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Abstract

We report on our reinforcement learning work on Cobot, a
software agent that resides in the well-known online chat
community LambdaMOO. Our initial work on Cobot (Isbell
et al., 2000) provided him with the ability to collectsocial
statisticsand report them to users in a reactive manner. Here
we describe our application of reinforcement learning to al-
low Cobot to proactively take actions in this complex social
environment, and adapt his behavior from multiple sources
of human reward. After 5 months of training, Cobot has
received 3171 reward and punishment events from 254 dif-
ferent LambdaMOO users, and has learned nontrivial pref-
erences for a number of users. Cobot modifies his behav-
ior based on his current state in an attempt to maximize re-
ward. Here we describe LambdaMOO and the state and ac-
tion spaces of Cobot, and report the statistical results of the
learning experiment.

1 Introduction

While most applications of reinforcement learning (RL) to
date have been to problems of control, game playing and
optimization (Sutton and Barto, 1998), there has been a re-
cent handful of applications to human-computer interaction.
Such applications present a number of interesting challenges
to RL methodology (such as data sparsity and inevitable vi-
olations of the Markov property). These previous studies
focus on systems that encounter human users one at a time,
such as spoken dialogue systems (Singh et al., 2000).

In this paper, we give a report on our on-going efforts to
build an RL-based agent for a complex, open-ended, multi-
user chat environment known as LambdaMOO. We describe
LambdaMOO in requisite detail in the next section, but here
it suffices to say that it is an online service-providing en-
hanced real-time chat, populated by a community of human

users with rich and often enduring social relationships. Our
long-term goal is to build a software agent that can learn to
perform useful, interesting and entertaining actions in Lamb-
daMOO on the basis of user feedback. While this is a delib-
erately ambitious and underspecified goal, we describe here
our implementation, the empirical experiences of our agent
so far, and some of the lessons we have learned about this
challenging domain.

In previous work (Isbell et al., 2000), we developed a
software agent named Cobot that resides in LambdaMOO,
and interacts in various ways with human users. The pri-
mary functionality of Cobot was twofold. First, Cobot gath-
ered “social statistics” (such as which users interacted with
which others, how frequently, and in what ways), and pro-
vided summaries of these statistics as a service to users. Sec-
ond, Cobot had rudimentary chatting abilities based on the
application of information retrieval methods to large docu-
ments. The original Cobot was entirelyreactive1, in that he2

never initiated interaction with human users, but would only
respond to their queries or utterances. As we documented in
our earlier paper, Cobot proved tremendously popular with
LambdaMOO users, setting the stage for our current efforts.

In May of 2000, we modified Cobot to allow him to oc-
casionally take certain verbal actions (such as proposing a
topic for conversation, introducing two human users to each
other, or engaging in certain word play routines that are com-
mon in LambdaMOO) under his own initiative. The hope is
to build an agent that will eventually take unprompted ac-
tions that are meaningful, useful or amusing to users. Rather
than hand-code complex rules specifying when each action
is appropriate (rules that, in addition to being inaccurate,
might quickly become stale due to shifting user tastes), we
wanted Cobot tolearn the individual and communal prefer-
encesof users. Thus, we provided a mechanism by which
users can reward or punish Cobot for his behavior, and pro-
grammed Cobot to use RL algorithms to alter his behavioral
policy on the basis of this feedback.

1We use the termreactive to mean “restricted to responding to human-invoked
interaction”, rather than the AI term meaning “non-deliberative”.

2Characters in LambdaMOO all have a specified gender. Cobot’s description, visi-
ble to all users, indicates that he is male.



The application of RL (or any machine learning method-
ology) to such an environment presents a number of interest-
ing domain-specific challenges, including:

� Choice of an appropriate state space.To learn how
to act in a social environment such as LambdaMOO,
Cobot must represent the salient features. These should
include social information such as which users are present,
how experienced they are in LambdaMOO, how fre-
quently they interact with one another, and so on.

� Multiple reward sources. Cobot lives in an environ-
ment with multiple, often conflicting sources of reward
from different human users. How to integrate these
sources in a reasonable and satisfying way is a non-
trivial empirical question.

� Inconsistency and drift of user rewards and desires.
Individual users may be inconsistent in the rewards
they provide (even when they implicitly have a fixed
set of preferences), and their preferences may change
over time (for example, due to becoming bored or irri-
tated with an action). Even when their rewards are con-
sistent, there can be great temporal variation in their
reward pattern.

