task that under general circumstances
is di�cult or impossible.

As the reader will suspect, in order to obtain such
strong results, we will require a number of restrictions
on the general two-layer noisy-OR networks we have
de�ned. Our main restrictions will be:

� Identical input biases. Thus, pi = p 2 [0; 1] for all
1 � i � m. Furthermore, we will eventually see
that our algorithms work not for all values of p,
but only \most" values.

� Bounded fan-in. Thus, jSj j � k for all 1 � j � n.

� Restrictions on the allowed weights �ij , discussed
below.

The restrictions we require on the �ij can be expressed
in terms of the number of distinct values the �ij are
allowed to assume. We say that a class C of networks
has ` weight values if there is a �nite set A of values in
[0; 1] such that jAj � `, and for any network in C and
any weight �ij in the network, �ij 2 A. We will also
study the special case of this restriction in which every
value in A is an integer multiple t� of some small �xed
value � 2 [0; 1], for some natural number t, in which
case we say that C has ` weight values multiplying �.
Such a restriction would arise naturally, for example,
from discretizing continuous weights into the ` possible
multiples of a resolution parameter � = 1=`.

Now that we have spelled out the various restric-
tions we will require, let us quickly reiterate some of
the remarks made in the introduction about these re-
strictions. First of all, let us note that despite their
strength, these restrictions in no way render the prob-
lem of learning the allowed classes of networks triv-
ial from the combinatorial point of view. For exam-
ple, even with identical input biases, constant fan-in,
and only one weight value, the number of m-input, n-
output networks remains exponential in m and n |
there are simply exponentially many directed graph
structures that generate unique distributions. It is pre-
cisely this structure that our algorithms will recover
exactly (with high probability). On the other hand,



the very strength of our results | exact inference of
the structure in polynomial time | is indicative of
restrictions that are unlikely to be met in all but the
most limited settings. The results we describe are thus
primarily of theoretical interest. Our hope is that some
of the mathematical ideas and observations presented
will point the way to related heuristics that may be
more applicable.

3 Subnetwork Equivalence Queries

As mentioned in the introduction, there are two dis-
tinct main ideas behind our algorithms:

� The integration of accurate structural information
about many \small subnetworks" of the target
network in order to obtain the correct structure
for the entire network.

� The acquisition of accurate structural information
about the small subnetworks from the passively
observed values on the outputs.

It turns out that these two ideas can be separated fairly
cleanly and fruitfully from a technical viewpoint. In
particular, it will be useful to describe our algorithm
�rst in terms of an abstraction we will call Subnetwork
Equivalence Queries (SEQ's). This can be thought of
as a subroutine or an \oracle" that, given any set of
outputs Y of the target network, and a proposed di-
rected graph between the inputs and the outputs in Y ,
indicates whether or not the proposed substructure is
structurally equivalent to that in the target network.
Thus, we propose a candidate for the subnetwork in-
duced by Y (in the graph-theoretic sense), and are told
YES if this candidate is correct and NO otherwise.

We will �rst describe our algorithms assuming we have
a subroutine for SEQ's. However, the reason for intro-
ducing SEQ's is the hope that we can actually imple-
ment them solely on the basis of observed data at the
outputs of the network. We will later see that this
can be achieved e�ciently only for \small" SEQ's |
that is, SEQ's in which the set Y has small cardinal-
ity. Thus, in the remainder of this section, we describe
algorithms using small SEQ's that exactly recover the
structure of the target network. In Section 4, we tackle
the more technical and statistical problem of how to
implement small SEQ's under various restrictions on
the unknown target noisy-OR network. In any case,
algorithms using small SEQ's seems to provide a use-
ful abstraction: for any class of networks for which
one can implement SEQ's | whether by sample data,
experimentation, or other means | the algorithms of
this section are applicable.

