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Abstract

We introduce NashProp, an iterative and local message-passing algo-
rithm for computing Nash equilibria in multi-player games represented
by arbitrary undirected graphs. We provide a formal analysis and exper-
imental evidence demonstrating that NashProp performs well on large
graphical games with many loops, often converging in just a dozen itera-
tions on graphs with hundreds of nodes.
NashProp generalizes the tree algorithm of (Kearns et al. 2001), and
can be viewed as similar in spirit to belief propagation in probabilis-
tic inference, and thus complements the recent work of (Vickrey and
Koller 2002), who explored a junction tree approach. Thus, as for prob-
abilistic inference, we have at least two promising general-purpose ap-
proaches to equilibria computation in graphs.

1 Introduction
There has been considerable recent interest in representational and algorithmic issues
arising in multi-player game theory. One example is the recent work ongraphical
games(Kearns et al. 2001) (abbreviated KLS in the sequel). Here a multi-player game
is represented by an undirected graph. The interpretation is that while the global equilibria
of the game depend on the actions of all players, individual payoffs for a player are deter-
mined solely by his own action and the actions of his immediate neighbors in the graph.
Like graphical models in probabilistic inference, graphical games may provide an exponen-
tially more succinct representation than the standard “tabular” or normal form of the game.
Also as for probabilistic inference, the problem of computing equilibria on arbitrary graphs
is intractable in general, and so it is of interest to identify both natural special topologies
permitting fast Nash computations, and good heuristics for general graphs.

KLS gave a dynamic programming algorithm for computing Nash equilibria in graphical
games in which the underlying graph is a tree, and drew analogies to the polytree algorithm
for probabilistic inference (Pearl 1988). A natural question following from this work is
whether there are generalizations of the basic tree algorithm analogous to those for proba-
bilistic inference. In probabilistic inference, there are two main approaches to generalizing
the polytree algorithm. Roughly speaking, the first approach is to take an arbitrary graph
and “turn it into a tree” via triangulation, and subsequently run the tree-based algorithm on
the resultingjunction tree(Lauritzen and Spiegelhalter 1988). This approach has the merit
of being guaranteed to perform inference correctly, but the drawback of requiring the com-
putation to be done on the junction tree. On highly loopy graphs, junction tree computations
may require exponential time. The other broad approach is to simply run (an appropriate



generalization of) the polytree algorithm on the original loopy graph. This method gar-
nered considerable interest when it was discovered that it sometimes performed quite well
empirically, and was closely connected to the problem of decoding in Turbo Codes. Belief
propagation has the merit of each iteration being quite efficient, but the drawback of hav-
ing no guarantee of convergence in general (though recent theoretical work has established
convergence for certain special cases (Weiss 2000)).

In recent work, (Vickrey and Koller 2002) proposed a number of heuristics for equilibria
computation in graphical games, including a constraint satisfaction generalization of KLS
that essentially provides a junction tree approach for arbitrary graphical games. They also
gave promising experimental results for this heuristic on certain loopy graphs that result in
manageable junction trees.

In this work, we introduce the NashProp algorithm, a different KLS generalization which
provides an approach analogous to loopy belief propagation for graphical games. Like
belief propagation, NashProp is a local message-passing algorithm that operates directly
on the original graph of the game, requiring no triangulation or moralization1 operations.
NashProp is a two-phase algorithm. In the first phase, nodes exchange messages in the form
of two-dimensional tables. The table playerU sends to neighboring playerV in the graph
indicates the valuesU “believes” he can play given a setting ofV and the information he has
received in tables from his other neighbors, a kind of conditional Nash equilibrium. In the
second phase of NashProp, the players attempt to incrementally construct an equilibrium
obeying constraints imposed by the tables computed in the first phase.

Interestingly, we can provide rather strong theory for the first phase, proving that the tables
must always converge, and result in a reduced search space that can never eliminate an
equilibrium. When run using a discretization scheme introduced by KLS, the first phase of
NashProp will actually converge in time polynomial in the size of the game representation.