� Variability in user understanding. There is great
variation in users’ understanding of Cobot’s function-
ality, and the effects of their rewards and punishments.

� Data sparsity. Training data is scarce for many rea-
sons, including user fickleness, and the need to prevent
Cobot from generating too much spam in the environ-
ment.

� Irreproducibility of experiments. As LambdaMOO
is a globally distributed community of human users, it
is virtually impossible to replicate experiments taking
place there.

This is only a sample of the many issues we have had to
confront in our Cobot work. We do not have any simple an-
swers to them (nor do we believe that simple answers exist),
but here provide a case study of our choices and findings.
Our primary findings are:

� Inappropriateness of average reward.We found that
the average reward that Cobot has received over time,
the standard measure of success for RL experiments, is
an inadequate and perhaps even inappropriate metric of
performance in the LambdaMOO domain. Reasons in-
clude that user preferences are not stationary, but drift
as users become habituated or bored with Cobot’s be-
havior; and the tendency for satisfied users to stop pro-
viding Cobot with any feedback, positive or negative.
Despite the inadequacy of average reward, we are still
able to establish several measures by which Cobot’s
RL succeeds, discussed below.

� A small set of dedicated “parents”.While many users
provided only a moderate or small amount of RL train-
ing (rewards and punishments) to Cobot, a handful of
users did invest significant time in training him.

� Some parents have strong opinions.While many of
the users that trained Cobot did not exhibit clear pref-
erences for any of his actions over the others, some
users clearly and consistently rewarded and punished
particular actions over the others.

� Cobot learns matching policies.For those users who
exhibited clear preferences through their rewards and
punishments, Cobot successfully learned correspond-
ing policies of behavior.

� Cobot responds to his dedicated parents.For those
users who invested the most training time in Cobot,
the observed distribution of his actions is significantly
altered by their presence.

� Some preferences depend on state.Although some
users for whom we have sufficient data seem to have
preferences that do not depend upon the social state
features we constructed for the RL, others do in fact ap-
pear to change their preferences depending upon pre-
vailing social conditions.

The outline for the rest of the paper is as follows. In
Section 2, we give brief background on LambdaMOO. In
Section 3, we describe our earlier (non-RL) work on Cobot.
Section 4 provides some brief background on RL. In Sec-
tions 5, 6 and 7 we describe our implementation of Cobot’s
RL action space, reward mechanisms and state features, re-
spectively. Our primary findings are presented in Section 8,
and Section 9 offers conclusions.

2 LambdaMOO

LambdaMOO, founded in 1990 by Pavel Curtis at Xerox
PARC, is one of the oldest continuously operating MUDs,
a class of online worlds with roots in text-based multiplayer
role-playing games. MUDs (multi-user dungeons) differ from
most chat and gaming systems in their use of a persistent
representation of a virtual world, often created by the par-
ticipants, who are represented as characters of their own
choosing. The mechanisms of social interaction in MUDs
are designed to reinforce the illusion that the user is present
in the virtual space. LambdaMOO appears as a series of in-
terconnected rooms (modeled as a mansion), populated by
users and objects who may move from room to room. Each
room provides a chat channel shared by just those users in
the room (users can also communicate privately), and typ-
ically has an elaborate text description that imbues it with
its own “look and feel.” In addition to speech, users express
themselves via a large collection ofverbs, allowing a rich set
of simulated actions, and the expression of emotional states,
as in the following transcript:



(1) Buster is overwhelmed by all these paper deadlines.
(2) Buster begins to slowly tear his hair out, one strand at a time.
(3) HFh comforts Buster.
(4) HFh [to Buster]: Remember, the mighty oak was once a nut

like you.
(5) Buster [to HFh]: Right, but his personal growth was assured.

Thanks anyway, though.
(6) Buster feels better now.

Lines (1) and (2) are initiated by verb commands by user
Buster, expressing his emotional state, while lines (3) and (4)
are examples of verbs and speech acts, respectively, by HFh.
Lines (5) and (6) are speech and verb acts by Buster. (In our
transcripts the name of the user initiating an action always
begins the description of that action or utterance.) Though
there are many standard verbs, such as the use of the verb
comfort in line (3) above, the variety is essentially unlim-
ited, as players have the ability to create their own verbs.