3.1 Network Equivalence and Basic Blocks

We de�ne two noisy-OR networks to be structurally
equivalent if they are identical up to renaming of the
input variables. More precisely, two noisy-OR net-
works N1 and N2 over inputs X1; : : : ; Xm and out-
puts Y1; : : : ; Yn and with weights �1ij and �2ij respec-
tively, are equivalent if there exists a permutation �
of the inputs such that if �(i) = j, then �1il = �2j`, for
any output `. The goal of our algorithms is to �nd a
network structurally equivalent to the unknown target
network.

It is not hard to see that if two networks are struc-
turally equivalent, then for any input bias p, they gen-
erate identical distributions on their outputs. We will
eventually see that the converse is not true (see Fig-
ure 1), which will complicate the conditions we require
on the unknown network.

Given any noisy-OR network, it will prove useful to
partition its inputs into sets that we will call basic
blocks . Informally, a basic block consists of all those
inputs that in
uence the outputs in an identical man-
ner. Formally, for each input Xi we de�ne the set Ti
to contain the (indices of) outputs Yj such that i 2 Sj
(that is, �ij 6= 1). Thus, Ti consists of just those out-
puts that Xi in
uences. Then we say that Xi and Xi0

are in the same basic block if and only if Ti = Ti0 , and
for every j 2 Ti, �ij = �i0j . Clearly, the basic blocks
de�ne a partition of the input variables.

Now for any basic block B � fX1; : : : ; Xmg of a noisy-
OR network, there are a number of ways of \naming"
or specifying B. One is obviously by the subset of the
Xi in B, which allows for the possibility of 2

m distinct
basic block names. The following simple lemma shows
that for limited fan-in networks, there is a much more
succinct way of specifying the basic blocks.

Lemma 3.1 ([K94]) Let N be a noisy-OR network
on inputs X1; : : : ; Xm and outputs Y1; : : : ; Yn, and let
the fan-in of N be bounded by k. For any j, let Sj
be the set of inputs connected to output Yj , as de�ned
above. Then any basic block B of inputs is equal to the
intersection of k of the Sj and their complements |
that is, there exists j1; : : : ; jk such that

B = Sj1 \ � � � \ Sj` \
�Sj`+1 \ � � � \

�Sjk (2)

To see this, �rst note that a basic block B is sim-
ply a collection of inputs, each of which is connected
to exactly the same set of outputs. Without loss of
generality, let the outputs that B is connected to be



Y1; : : : ; Yr. Then we clearly have

B = S1 \ � � � \ Sr \ �Sr+1 � � � \ �Sn: (3)

In particular, B is contained in S1. If B = S1, we
are �nished. Otherwise, by Equation (3), we must be
able to choose one of S2; : : : ; Sr; �Sr+1; : : : ; �Sn, and by
intersecting with S1, reduce the remaining set size by
at least 1 while getting \closer" to B. But since S1 has
only k elements to begin with, after only k � 1 inter-
sections of the n given in Equation (3), the resulting
intersection will be equal to B.

3.2 An Incremental Algorithm Using SEQ's

Armed with the notion of basic blocks, we can now de-
scribe our algorithms at a high level. First we make the
behavior of SEQ's more precise. The input to an SEQ
consists of a two-layer noisy-OR network, complete
with weights, de�ned on all the inputs X1; : : : ; Xm and
on just a subset Y of the outputs Y1; : : : ; Yn. The SEQ
returns YES if the input network is structurally equiv-
alent to the subnetwork induced by the target network
on Y . Otherwise, the SEQ returns NO.

For now, we simply assume that we have access to
SEQ's, and describe an algorithm for exactly recover-
ing the structure of the unknown target network. As
we have already mentioned, however, we will eventu-
ally show various conditions under which it is possible
to implement SEQ's given only access to samples from
the target output distribution. Since the complexity of
this implementation will depend crucially on the size
of the subnetworks on which the SEQ's are made, we
here give an algorithm that only makes SEQ's on small
networks.