We also report on a number of controlled experiments with NashProp on loopy graphs,
including some that would be difficult via the junction tree approach due to the graph
topology. The results appear to be quite encouraging, thus growing the body of heuristics
available for computing equilibria in compactly represented games.

2 Preliminaries
The normal or tabular form of ann-player, two-action2 game is defined by a set ofn
matricesMi (1 � i � n), each withn indices. The entryMi(~x) 2 [0; 1] specifies the
payoff to playeri when the joint action of then players is~x 2 f0; 1gn. Thus, eachMi has
2n entries. The actions 0 and 1 are thepure strategiesof each player, while amixedstrategy
for playeri is given by the probabilitypi 2 [0; 1] that the player will play 0. For any joint
mixed strategy, given by a product distribution~p, we define the expected payoff to playeri
asMi(~p) = E~x�~p[Mi(~x)], where~x � ~p indicates that eachxj is 0 with probabilitypj and
1 with probability1� pj .

We use~p[i : p0i] to denote the vector which is the same as~p except in theith component,
where the value has been changed top0i. A (Nash) equilibriumfor the game is a mixed
strategy~p such that for any playeri, and for anyp0i 2 [0; 1], Mi(~p) � Mi(~p[i : p

0

i]). (We
say thatpi is abest responseto the rest of~p.) In other words, no player can improve their
expected payoff by deviating unilaterally from a Nash equilibrium. The classic theorem
of (Nash 1951) states that for any game, there exists a Nash equilibrium in the space of
joint mixed strategies. We will also use a straightforward definition for approximate Nash
equilibria. An�-Nash equilibriumis a mixed strategy~p such that for any playeri, and for
any valuep0i 2 [0; 1], Mi(~p) + � � Mi(~p[i : p0i]). (We say thatpi is an�-best response
to the rest of~p.) Thus, no player can improve their expected payoff by more than� by

1Unlike for inference, moralization may be required for games even on undirected graphs.
2For simplicity, we describe our results for two actions, but they generalize to multi-action games.



deviating unilaterally from an approximate Nash equilibrium.

The following definitions are due to KLS. Ann-playergraphical gameis a pair(G;M),
whereG is an undirected graph onn vertices andM is a set ofn matricesMi called the
local game matrices. Each player is represented by a vertex inG, and the interpretation
is that each player’s payoff is determined solely by the actions in their local neighborhood
in G. Thus the matrixMV 2 M has an index for each of thek neighbors ofV , and
an index forV itself, and for~x 2 [0; 1]k+1, MV (~x) denotes the payoff toV when he
and hisk neighbors play~x. The expected payoff under a mixed strategy~p 2 [0; 1]k+1 is
defined analogously. Note that in the two-action case,MV has2k+1 entries, which may be
considerably smaller than2n.

Note that any game can be trivially represented as a graphical game by choosingG to be the
complete graph, and letting the local game matrices be the original tabular form matrices.
However, any time in which the local neighborhoods inG can be bounded byk << n, the
graphical representation is exponentially smaller than the normal form. We are interested
in heuristics that can exploit this succinctness computationally.

3 NashProp: Table-Passing Phase
The table-passingphase of NashProp proceeds in a series of rounds. In each round, every
node will send a different binary-valuedtable to each of its neighbors in the graph. Thus,
if verticesV andW are neighbors, the table sent fromV toW in roundr shall be denoted
T r
WV (w; v). Since the vertices are always clear from the lower-case table indices, we shall

drop the subscript and simply writeT r(w; v). This table is indexed by the continuum of
possible mixed strategiesw; v 2 [0; 1] for playersW andV , respectively. Intuitively, the
binary valueT r(w; v) indicates playerV ’s (possibly incorrect) “belief” that there exists a
(global) Nash equilibrium in whichW = w andV = v.

As these tables are indexed by continuous values, it is not clear how they can be finitely
represented. However, as in KLS, we shall shortly introduce a finite discretization of these
tables whose resolution is dependent only on local neighborhood size, yet is sufficient to
compute global (approximate) equilibria. For the sake of generality we shall work with the
exact tables in the ensuing formal analysis, which will immediately apply to the approxi-
mation algorithm as well.