The rooms and objects in LambdaMOO are created by
users themselves, who devise descriptions, and control ac-
cess by other users. Users can also create objects with meth-
ods (orverbs) that can be invoked by other players.3 As of
this writing, the database contains 118,154 objects, includ-
ing 4836 active user accounts. LambdaMOO’s long exis-
tence and the user-created nature of the environment com-
bine to give it one of the strongest senses of virtual commu-
nity in the on-line world. Many users have interacted ex-
tensively with each other over a period of years, and many
are widely acknowledged for their contribution of interest-
ing objects. LambdaMOO is an attractive environment for
experiments in AI (Foner, 1997; Mauldin, 1994), including
learning. The population is generally curious and technically
savvy, and users are interested in automated objects meant to
display some form of intelligence (often called “puppets”).

3 Cobot

Cobot is a software agent that resides in LambdaMOO. Al-
most all of Cobot’s computation and storage occurs as a
client of the LambdaMOO server (that is, computation is
done off-server). As an off-server agent, Cobot appears to
be just another user. Like a human user, he connects us-
ing the telnet protocol, and from the point of view of the
LambdaMOO server, he is a user with all the rights and re-
sponsibilities that this implies. Once actually connected to
LambdaMOO, Cobot wanders into the Living Room, where
he spends most of his time. The Living Room is a central
public place, frequented by many regulars. It is also located
next to the Linen Closet, where guests tend to appear, so it
is also frequented by users new to LambdaMOO. There are
several permanent objects in the Living Room, including a
couch with various features and a cuckoo clock. The Liv-
ing Room usually has between five and twenty users, and
is perpetually busy. Over the period of a year there, Cobot
has logged well over 2.5 million separate events (on average
roughly one event every twelve or thirteen seconds).

3Everything in LambdaMOO is an object, and every event is the invocation of
a verb on some object, including speech. The LambdaMOO server maintains the
database of objects, and executes verbs.

In previous work, we implemented a variety of (non-
learning) functionality on Cobot. This included gathering
and reportingsocial statistics. Thus, Cobot logs actions
taken by users in his presence, building statistics on who
performs what actions, and on whom they use them. For
example, Cobot logs which users converse with each other
most frequently. Cobot can answer queries about these usage
statistics, and describe the statistical similarities and differ-
ences between users. Cobot also provides other reactive ser-
vices. In particular, Cobot has a rudimentary chatting abil-
ity based on the application of information retrieval methods
to large documents, and so can engage in crude “conversa-
tion” with users. He can also search the web to answer spe-
cific questions posed to him. A more complete description
of Cobot’s general abilities, and a detailed discussion of his
early experiences as a social agent in LambdaMOO, can be
found in (Isbell et al., 2000; Eisenberg, 2000).

The focus of our current work is in making Cobotproac-
tive — that is, to allow him to take actions under his own
initiative — in a way that is useful, interesting, or pleas-
ing to LambdaMOO users. Since it is impossible to pro-
gram rules anticipating when any given action is appropriate
in such a complex and dynamic environment, we have ap-
plied reinforcement learning to allow Cobot to learn how to
act directly from user feedback. We emphasize thatall of
the original reactive functionality of Cobot remained oper-
ative throughout the RL experiment— Cobot’s popularity
and acceptance in LambdaMOO is largely due to this orig-
inal functionality, and we felt it was most interesting, and
perhaps necessary, to conduct the RL work in the context of
his established purpose.

As in any application of reinforcement learning, we must
choose the actions, reward function, and states with care,
and in a way that is meaningful in the domain. We describe
our implementation of each of these following a brief RL
background section.

4 RL Background

In RL, problems of decision-making by agents interacting
with uncertain environments are usually modeled as Markov
decision processes (MDPs). In the MDP framework, at each
time step the agent senses the state of the environment, and
chooses and executes an action from the set of actions avail-
able to it in that state. The agent’s action (and perhaps other
uncontrolled external events) cause a stochastic change in
the state of the environment. The agent receives a (possi-
bly zero) scalar reward from the environment. The agent’s
goal is to choose actions so as to maximize the expected sum
of rewards over some time horizon. An optimal policy is a
mapping from states to actions that achieves the agent’s goal.

Many RL algorithms have been developed for learning
good approximations to an optimal policy from the agent’s
experience in its environment. At a high level, most algo-
rithms use this experience to learnvalue functions(or Q-
values) that map state-action pairs to the maximal expected



sum of reward that can be achieved starting from that state-
action pair. The learned value function is used to choose ac-
tions stochastically, so that in each state, actions with higher
value are chosen with higher probability. In addition, many
RL algorithms use some form offunction approximation(para-
metric representations of complex value functions) both to
map state-action features to their values and to map states to
distributions over actions (i.e., the policy). See (Sutton and
Barto, 1998) for an extensive introduction to RL.