Let us here reintroduce the assumptions on the target
network that we will exploit | namely, that the target
network has identical (and known) input biases p, fan-
in bounded by k and at most ` weight values, which we
also assume are known. (In order to successfully im-
plement SEQ's, we will later examine some additional
restrictions on the parameters, but these will su�ce
for now.) Under these conditions, there is a simple in-
cremental algorithm for exactly recovering the target
network from SEQ's that we will use as our starting
point, and then modify.

The simple incremental algorithm proceeds as follows:
assuming for induction that the target network re-
stricted to just the outputs Y1; : : : ; Yj�1 (that is, the
network between all of the inputs X1; : : : ; Xm and just
these �rst j � 1 outputs) has been perfectly recon-
structed, the algorithm proceeds to \add" the struc-
ture on Yj . There are at most n

k choices for the set Sj

of inputs connected to Yj ; for each such choice, there
are at most `k choices for the weights on these connec-
tions. For each of the resulting nk`k ways of \wiring"
Yj into the network reconstructed so far, we can then
make an SEQ on the entire proposed network on the
inputs and Y1; : : : ; Yj . Clearly one of the queries will
return YES, indicating that the structure is correct,
and we can proceed to the next output.

This incremental algorithm would make on the order
of n(nk`k) SEQ's, each on a network with as many as
n outputs. The size of such queries would result, as we
will see in the next section, in a �nal implementation
that required time exponential in n in order to recon-
struct the network from sample data. We now describe
an improved algorithm that makes SEQ's whose size
depends only on k.

Suppose we have reconstructed the network through
Y1; : : : ; Yj�1, and we divide them inputs into the basic
blocks de�ned by these j�1 outputs. Clearly, in order
to decide how Yj should be wired, it su�ces to know for
every basic block B how many inputs are in B \Sj |
we already know that every input in B is identically
connected to the outputs Y1; : : : ; Yj�1, so we simply
need to know how many of these are connected to Yj
(and of course, with what weight), and how many are
not. Notice that the introduction of Yj is naturally
\breaking" each previous basic block into at most `+1
new basic blocks, according to the connectivity to Yj ,
and the appropriate weight value.

Now the important point is that by Lemma 3.1, if Yj
breaks one of the current basic blocks B into two or
more new basic blocks, it must already do so in the
subnetwork induced by the k outputs comprising the
succinct \name" of B. More precisely, in order to de-
termine the connectivity from the basic block B to the
output Yj , we can proceed as follows: take the k out-
puts Yj1 ; : : : ; Yjk from Y1; : : : ; Yj�1 yielding Equation
(2) for B, and look at the subnetwork induced by these
k outputs | this will consist of these k outputs, their
inputs (of which there are at most k2), and the connec-
tions between them. We now consider all possible ways
of adding the new output Yj to this subnetwork| that
is, all possible ways of choosing up to k inputs to Yj
from among the k2 inputs of Yj1 ; : : : ; Yjk , with the re-
maining inputs to Yj being \new" inputs. For each
such choice (of which there are are most (k2)k = k2k),
we will make an SEQ on the resulting subnetwork, and
one of them must return YES. For this choice, we can
see how many inputs in B are connected to Yj , and
then go on to the next basic block. Note that the suc-
cessful SEQ apparently gives much more information
than how many inputs in B should connect to Yj |
it may also suggest connectivity to Yj for many of the



other inputs in the subnetwork. However, it is only for
the basic block B that connectivity in the subnetwork
implies connectivity in the overall network, since this
was how we chose the induced subnetwork.

Thus, the for each basic block and each output, we
need at most k2k`k SEQ's, each on a network with at
most k + 1 outputs; since there are n outputs and at
most m basic blocks, we obtain:

Theorem 3.2 For any class of fan-in k, identical in-
put bias, two-layer noisy-OR networks with at most
` weight values, there is an algorithm for learning a
network that is structurally equivalent to an unknown
target network from the class with m inputs and n out-
puts using at most mnk2k`k SEQ's, each on a network
with m inputs and k + 1 outputs.