For every edge(W;V ), the table-passing phase initialization isT 0(w; v) = 1 for all w; v 2
[0; 1]. Let us denote the neighbors ofV other thanW (if any) by ~U = (U1; : : : ; Uk�1). For
eachw; v 2 [0; 1], the table entryT r+1(w; v) is assigned the value 1 if and only if there
exists a vector of mixed strategies~u = (u1; : : : ; uk�1) 2 [0; 1]k�1 for ~U such that

1. T r(v; ui) = 1 for all 1 � i � k � 1; and

2. V = v is a best response to~U = ~u;W = w.

We shall call such a~u a witnessto T r+1(w; v) = 1. If V has no neighbors other than
W , we define Condition 1 above to hold vacuously. If either condition is violated, we set
T r+1(w; v) = 0.

Lemma 1 For all edges(W;V ) and all r > 0, the table sent fromV to W can only
contract or remain the same:f(w; v) : T r+1(w; v) = 1g � f(w; v) : T r(w; v) = 1g.

Proof: By induction onr. The base caser = 1 holds trivially due to the table initialization
to contain all 1 entries. For the induction, assume for contradiction that for somer > 1,
there exists a pair of neighboring players(W;V ) and a strategy pair(w; v) 2 [0; 1]2 such
that T r(w; v) = 0 yet T r+1(w; v) = 1. SinceT r+1(w; v) = 1, the definition of the
table-passing phase implies that there exists a witness~u for the neighbors~U of V other



thanW meeting Conditions 1 and 2 above. By induction, the fact thatT r(v; ui) = 1 in
Condition 1 implies thatT r�1(v; ui) = 1 for all i = 1; : : : ; k � 1. SinceT r(w; v) = 0

it must be thatV = v is a not best response to~U = ~u;W = w. But then~u cannot be a
witness toT r+1(w; v) = 1, a contradiction.

Since all tables begin filled with 1 entries, and Lemma 1 states entries can only change
from 1 to 0, the table-passing phase must converge:

Theorem 2 For all (w; v) 2 [0; 1]2, the limit limr!1 T r(w; v) � T �(w; v) exists.

It is also immediately obvious that the limit tablesfT �(w; v)g must all simultaneously
balanceeach other, in the sense of obeying Conditions 1 and 2. That is, we must have that
for all edges(W;V ) and all(w; v), T �(w; v) = 1 implies the existence of a witness~u for
~U such thatT �(v; ui) = 1 for all i, andV = v is a best response to~U = ~u;W = w. If this
were not true the tables would be altered by a single round of the table-passing phase.

We next establish that the table-passing phase willnevereliminate any global Nash equi-
libria. Let ~p 2 [0; 1]n be any mixed strategy for the entire population of players, and let us
use~p[V ] to denote the mixed strategy assigned to playerV by ~p.

Lemma 3 Let ~p 2 [0; 1]n be a Nash equilibrium. Then for all roundsr � 0 of the table-
passing phase, and every edge(W;V ), T r(~p[W ]; ~p[V ]) = 1.

Proof: By induction onr. The base caser = 0 holds trivially by the table initialization.
By induction, for everyV and neighborU of V , T r�1(~p[V ]; ~p[U ]) = 1, satisfying Con-
dition 1 for T r(~p[W ]; ~p[V ]) = 1. Condition 2 is immediately satisfied since~p is a Nash
equilibrium.

We can now establish a strong sense in which the set of balanced limit tablesfT �(w; v)g
characterizes the Nash equilibria of the global game. We say that~p is consistentwith
thefT �(w; v)g if for every vertexV with neighborsW; ~U we haveT �(~p[W ]; ~p[V ]) = 1,
and~p[~U ] is a witness to this value. In other words, every edge assignment made in~p is
“allowed” by thefT �(w; v)g, and furthermore the neighborhood assignments made by~p
are witnesses.

Theorem 4 Let ~p 2 [0; 1]n be any global mixed strategy. Then~p is consistent with the
balanced limit tablesfT �(w; v)g if and only if it is a Nash equilibrium.