In the next sections, we describe the actions available to
Cobot, our choice of state features, and how we dealt with
multiple sources of reward. The particular RL algorithm we
use is a variant of (Sutton et al., 1999)’s policy gradient al-
gorithm and its details are beyond the scope of this paper
(however, see (Shelton, 2000) for details). One aspect of our
RL algorithm that is relevant to understanding our results is
that we use alinear function approximatorto store our pol-
icy. For the purposes of this paper, this means that for each
state feature, we maintain a vector of real-valuedweights
indexed by the possible actions. A positive weight for some
action means that the feature increases the probability of tak-
ing that action, while a negative weight decreases the prob-
ability. The weight’s magnitude determines the strength of
this contribution.

5 Cobot's RL Actions

To have any hope of learning to behave in a way interesting
to LambdaMOO users, Cobot’s actions must “make sense”
to users, fit in with the social chat-based environment, and
minimize the risk of irritating them. Conversation, word
play, and emoting routines are among the most common ac-
tivity in LambdaMOO, so we designed a set of 9 actions for
reinforcement learning along these lines, as detailed in Ta-
ble 1. Many of these actions extract an utterance from the
recent conversation in the Living Room, or from a continu-
ally changing external source, such as the online version of
the Boston Globe. Thus a single action may cause an infinite
variety of behavior by Cobot. Cobot also has a special “null”
action, where he does nothing, so he may learn to be quiet.

At set time intervals (only every few minutes on aver-
age, to minimize the risk of irritating users), Cobot selects
an action to perform from this set according to a distribution
determined by the Q-values in his current state (described
below). Any rewards or punishments received from users up
until the next RL action are attributed to the current action,
and used to update Cobot’s value functions. It is worth not-
ing that from an internal perspective, Cobot has two different
categories of action: those actions taken in a proactive man-
ner as a result of the RL, and those actions taken reactively
in response to a user’s action towards Cobot (his original
functionality). However, this distinction is not explicitly an-
nounced by Cobot. Some users are certainly aware of the
distinction and can easily determine which actions fall into
which category, but other users may occasionally reward or
punish Cobot in response to a reactive action. Such “erro-

neous” rewards and punishments act as a source of noise in
the training process.

6 The RL Reward Function

Cobot learns to behave directly from the feedback of Lamb-
daMOO users, any of whom can reward or punish him. There
are bothexplicit andimplicit feedback mechanisms.

For the explicit mechanism, we implementedreward and
punish verbs on Cobot that LambdaMOO users can invoke
at any time. These verbs give a numerical (positive and nega-
tive, respectively) training signal to Cobot that is the basis of
the RL. Again, any such reward or punishment is attributed
as immediate feedback for the current state and the RL ac-
tion most recently taken. (This feedback will, of course,
be “backed up” to previous states and actions in accordance
with the standard RL algorithms.)

There are several standard LambdaMOO verbs that are
commonly used among human users to express, sometimes
playfully, approval or disapproval. Examples of the former
include the verbhug, and of the latter the verbspank. In
the interest of allowing the RL process to integrate naturally
with the LambdaMOO environment, we chose to accept a
number of such verbs as implicit reward and punishment sig-
nals for Cobot. (Indeed, many LambdaMOO users had been
invoking such verbs on Cobot in response to his reactive
behavior, long before we implemented his RL component.)
However, such implicit feedback is numerically weaker than
the feedback generated by the explicit mechanisms.

One fundamental design choice is whether to learn a sin-
gle value function from the feedback of the entire commu-
nity, or to learn separate value functions for each user based
on their feedback alone, and combine the value functions of
those users present to determine how to act at each moment.
We opted for the latter route for three primary reasons.

First, it was clear that for learning to have any hope of
succeeding, there must be a representation of which users
are present at any given moment — different users simply
have different personalities and preferences. Because of the
importance of user identity, we felt that representing which
users are present as additional state features would throw
away valuable domain information, since the RL would have
to discover on its own the primacy of identity. Having sepa-
rate reward functions for each user is thus a way of asserting
the importance of user identity to the learning process.