The important observations at this point are that the
number of queries required is exponential in k, but
only polynomial in m and n, despite the fact that the
number of networks in the classes considered is expo-
nential in m and n; and that the required SEQ's are
on small sets of outputs.

4 Implementing SEQ's from Data

In order to implement an oracle for SEQ's given only
sample data from the outputs of the target network,
we will take an obvious approach: given a query on
a network with outputs Yj1 ; : : : ; Yjr , we will sample
the target network distribution restricted to these out-
puts. If the observed distribution on these outputs
di�ers \signi�cantly" from that de�ned by the query
network, we declare the query incorrect and return NO,
and otherwise we declare the query correct and return
YES. Thus, in order to implement SEQ's, we will need
that (sub)networks that are not structurally equiva-
lent generate di�erent distributions, and furthermore
that the di�erence would be noticeable from a small
sample.

For the noisy-OR networks we examine, it turns out
to be most convenient to express the distribution on
the outputs as a set of polynomials over the uniform
input bias p; this polynomial is de�ned by the network
structure and weights. As long as networks that are
not structurally equivalent give rise to non-identical
sets of polynomials, we will be able to argue that we
can distinguish di�erent networks on the basis of sam-
ple data, and thus implement the desired SEQ's.

4.1 Polynomials for Noisy-Or Distributions

Consider a noisy-OR network with r output units Y =
fY1; : : : ; Yrg and identical input biases p. We would
like to compute the probability that the outputs in Y
are all 0 simultaneously. Recall that each input Xi is
connected to the outputs in Ti. Using the notation of
Equation (1), in order for all the outputs in Y be 0,
we need that for any input Xi that is set to 1 and is
connected to an output Yj 2 Y , Rij = 0. For a given
Xi, the probability of this event is

Q
j2Ti\Y

�ij . Since
each input Xi has probability p of being 0 and 1 � p
of being 1, we have

Pr[Y1 = 0; : : : ; Yr = 0] =

nY
i=1

0
@p+ (1� p)

Y
j2Ti\Y

�i;j

1
A

(4)
For a �xed noisy-OR network with outputs Y , we will
use QY(p) to denote the polynomial of Equation (4).
Thus, we view the network weights �ij as �xed, with
the input bias p as the argument.

Let C be a class of (possibly restricted) noisy-OR net-
works. We say that C has unique polynomials if for
any N1 and N2 in C that are not structurally equiva-
lent, there is a set Y of outputs such that Q1

Y(p) and
Q2
Y(p) are not identical (that is, there exists a p such

that Q1
Y(p) 6= Q2

Y(p)), where Q
i
Y(p) is the polynomial

given by Equation (4) for the network N i.

Note that if two distributions agree exactly on the
probability that any subset of the outputs is simulta-
neously 0, then the distributions are in fact identical.
Thus, if class C does not have unique polynomials,
then there are two structurally inequivalent networks
in C that generate identical output distributions, and
we could never hope to implement SEQ's for this class,
or more generally, to exactly learn the structure from
observed data. On the other hand, if C does have
unique polynomials, we still have work to do, since this
only guarantees that for some set of the outputs, and
for some value of the input bias p, there is a non-zero
di�erence between the probability of all 0's. The �rst
problem | that we don't know which set of outputs
yields the di�ering polynomials | we have essentially
already solved, since we have shown how to limit our
attention to only k+1 outputs at a time in the required
SEQ's. The latter two problems | that we only have
a guarantee of a di�erence for some value of p, and
that this di�erence may be too small | are tackled
in the next section. For now, we simply show several
restricted classes of noisy-OR networks with unique
polynomials.