Proof: The forward direction is easy. If~p is consistent with thefT �(w; v)g, then by def-
inition, for all V , V = ~p[V ] is a best response to the local neighborhoodW = ~p[W ]; ~U =

~p[~U ]. Hence,~p is a Nash equilibrium.

For the other direction, if~p is a Nash equilibrium, then for allV , V = ~p[V ] is certainly a
best response to the strategy of its neighborsW = ~p[W ]; ~U = ~p[~U ]. So for consistency
with thefT �(w; v)g, it remains to show that for every playerV and its neighborsW; ~U ,
T �(~p[V ]; ~p[W ]) = 1 andT �(~p[V ]; ~p[Ui]) = 1 for all i. This has already been established
in Lemma 3.

Theorem 4 is important because it establishes that the table-passing phase provides us with
an alternative — and hopefully vastly reduced — seach space for Nash equilibria. Rather
than search for equilibria in the space of all mixed strategies, Theorem 4 asserts that we
can limit our search to the space of~p that are consistent with the balanced limit tables
fT �(w; v)g, with no fear of missing equilibria. The demand for consistency with the limit
tables is a locallystrongerdemand than merely asking for a player to be playing a best
response to its neighborhood. Heuristics for searching this constrained space are the topic
of Section 5.



But first let us ask in what ways the search space defined by thefT �(w; v)gmight constitute
a significant reduction. The most obvious case is that in which many of the tables contain
a large fraction of 0 entries, since every such entry eliminates all mixed strategies in which
the corresponding pair of vertices plays the corresponding pair of values. As we shall see
in the discussion of experimental results, such behavior seems to occur in many — but
certainly not all — interesting cases. We shall also see that even when such reduction
does not occur, the underlying graphical structure of the game may still yield significant
computational benefits in the search for a consistent mixed strategy.

4 Approximate Tables
Thus far we have assumed that the binary-valued tablesT r(w; v) have continuous indicesw
andv, and thus it is not clear how they can be finitely represented3. Here we briefly address
this issue by asserting that it can be handled using the discretization scheme of KLS. More
precisely, in that work it was established that if we restrict all table indices to only assume
discrete values that are multiples of� , and we relax Condition 2 in the definition of the
table-passing phase to ask thatV = v be only an�-best response toW = w; ~U = u,
then the choice� = �=(2k+1k log(k)) suffices to preserve�-Nash equilibria in the tables.
Herek is the maximum degree of any node in the graph. The total number of entries in
each table will be(1=�)2 and thus exponential ink, but the payoff matrices for the players
are already exponential ink, so our tables remain polynomial in the size of the graphical
game representation. The crucial point established in KLS is that the required resolution is
independentof the total number of players. It is easily verified that none of the key results
establishing this fact (specifically, Lemmas 2, 3 and 4 of KLS) depend on the underlying
graph being a tree, but hold for all graphical games.

Precise analogues of all the results of the preceding section can thus be established for the
discretized instantiation of the table-passing phase (details omitted). In particular, the table-
passing phase will now converge tofinitebalanced limit tables, and consistency with these
tables characterizes�-Nash equilibria. Furthermore, since every round prior to convergence
must change at least one entry in one table, the table-passing phase must thus converge in
at mostnk=�2 rounds, which is again polynomial in the size of the game representation.
Each round of the table-passing phase takes at most on the order ofnk=�k+1 computational
steps in the worst case (though possibly considerably less), giving a total running time to
the table-passing phase that scales polynomially with the size of the game.

We note that the discretization of each player’s space of mixed strategies allows one to for-
mulate the problem of computing an approximate NE in a graphical game as a CSP(Vickrey
and Koller 2002), and there is a precise connection between NashProp and constraint prop-
agation algorithms for (generalized) arc consistency in constraint networks4.

5 NashProp: Assignment-Passing Phase
We have already suggested that the tablesfT �(w; v)g represent a solution space that may
be considerably smaller than the set of all mixed strategies. We now describe heuristics for
searching this space for a Nash equilibrium. For this it will be convenient to define, for
each vertexV , its projection setP �(v), which is indexed by the possible valuesv 2 [0; 1]
(or by their allowed values in the aforementioned discretization scheme). The purpose of
P �(v) is simply to consolidate the information sent toV by all of its neighbors. Thus, if~U
are all the neighbors ofV , we defineP �(v) to be 1 if and only if there exists~u (again called
a witnessto P �(v) = 1) such thatT (v; ui) = 1 for all i, andV = v is a best response to
~U = ~u; otherwise we defineP �(v) to be 0.