Second, despite the extremely limited number of training
examples available in this domain (empirically< 700 per
month), learning must be quick and significant. Without a
clear sense that their training has some impact on Cobot’s
behavior, users will quickly lose interest in providing re-
wards and punishments. A known challenge for RL is the
“curse of dimensionality,” which refers to the fact that the
size of the state space increases exponentially with the num-
ber of state features. By avoiding the need to represent the
presence or absence of roughly 250 users, we are able to
maintain a relatively small state space and therefore speed



Null Action Choose to remain silent for this time period.
Topic Starters (4) Introduce a conversational topic. Cobot declares that he wants to discuss sports, that he wants to discuss politics,

or he utters a sentence from either the sports section or political section of the Boston Globe, for a total of four
distinct actions.

Roll Call (2) Initiate a “roll call”. Roll calls are a common word play routine in LambdaMOO. For example, a discussion may
be taking place where someone declares that she is tired of Monica Lewinsky. Another user might then announce,
“TIRED OF LEWINSKY ROLL CALL”, and each user who feels the same will agree with the roll call. Cobot
initiates a roll call by taking a recent utterance, and extracting either a single noun, or a verb phrase. These are
treated as two separate RL actions.

Social Commentary Make a comment describing the current social state of the Living Room, such as “It sure is quiet” or “Everyone
here is friendly.” These statements are based on Cobot’s logged statistics from the recent Living Room activity.
While there are several different such utterances possible, they are treated as a single action for RL purposes.

Social Introductions Introduce two users who have not yet interacted with one another in front of Cobot. Again, this is determined by
Cobot’s social statistical database.

Table 1:The 9 RL actions available to Cobot.

up learning. A similar approach to speeding up learning by
maintaining a focused state representation in complex, dy-
namic environments with limited training data was explored
previously in (Stone and Veloso, 1999).

Third, we (correctly) anticipated the fact that certain users
would provide an inordinate amount of training to Cobot,
and we did not want the overall policy followed by Cobot
to be dominated by the preferences of these individuals. By
learning separate policies for each user, and then combining
these policies among those users present, we can limit the
impact any single user can have on Cobot’s actions.

7 Cobot's RL State Features

The decision to maintain and learn separate value functions
for each user means that we can maintain separate state spaces
as well, in the hopes of simplifying states and thus speeding
learning. Cobot can be viewed as running a large number of
separate RL processes (one for each user) in parallel, with
each process having a different state space (with some com-
mon elements). The state space for a user contains a number
of features containing statistics about that particular user.

Since LambdaMOO is a social environment, and Cobot is
learning to take social actions (roll calls, suggestions of con-
versational topic, user introductions) we felt that his state
features should contain information allowing him to gauge
social activity and relationships. Table 2 provides a descrip-
tion of the state features used for RL by Cobot for each user.
Even though we have simplified the state space by partition-
ing by user, the state space for a single user remains suffi-
ciently complex to preclude standard table-based representa-
tion of value functions. (In particular, each user’s state space
is effectively infinite, since there are real-valued state fea-
tures.) Thus, linear function approximation is used for each
user’s policy. Cobot’s RL actions are then chosen according
to a mixture of the policies of the users present. We refer the
reader to (Shelton, 2000) for more details on the method by
which policies are learned and combined.

8 Experimental Procedure and Findings

The older, reactive version of Cobot has been present in
LambdaMOO more or less continuously since September

1999. The RL version of Cobot that is the subject of this
study was installed on May 10, 2000. Again, all of Cobot’s
original reactive functionality, as well as some further reac-
tive features added later, was left intact for the duration of
the RL experiment reported here. Cobot is a working sys-
tem with real human users, and we wanted to perform the
RL experiment in this context.

After implementing the RL action and state spaces, the
explicit and implicit reward mechanisms, and the multiple-
user learning algorithms described in preceding sections, but
prior to publicly fielding RL Cobot in the Living Room, we
tested the new software on a separate agent we maintain
for such purposes. These tests were performed by the au-
thors and a few friendly users of LambdaMOO in a private
room. In addition to tuning the learning algorithm’s param-
eters, we calibrated the frequency with which the agent said
something of its own volition. Such calibration is extremely
important in a social environment like LambdaMOO due
to users’ understandably low tolerance for spam (especially
spam generated by software agents).