We start with the class of noisy-OR networks with just



Y1 Y2 Y1 Y2

.3 .3 .2 .3.2 .3 .2

X1 X3 X1 X2 X3X2 X4 X4

.2.5 .5

Figure 1: An example showing two noisy-OR networks
on inputsX1; : : : ; X4 and outputs Y1; Y2 that have only
` = 3 weight values, are not structurally equivalent,
yet generate identical distributions on Y1 and Y2 for
any input bias p.

one weight value.

Lemma 4.1 The class of noisy-OR networks with one
weight value has unique polynomials.

This simple example already includes networks of stan-
dard logical OR gates, in which the allowed weight
value is 0. Unfortunately, it is possible to show that
this lemma cannot be generalized to allow even three
weight values | that is, there exist two (rather small)
noisy-OR networks that are not structurally equiva-
lent, yet generate identical output distributions (see
Figure 1). However, in the full paper, we will demon-
strate several other restrictions on noisy-OR networks
that do yield classes with unique polynomials. One ex-
ample is the class of networks in which each output Yj
is associated with just a single weight value �j | thus,
if Xi is connected to Yj , then �ij = �j . A similar con-
dition associating each input with just a single weight
value also yields unique polynomials. Another su�-
cient condition is that every weight �ij is one of two
�xed values � or �, with only k inputs to each output
having weight �. This permits networks in which every
input in
uences each output, but with most in
uences
being \weak" (details omitted).

The important points are that the condition of unique
polynomials is required in order meet the strong learn-
ing criterion we are aiming for, and that this condition
is met for certain natural restrictions on the networks,
but certainly not all. For those classes with unique
polynomials, the next section provides rather general
methods for implementing SEQ's.

4.2 SEQ's from Unique Polynomials

Let us brie
y review where we are. We �rst gave
an algorithm assuming SEQ's that learned a network
structurally equivalent to the unknown target network,
and made SEQ's on subnetworks with only k + 1 out-
puts. We then introduced the notion of a class of net-
works having unique polynomials, argued that it was
required in order to meet our learning criterion from
sample data, and demonstrated some classes having
unique polynomials. In this section, we show that if
a class has unique polynomials, then we can in fact
implement SEQ's for \most" values of the input bias
p.

We �rst state a general result about polynomials.

Theorem 4.2 Let Q1(p); : : : ; Qr(p) be univariate
polynomials, each with degree at most d and leading
coe�cient at least c. Then for any �, the number of
distinct values of p 2 [0; 1] for which there exists an i
satisfying Qi(p) = � is at most dr, and the measure of
the set fp : 9ijQi(p)j � �g is at most 8dr(�=2c)1=d.

We omit the proof of this theorem, but it relies on
some classical results in approximation theory [R69].
We now show how this result can be used to implement
SEQ's from sample data for restricted classes of noisy-
OR networks.

Let C be a class of noisy-OR networks with unique
polynomials, and let p 2 [0; 1]. We say that p is �-
good for C if for any two networks N1; N2 2 C that
are not structurally equivalent, there is a subset Y of
the outputs such that

jPrN1
p
[8Y 2 Y : Y = 0]�PrN2

p
[8Y 2 Y : Y = 0]j � �:

(5)
In other words, a \good" bias is one that ensures that
any two non-equivalent structures have signi�cantly
di�erent output distributions.

The following result states that \most" values of the
bias p are \reasonably" good for classes of networks
with unique polynomials.

Theorem 4.3 Let C be a class of noisy-OR networks
with fan-in k and ` weight values multiplying �. Sup-
pose that C has unique polynomials. Then the measure
of p 2 [0; 1] that are �-good for C is at least 1� �, for

a value of � that is polynomial in 1=kk
4

, 1=`k
4

, 1=�k
3

,

and 1=�k
2

.