If ~p is any global mixed strategy, it is easily verified that~p is consistent with thefT �(w; v)g
3We note that the KLS proof that the exact tables must admit a rectilinear representation holds

generally, but we cannot bound their complexity here.
4We are grateful to Michael Littman for helping us establish this connection.



if and only if P �(~p[V ]) = 1 for all nodesV , with the assignment of the neighbors ofV
in ~p as a witness. The first step of the assignment-passing phase of NashProp is thus the
computation of theP �(v) at each vertexV , which is again a local computation in the graph.
Neighboring nodesV andW also exchange their projectionsP �(v) andP �(w).

Let us begin by noting that the search space for a Nash equilibrium is immediately reduced
to the cross-product of the projection sets by Theorem 4, so if the table-passing phase
has resulted in many 0 values in the projections, even an exhaustive search across this
(discretized) cross-product space may sometimes quickly yield a solution. However, we
would obviously prefer a solution that exploits the local topology of the solution space
given by the graph. At a high level, such a local search algorithm is straightforward:

1. Initialization: Choose any nodeV and any valuesv; ~u such thatP �(v) = 1 with witness
~u, andP �(ui) = 1 for all i. V assigns itself valuev, and assigns each of its neighborsUi
the valueui.

2. Pick the next nodeV (in some fixed ordering) that has already been assigned some value
v. If there is a partial assignment to the neighbors ofV , attempt to extend it to a witness~u
toP (v) = 1 such thatP �(ui) = 1 for all i, and assign any previously unassigned neighbors
their values in this witness. If all the neighbors ofV have been assigned, make sureV = v
is a best response.

Thus, the first vertex chosen assigns both itself and all of its neighbors, but afterwards ver-
tices assign only (some of) their neighbors, and receive their own values from a neighbor. It
is easily verified that if this process succeeds in assigning all vertices, the resulting mixed
strategy is consistent with thefT �(w; v)g and thus a Nash equilibrium (or approximate
equilibrium in the discretized case). The difficulty, of course, is that the inductive step of
the assignment-passing phase may fail due to cycles in the graph — we may reach a node
V whose neighbor partial assignment cannot be extended, or whose assigned valueV = v
is not a best response to its complete neighborhood assignment. In this case, as with any
structured local search phase, we have reached a failure point and must backtrack.

The overall NashProp algorithm thus consists of the (always converging) table-passing
phase followed by the backtracking local assignment-passing phase. NashProp directly
generalizes the algorithm of KLS, and as such, on certain special topologies such as trees
may provably yield efficient computation of equilibria. Here we have shown that NashProp
enjoys several natural and desirable properties even on arbitrary graphs. We now turn to
some experimental investigation of NashProp on graphs containing cycles.

6 Experimental Results
We have implemented the NashProp algorithm (with distinct table-passing and assignment-
passing5 phases) as described, and run a series of controlled experiments on loopy graphs
of varying size and topology. As discussed in Section 4, there is a relationship suggested
by the KLS analysis between the table resolution� and the global approximation quality
�, but in practice this relationship may be pessimistic (Vickrey and Koller 2002) . Our
implementation thus takes both� and� as inputs, and attempts to find an�-Nash equilibrium
running NashProp on tables of resolution� .

We first draw attention to Figure 1, in which we provide a visual display of the evolution of
the tables computed by the NashProp table-passing phase for a small (3 by 3) grid game.
Note that for this game, the table-passing phase constrains the search space tremendously
— so much so that the projection sets entirely determine the unique equilibrium, and the
assignment-passing phase is superfluous. This is of course ideal behavior.