Upon launching the RL functionality publicly in the Liv-
ing Room, Cobot logged all RL-related data (states visited,
actions taken, rewards received from each user, parameters
of the value functions, etc.) from May 10 until October
10, 2000. During this time, 63123 RL actions were taken
(in addition, of course, to many more reactive non-RL ac-
tions), and 3171 reward and punishment events4 were re-
ceived from 254 different users. The findings we now sum-
marize are based on these extensive logs.
Inappropriateness of average reward.The most standard
and obvious sign of successful RL would be an increase in
the average reward received by Cobot over time. Instead, as
shown in Figure 1, the average cumulative reward received
by Cobot actually goesdown. However, rather than indi-
cating that users are becoming more dissatisfied as Cobot
learns, the decay in reward reveals some peculiarities of hu-
man feedback in such an open-ended environment, as we
now discuss.

There are at least two difficulties with average cumula-
tive reward in an environment of human users. The first is

4That is, actions which received at least one act of reward or punishment from some
user.



Social Summary Vector A vector of four numbers: the rate at which the user is producing events; the rate at which events are being
produced that are directed at the user; the percentage of the other users present who are among this user’s ten
most frequently interacted-with users (“playmates”); and the percentage of the other users present for whom this
user is among their top ten playmates.

Mood Vector A vector measuring the recent use of eight groups of common verbs (for instance, one group includes the verbs
grin andsmile). Verbs were grouped according to how well their usage was correlated.

Rates Vector A vector measuring the rate at which events are being produced by the users present, and also by Cobot.
Current Room The room where Cobot currently resides.
Roll Call Vector Indicates whether the currently saved roll call text has been used before by Cobot, whether someone has done a

roll call since the last time Cobot did a roll call, and whether there has been a roll call since the last time Cobot
grabbed new text.

Bias Each user has one feature that is always “on”; that is, this bias is always set to a value of 1. Intuitively, it is the
feature indicating the user’s “presence.”

Table 2:State space of Cobot.Each user has their own state space and value function; the table thus describes the state space maintained for a generic user.

that humans are fickle, and their tastes and preferences may
drift over time. Indeed, our experiences as users, and with
the original reactive functionality of Cobot, suggest that nov-
elty is highly valued in LambdaMOO. Thus a feature that
is popular and exciting to users when it is introduced may
eventually become an irritant. (There are many examples
of this phenomenon with various objects that have been in-
troduced into LambdaMOO.) In RL terminology, we do not
have a fixed, consistent reward function, and thus we are al-
ways learning a moving target. While difficult to quantify
in such a complex environment, this phenomenon is suffi-
ciently prevalent in LambdaMOO to cast serious doubts on
the use of average cumulative reward as the primary measure
of performance.

The second and related difficulty is that even when users
do maintain relatively fixed preferences over time, they tend
to give Cobot less feedback of either type (reward or punish-
ment) as he manages to learn their preferences accurately.
Simply put, once Cobot seems to be behaving as they wish,
users feel no need to continually provide reward for his “cor-
rect” actions or to punish him for the occasional “mistake.”
This reward pattern is in contrast to typical RL applications,
where there is an automated and indefatigable reward source.
Strong empirical evidence for this second phenomenon is
provided by two users we shall call User M and User S.
As we shall establish shortly, these two users were among
Cobot’s most dedicated trainers, each had strong preferences
for certain actions, and Cobot learned to strongly modify his
behavior in their presence to match their preferences. Never-
theless, both users tended to provide less frequent feedback
to Cobot as the experiment progressed, as shown in Figure 1.

We conclude that there are serious conceptual difficulties
with the use of average cumulative reward in such a human-
centric application of RL, and that alternative measures must
be investigated, which we do below.
A small set of dedicated “parents.” Among the 254 users
who gave at least one reward or punishment event to Cobot,
218 gave 20 or fewer, while 15 gave 50 or more. Thus, we
found that while many users exhibited a passing interest in
training Cobot, there was a small group that was willing to
invest nontrivial time and effort in teaching Cobot their pref-
erences. Two of the most active users in the RL training were

0 1 2 3 4 5 6

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Average Cumulative Reward per Timestep

Time

R
ew

ar
d

reward all users
abs reward all users
reward user M
abs reward user M
reward user S
abs reward user S

Figure 1:The average reward received by Cobot over time.The x-axis
represents sequential Cobot-initiated RL actions for which it has received
at least one reward or punishment event. The y-axis indicates the average
cumulative reward received up to each such action. We examine both total
reward (in which we sum the positive and negative values received), as well
as absolute total reward (in which we ignore sign and simply count the total
amount of feedback). We plot these quantities both over all users, and for
two particulars users we call Users M and S. In all cases, as time progresses,
Cobot is receiving less feedback. This occurs despite the fact that Cobot
is learning policies that coincide with the preferences of Users M and S,
suggesting that this may not be a useful measure of performance.