Proof:(Sketch) Since C has unique polynomials, for
any networks N i and N j in C we know that there



exists a set Y of their outputs such that the polyno-
mials Qi

Y(p) and Qj
Y
(p) are not identical. Further-

more, by the basic block arguments already given, we
may assume that jYj � k + 1. This implies that
Ri;j
Y (p) = Qi

Y(p) � Qj
Y (p) 6� 0. If in addition, for a

given value of p, jRi;j
Y
(p)j > �, this p is good for this

N i and N j ; if this holds for anyN i and N j in the class
C, we conclude that this p is �-good for C. The proof
proceeds by applying Theorem 4.2 to the set of all
Ri;j
Y (p), with bound on the number of such polynomi-

als derived from the restrictions on the weight values.
2

Thus, provided C has unique polynomials, we can im-
plement SEQ's from observed output data for \most"
(but not all) values of the input bias. Provided p is �-
good, we can answer (with high probability) any SEQ
by simply sampling su�ciently to determine if there
is some subset of the outputs on which the distribu-
tion de�ned by the queried subnetwork di�ers from the
target distribution by more than �.

4.3 Wrapping Things Up

The combination of results from the previous sections
�nally yields the following.

� For the restricted classes of noisy-OR networks
discussed in Section 4.1, we have algorithms that
will, with probability 1 � �, derive from a su�-
ciently large random sample of output values a
network that is structurally equivalent to the tar-
get network, for \most" values of the input bias.

� The algorithms all reconstruct the target network
incrementally, always deciding how to add a new
output through a series of SEQ's de�ned by the
current basic blocks. (Section 3.2)

� The SEQ's are implemented by sampling su�-
ciently from the target output distribution to see
if the queried subnetwork generates a distribu-
tion su�ciently similar to assert structural equiv-
alence. (Section 4; Theorem 4.3)

� The probability 1�� of success by the algorithms
is taken over the draw of the random sample. The
running time and sample size required by the al-
gorithms will depend only polynomially on the
number of outputs of the target network, but ex-
ponentially on the fan-in.

� The measure of the set of input biases for which
the algorithms succeed can be made arbitrarily
close to 1 at the expense of increased running
time. (Theorem 4.3)

More formally, we can establish the following theo-
rem. Similar results can be stated for the other classes
of noisy-OR networks that have unique polynomials,
discussed in Section 4.1.

Theorem 4.4 Let C be the class of noisy-OR net-
works with one weight value � and fan-in k. There
exists an algorithm A, such that for any N 2 C, and
for the input bias p chosen at uniformly in [0; 1], the
algorithm A, given p and � as input, and given access
to random examples generated according to the output
distribution Np, produces a network N

0, such that with
probability 1 � � the networks N and N 0 are struc-
turally equivalent. (Here the probability is both over
the choice of p and the random sample.) Furthermore,
the running time of A is polynomial in m (the number
of inputs of N), n (the number of outputs of N), 1=�
(the con�dence), 1=((1� �)�) (the weight value), and
1=p (the input bias), and exponential in k (the fan-in
bound). (More precisely, the running time is bounded
by mn(1=p�)k

c

, for some constant c.)

Acknowledgements

Y. Mansour was supported in part by a grant from the
Israel Science Foundation.

References

[F98] Nir Friedman. The Bayesian Structural EM Al-
gorithm. These proceedings.

[H96] David Heckerman. A Tutorial on Learning with
Bayesian Networks. Microsoft Research Tech-
nical Report MSR-TR-95-06. Revised version,
November 1996.

[K94] M. Kearns, Y. Mansour, R. Rubinfeld, D. Ron,
R. Schapire, and L. Sellie. On the Learnability
of Discrete Distributions. Proceedings of the
26th Annual ACM Symposium on the Theory
of Computing, ACM Press, pp. 273-282, 1994.

[P95] Judea Pearl. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[P88] Judea Pearl. Causal Diagrams for Empirical Re-
search. Biometrika 82:669-710, 1995.

[S93] P. Spirtes, C. Glymour, R. Scheines. Causation,
Prediction, and Search. Springer-Verlag, New
York, 1993.

[R69] Theodore J. Rivlin. An Introduction to the Ap-
proximation of Functions. Blaisdell Publishing
Company, 1969.