The main results of our controlled experiments are summarized in Figure 2. One of our

5We did not implement backtracking, but this caused an overall rate of failure of only 3% across
all 3000 runs described here.



r = 2 r = 3 r = 8r = 1

Figure 1:Visual display of the NashProp table-passing phase after rounds 1,2 and 3 and 8 (where
convergence occurs). Each row shows first the projection set, then the four outbound tables, for each
of the 9 players in a 3 by 3 grid. For the reward functions, each player has a distinct preference
for one of his two actions. For 15 of the 16 possible settings of his 4 neighbors, this preference is
the same, but for the remaining setting it is reversed. It is easily verified that every player’s payoff
depends on all of his neighbors. (Settings used:� = 0:1; � = 0:05).

primary interests is how the number of rounds in each of the two phases — and therefore
the overall running time — scales with the size and complexity of the graph. More detail
is provided in the caption, but we created graphs varying in size from 5 to 100 nodes with
a number of different topologies: single cycles; single cycles to which a varying number
of chords were added, which generates considerably more cycles in the graph; grids; and
“ring of rings” (Vickrey and Koller 2002). We also experimented with local payoff matrices
in which each entry was chosen randomly from[0; 1], and with “biased” rewards, in which
for somè fixed number of the settings of its neighbors, each node has a strong preference
for one of their actions, and in the remaining settings, a strong preference for the other. The
` settings were chosen randomly subject to the constraint that no neighbor is marginalized
(thus no simplification of the graph is possible). These classes of graphs seems to generate
a nice variability in the relative speed of the table-passing and assignment-passing phases
of NashProp, which is why we chose them.

We now make a number of remarks regarding the NashProp experiments. First, and most
basically, these preliminary results indicate that the algorithm performs well across a range
of loopy topologies, including some (such as grids and cycles with many chords) that might
pose computational challenges for junction tree approaches as the number of players be-
comes large. Excluding the small fraction of trials in which the assignment-passing phase
failed to find a solution, even on grid and loopy chord graphs with 100 nodes, we find
convergence of both the table and assignment-passing phases in less than a dozen rounds.

We next note that there is considerable variation across topologies (and little within) in the
amount of work done by the table-passing phase, both in terms of the expected number of
rounds to convergence, and the fraction of 0 entries that have been computed at comple-
tion. For example, for cycles the amount of work in both senses is at its highest, while
for grids with random rewards it is lowest. For grids and chordal cycles, decreasing the
value of` (and thus increasing the bias of the payoff matrices) generally causes more to
be accomplished by the table-passing phase. Intuitively, when rewards are entirely random
and unbiased, nodes with large degrees will tend to rarely or never compute 0s in their
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Figure 2: Plots showing the number of rounds taken by the NashProp table-passing (left) and
assignment-passing (right) phases in computing an equilibrium, for a variety of different graph
topologies. Thex-axis shows the total number of vertices in the graph. Topologies and rewards
examined included cycles, grids and “ring of rings”(Vickrey and Koller 2002) with random rewards
(denotedcycle, grid andringofrings in the legend); cycles with a fractionc of random chords added,
and with biased rewards in which nodes of degree 2 have` = `2, degree 3 havè= `3, and degree 4
have` = `4 (see text for definition of̀), denotedchordal(c; `2; `3; `4); and grids with biased rewards
with `, denotedgrid(`)). Each data point represents averages over 50 trials for the given topology and
number of vertices. In the table-passing plot, each curve is also annotated with the average fraction
of 1 values in the converged tables. For cycles, settings used were� = 0:1; � = 0:05; for ring of
rings,� = 0:2; � = 0:06; for all other classes,� = 0:2; � = 0:2.

outbound tables — there have too many neighbors whose combined setting can act as a
witnesses for a 1 in an outbound table.

However, as suggested by the theory, greater progress (and computation) in the table-
passing phase pays dividends in the assignment-passing phase, since the search space may
have been dramatically reduced. For example, for chordal and grid graphs with biased
rewards, the ordering of plots by convergence time is essentially reversed from the table-
passing to assignment-passing phases. This suggests that, when it occurs, the additional
convergence time in the table-passing phase is worth the investment. However, we again
note that even for the least useful table-passing phase (for grids with random rewards), the
assignment-passing phase (which thus exploits the graph structure alone) still manages to
find an equilibrium rapidly.
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