those we shall call User M and User S, with 594 and 69 re-
wards and punishments events given to Cobot, respectively.5

Some parents have strong opinions.For the vast majority
of users who participated in the RL training of Cobot, the
policy learned was quite close to the uniform distribution.
Quantification of this statement is somewhat complex, since
policies are dependent on state. However, we observed that
for most users the learned policy’s dependence on state was
weak, and the resulting distribution near uniform (though
there are interesting and notable exceptions, as we shall see
below). This result is perhaps to be expected: most users

5By “reward event”, we simply mean an RL action that received some feedback
from the user. Note that the actual absolute numerical reward received may be larger
or smaller than 1 at such time steps, since implicit rewards provide fractional amounts,
and the user may also repeatedly reward or punish the action, with the feedback being
summed. For example, the total absolute value of rewards and punishments provided
by User M was 607.63 over 594 feedback events, while for User S it was 105.93 over
69 feedback events.



provided too little feedback for Cobot to detect strong pref-
erences, and may not have been exhibiting strong and con-
sistent preferences in the feedback they did provide.

However, there was again a small group of users for whom
a highly non-uniform policy was learned. In particular, for
Users M and S mentioned above, the resulting policies were
relatively independent of state6, and their entropies were 0.03
and 1.93, respectively. (The entropy of the uniform distribu-
tion over the actions is 2.2.) Several other users also exhib-
ited less dramatic but still non-uniform distributions. User
M seemed to have a strong preference for roll call actions,
with the learned policy selecting these with probability 0.99,
while User S preferred social commentary actions, with the
learned policy giving them probability 0.38. (Each action in
the uniform distribution is given weight 1/9 = 0.11.)
Cobot learns matching policies. In Figures 2 and 3, we
demonstrate that the policies learned by Cobot for Users M
and S7 do in fact reflect the empirical pattern of rewards re-
ceived over time. Thus, repeated feedback given to Cobot
for a non-uniform set of preferences clearly pays off in a
corresponding policy.
Cobot responds to his dedicated parents.The policies
learned by Cobot for users can have strong impact on the
empirical distribution of actions he actually ends up taking in
LambdaMOO. In Figures 2 and 3, we examine how the dis-
tribution of actions taken by Cobot in the presence of these
two users differs from the distribution of actions taken in
their absence. In both cases, we find that the presence of
the user causes a significant shift towards their preferences
in the actions taken. In other words, Cobot does his best
to “please” these dedicated trainers whenever they arrive in
the Living Room, and returns to a more uniform policy upon
their departure.
Some preferences depend on state.Finally, we establish
that the policies learned by Cobot for users do sometimes
depend upon the features Cobot maintains in his state. We
use two facts about the RL weights (described in Section 4)
maintained by Cobot to determine which features are rele-
vant for a given user. First, we note that by construction, the
RL weights learned for the bias feature described in Table 2
represent the user’s preferencesindependentof state (since
this feature is always on whenever the user is present). Sec-
ond, we note that because we initialized all weights to 0, only
features with non-zero weights will contribute to the policy
that Cobot uses. Thus, we can determine that a feature is
relevant for a user if that feature’s weight vector is far from
that user’s bias feature weight vector,and from the all-zero
vector.8 For our purposes, we have used (1) the normalized
inner product (the cosine of the angle between two vectors)

6We will discuss the methodology by which we determine the relative strength of
dependence on state shortly.

7Again, we emphasize that since the policies for these users had only a very weak
dependence on state, we can simply discuss a fixed policy.

