
Planning and Acting in Partially Observable

Stochastic Domains

Leslie Pack Kaelbling 1;2

Computer Science Department

Brown University, Box 1910

Providence, RI 02912-1910, USA

Michael L. Littman 3

Duke University

Anthony R. Cassandra 1

MCC

Abstract

In this paper, we bring techniques from operations research to bear on the problem
of choosing optimal actions in partially observable stochastic domains. We begin by
introducing the theory of Markov decision processes (mdps) and partially observable
mdps (pomdps). We then outline a novel algorithm for solving pomdps o� line and
show how, in some cases, a �nite-memory controller can be extracted from the
solution to a pomdp. We conclude with a discussion of how our approach relates to
previous work, the complexity of �nding exact solutions to pomdps, and of some
possibilities for �nding approximate solutions.

Consider the problem of a robot navigating in a large o�ce building. The
robot can move from hallway intersection to intersection and can make local
observations of its world. Its actions are not completely reliable, however.
Sometimes, when it intends to move, it stays where it is or goes too far;
sometimes, when it intends to turn, it overshoots. It has similar problems with
observation. Sometimes a corridor looks like a corner; sometimes a T-junction
looks like an L-junction. How can such an error-plagued robot navigate, even
given a map of the corridors?

1 Supported in part by NSF grants IRI-9453383 and IRI-9312395.
2 Supported in part by ARPI !!! Get number
3 Supported in part by Bellcore.

Preprint submitted to Elsevier Preprint 17 December 1997

In general, the robot will have to remember something about its history of ac-
tions and observations and use this information, together with its knowledge
of the underlying dynamics of the world (the map and other information),
to maintain an estimate of its location. Many engineering applications follow
this approach, using methods like the Kalman �lter [20] to maintain a running
estimate of the robot's spatial uncertainty, expressed as an ellipsoid or nor-
mal distribution in Cartesian space. This approach will not do for our robot,
though. Its uncertainty may be discrete: it might be almost certain that it is
in the north-east corner of either the fourth or the seventh
oors, though it
admits a chance that it is on the �fth
oor, as well.

Then, given an uncertain estimate of its location, the robot has to decide what
actions to take. In some cases, it might be su�cient to ignore its uncertainty
and take actions that would be appropriate for the most likely location. In
other cases, it might be better for the robot to take actions for the purpose of
gathering information, such as searching for a landmark or reading signs on the
wall. In general, it will take actions that ful�ll both purposes simultaneously.

1 Introduction

In this paper, we bring techniques from operations research to bear on the
problem of choosing optimal actions in partially observable stochastic do-
mains. Problems like the one described above can be modeled as partially
observable Markov decision processes (pomdps). Of course, we are not in-
terested only in problems of robot navigation. Similar problems come up in
factory process control, oil exploration, transportation logistics, and a variety
of other complex real-world situations.

This is essentially a planning problem: given a complete and correct model
of the world dynamics and a reward structure, �nd an optimal way to be-
have. In the arti�cial intelligence (AI) literature, a deterministic version of
this problem has been addressed by adding knowledge preconditions to tradi-
tional planning systems [36]. Because we are interested in stochastic domains,
however, we must depart from the traditional AI planning model. Rather than
taking plans to be sequences of actions, which may only rarely execute as ex-
pected, we take them to be mappings from situations to actions that specify
the agent's behavior no matter what may happen. In many cases, we may
not want a full policy; methods for developing partial policies and conditional
plans for completely observable domains are the subject of much current in-
terest [14,54,12]. A weakness of the methods described in this paper is that
they require the states of the world to be represented enumeratively, rather
than through compositional representations such as Bayes nets or probabilistic
operator descriptions. However, this work has served as a substrate for devel-

2

opment of more complex and e�cient representations [6]. Section 6 describes
the relation between the present approach and prior research in more detail.

One important facet of the pomdp approach is that there is no distinction
drawn between actions taken to change the state of the world and actions
taken to gain information. This is important because, in general, every action
has both types of e�ect. Stopping to ask questions may delay the robot's
arrival at the goal or spend extra energy; moving forward may give the robot
information that it is in a dead-end because of the resulting crash.

Thus, from the pomdp perspective, optimal performance involves something
akin to a \value of information" calculation, only more complex; the agent
chooses between actions based on the amount of information they provide,
the amount of reward they produce, and how they change the state of the
world.

This paper is intended to make two contributions. The �rst is to recapitulate
work from the operations-research literature [30,35,50,52,57] and to describe
its connection to closely related work in AI. The second is to describe a novel
algorithmic approach for solving pomdps exactly. We begin by introducing the
theory of Markov decision processes (mdps) and pomdps. We then outline a
novel algorithm for solving pomdps o� line and show how, in some cases,
a �nite-memory controller can be extracted from the solution to a pomdp.
We conclude with a brief discussion of related work and of approximation
methods.

2 Markov Decision Processes

Markov decision processes serve as a basis for solving the more complex par-
tially observable problems that we are ultimately interested in. An mdp is a
model of an agent interacting synchronously with a world. As shown in Fig-
ure 1, the agent takes as input the state of the world and generates as output
actions, which themselves a�ect the state of the world. In the mdp framework,
it is assumed that, although there may be a great deal of uncertainty about the
e�ects of an agent's actions, there is never any uncertainty about the agent's
current state|it has complete and perfect perceptual abilities.

Markov decision processes are described in depth in a variety of texts [3,42];
we will just brie
y cover the necessary background.

3

AGENT

ActionsStates

WORLD

Fig. 1. An mdp models the synchronous interaction between agent and world.

2.1 Basic Framework

A Markov decision process can be described as a tuple hS;A; T; Ri, where

� S is a �nite set of states of the world;
� A is a �nite set of actions;
� T : S � A ! �(S) is the state-transition function, giving for each world
state and agent action, a probability distribution over world states (we write
T (s; a; s0) for the probability of ending in state s0, given that the agent starts
in state s and takes action a); and

� R : S � A ! R is the reward function, giving the expected immediate
reward gained by the agent for taking each action in each state (we write
R(s; a) for the expected reward for taking action a in state s).

In this model, the next state and the expected reward depend only on the
previous state and the action taken; even if we were to condition on additional
previous states, the transition probabilities and the expected rewards would
remain the same. This is known as theMarkov property|the state and reward
at time t+1 is dependent only on the state at time t and the action at time t.

In fact, mdps can have in�nite state and action spaces. The algorithms that we
describe in this section apply only to the �nite case; however, in the context
of pomdps, we will consider a class of mdps with uncountably in�nite state
spaces.

2.2 Acting Optimally

We would like our agents to act in such a way as to maximize some measure of
the long-run reward received. One such framework is �nite-horizon optimality,
in which the agent should act in order to maximize the expected sum of reward
that it gets on the next k steps; it should maximize

E

"
k�1X
t=0

rt

#
;

4

where rt is the reward received on step t. This model is somewhat inconvenient,
because it is rare that an appropriate k will be known exactly. We might
prefer to consider an in�nite lifetime for the agent. The most straightforward
is the in�nite-horizon discounted model, in which we sum the rewards over the
in�nite lifetime of the agent, but discount them geometrically using discount
factor 0 <
 < 1; the agent should act so as to optimize

E

"
1X
t=0

trt

#
:

In this model, rewards received earlier in its lifetime have more value to the
agent; the in�nite lifetime is considered, but the discount factor ensures that
the sum is �nite. This sum is also the expected amount of reward received if a
decision to terminate the run is made on each step with probability 1�
. The
larger the discount factor (closer to 1), the more e�ect future rewards have on
current decision making. In our future discussions of �nite-horizon optimality,
we will also use a discount factor; when it has value one, it is equivalent to
the simple �nite horizon case described above.

A policy is a description of the behavior of an agent. We consider two kinds of
policies: stationary and non-stationary. A stationary policy , � : S ! A, is a
situation-action mapping that speci�es, for each state, an action to be taken.
The choice of action depends only on the state and is independent of the
time step. A non-stationary policy is a sequence of situation-action mappings,
indexed by time. The policy �t is to be used to choose the action on the tth-
to-last step as a function of the current state, st. In the �nite-horizon model,
the optimal policy is not typically stationary: the way an agent chooses its
actions on the last step of its life is generally going to be very di�erent from
the way it chooses them when it has a long life ahead of it. In the in�nite-
horizon discounted model, the agent always has a constant expected amount
of time remaining, so there is no reason to change action strategies: there is a
stationary optimal policy.