8Technically, there is another possibility. All weights for a feature could be nearly
the same, in which case the feature has no actual effect on which action is chosen,
no matter how far away it is from zero. For the users we examined with non-uniform
policies this has not turned out to be the case, so we do not discuss it further.
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Figure 2:Rewards received, policy learned, and effect on actions for
User M. For each of the nine RL actions, three quantities are represented.
The blue bars (left) show the average reward given by User M for the cor-
responding action. The average reward given by User M across all actions
has been subtracted off, so that “positive” bars indicate a relative preference
for that action by User M, and “negative” bars indicate a relative objection
to that action. The yellow bars (middle) show the policy (probability dis-
tribution) learned by Cobot for User M. The probability assigned to each
action in the uniform distribution (1/9) has been subtracted off, so again the
bars indicate relative preferences and objections of the learned policy. The
red bars (right) show, for each action, the empirical frequency with which
that action was taken by Cobot when User M was present, minus the em-
pirical frequency with which that action was taken by Cobot over all time
steps. Thus, these bars indicate the extent to which the presence of User
M biases Cobot’s behavior towards M’s preferences. We see that (a) the
policy learned by Cobot for User M aligns nicely with the preferences ex-
pressed by M through their training (comparison of left and middle bars),
and (b) Cobot’s behavior shifts strongly towards the learned policy for User
M whenever they are present (comparison of middle and right bars). The
actions are presented here in the same order as in Table 1. To go beyond a
qualitative visual analysis, we have defined a metric that measures the ex-
tent to which two rankings of actions agree, while taking into account the
fact that some actions are numerically extremely close in the each ranking.
While we do not have the space to provide details here, the agreement be-
tween the action rankings given by the rewards of User M and the policy
learned for User M are in near-perfect agreement by this measure, as are the
rankings given by the policy and the empirical distribution of rewards.

as a measure of a feature’s distance from the bias feature,
and (2) a feature’s weight vector length to determine if it is
away from zero.

As noted above, these measures show that for most users,
Cobot learned a policy that is independent of state. For
example, User M has a clear preference for roll calls, in-
dependent of state. As we consider the other users with
non-uniform policies, however, a somewhat different story
emerges. As we can see in Table 3, Cobot has learned a pol-
icy for other users that clearly depends upon state. Further-
more, personal observation of the users’ behaviors by the
authors provide anecdotal evidence that Cobot has learned
relevant features that “make sense.”

9 Conclusions and Future Work

We have reported on our efforts to apply reinforcement learn-
ing in a complex human online social environment. Lamb-



User O 40� Roll Call . Two of the features from the Roll Call Vector have proven relevant for User O. User O appears to
especially dislike roll call actions when there have been repeated roll calls and/or Cobot is repeating the same roll
call again and again.

27 � 33� Rates. Two of the features from the Rates vector also seem to have a similar effect on the rewards given by User
O, with the overall rate of events being generating having slightly more relevance than that of the rate of events
being generated just by User O.

User B 10
� Social Summary. The presence of other users who generally direct events toward User B appears to have some

relevance for his reward patterns. If we lower our threshold to consider features below 10 degrees we also notice
that some of the other Social Summary features deviate from the bias by about 6 degrees. One might speculate
that User B is more likely to ignore Cobot when he is with many friends.

User C 34
� Roll Call . User C appears to have strong preferences about Cobot’s behavior when a “roll call party” is in progress

(that is, everyone is generating funny roll calls one after the other), as suggested by the strong relevance of the
Roll Call feature, indicating that other roll calls by other users have happened recently.

User P 22
� Room. Unlike most users, User P has followed Cobot to his home, where he is generally alone (but will continue

to execute actions at an even higher rate than normal), and has trained him there. User P appears to have different
preferences for Cobot under those circumstance than when Cobot is in the Living Room.

Table 3: Relevant features for users with non-uniform policies.Several of our top users had some features that deviated from their bias feature. The
second column indicates the number of degrees between the weight vectors for those features and the weight vectors for the bias feature. We have only
included features that deviated by more than 10 degrees. For the users above the double line, we have included only features whose weights had a length
greater than 0.2. Each of these users had bias weights of length greater than 1. For those below the line, we have included only features with a length greater
than 0.1 (these all had bias weights of length much less than 1).
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Figure 3:Rewards received, policy learned, and effect on actions for
User S.Same as Figure 2, but for User S. While not as visually compelling
as the data for User M, the quantitative agreement between the rankings is
again very strong.

daMOO is a challenging domain for RL, as many of the stan-
dard assumptions (stationary rewards, Markovian behavior,
appropriateness of average reward) are clearly violated. We
feel that the results obtained with Cobot so far are prelimi-
nary but compelling, and offer promise for the application of
RL in rather rich and open-ended social settings.

Cobot continues to take RL actions and receive rewards
and punishments from LambdaMOO users, and we plan to
continue and embellish this work as part of our overall ef-
forts on Cobot. In addition to further analysis of the RL data
as it comes in, we plan to expand both the state and action
spaces of Cobot. Adding new state features is important to
allow Cobot to learn more subtle lessons about which social
contexts are appropriate for which actions, while adding new
actions is important to keep Cobot fresh and interesting for
the denizens of LambdaMOO.
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