Given a policy, we can evaluate it based on the long-run value that the agent
expects to gain from executing it. In the �nite-horizon case, let V�;t(s) be the
expected sum of reward gained from starting in state s and executing non-
stationary policy � for t steps. Clearly, V�;1(s) = R(s; �1(s)); that is, on the
last step, the value is just the expected reward for taking the action speci�ed
by the �nal element of the policy. Now, we can de�ne V�;t(s) inductively as

V�;t(s) = R(s; �t(s)) +

X
s02S

T (s; �t(s); s
0)V�;t�1(s

0) :

The t-step value of being in state s and executing non-stationary policy � is
the immediate reward, R(s; �t(s)), plus the discounted expected value of the
remaining t � 1 steps. To evaluate the future, we must consider all possible

5

resulting states s0, the likelihood of their occurrence T (s; �t(s); s
0), and their

(t� 1)-step value under policy �, V�;t�1(s
0). In the in�nite-horizon discounted

case, we write V�(s) for the expected discounted sum of future reward for
starting in state s and executing policy �. It is recursively de�ned by

V�(s) = R(s; �(s)) +

X
s02S

T (s; �(s); s0)V�(s
0) :

The value function, V�, for policy � is the unique simultaneous solution of this
set of linear equations, one equation for each state s.

Now we know how to compute a value function, given a policy. Sometimes,
we will need to go the opposite way, and compute a greedy policy given a
value function. It really only makes sense to do this for the in�nite-horizon
discounted case; to derive a policy for the �nite horizon, we would need a whole
sequence of value functions. Given any value function V , a greedy policy with
respect to that value function, �V , is de�ned as

�V (s) = argmax
a

2
4R(s; a) +

X
s02S

T (s; a; s0)V (s0)

3
5 :

This is the policy obtained by, at every step, taking the action that maximizes
expected immediate reward plus the expected discounted value of the next
state, as measured by V .

What is the optimal �nite-horizon policy, ��? The agent's last step is easy: it
should maximize its �nal reward. So

��1(s) = argmax
a

R(s; a) :

The optimal policy for the tth step, ��t , can be de�ned in terms of the optimal
(t� 1)-step value function V��

t�1
;t�1 (written for simplicity as V �

t�1):

��t (s) = argmax
a

2
4R(s; a) +

X
s02S

T (s; a; s0)V �
t�1(s

0)

3
5 ;

V �
t�1 is derived from ��t�1 and V �

t�2.

In the in�nite-horizon discounted case, for any initial state s, we want to
execute the policy � that maximizes V�(s). Howard [18] showed that there
exists a stationary policy, ��, that is optimal for every starting state. The
value function for this policy, V��, also written V �, is de�ned by the set of
equations

V �(s) = max
a

2
4R(s; a) +

X
s02S

T (s; a; s0)V �(s0)

3
5 ;

6

V1(s) := 0 for all s
t := 1
loop

t := t+ 1
loop for all s 2 S and for all a 2 A

Qa
t (s) := R(s; a) +

P
s02S T (s; a; s

0)Vt�1(s
0)

Vt(s) := maxaQ
a
t (s)

end loop

until jVt(s)� Vt�1(s)j < � for all s 2 S
Table 1
The value iteration algorithm for �nite state space mdps.

which has a unique solution. An optimal policy, ��, is just a greedy policy
with respect to V �.

Another way to understand the in�nite-horizon value function, V �, is to ap-
proach it by using an ever-increasing discounted �nite horizon. As the horizon,
t, approaches in�nity, V �

t approaches V �. This is only guaranteed to occur
when the discount factor,
, is less than 1, which tends to wash out the details
of exactly what happens at the end of the agent's life.

2.3 Computing an Optimal Policy

There are many methods for �nding optimal policies for mdps. In this section,
we explore value iteration because it will also serve as the basis for �nding
policies in the partially observable case.

Value iteration proceeds by computing the sequence Vt of discounted �nite-
horizon optimal value functions, as shown in Table 1 (the superscript � is
omitted, because we shall henceforth only be considering optimal value func-
tions). It makes use of an auxiliary function, Qa

t (s), which is the t-step value
of starting in state s, taking action a, then continuing with the optimal (t�1)-
step non-stationary policy. The algorithm terminates when the maximum dif-
ference between two successive value functions (known as the Bellman error
magnitude) is less than some �.

It can be shown [55] that there exists a t�, polynomial in jSj, jAj, the mag-
nitude of the largest value of R(s; a), and 1=(1 �
), such that the greedy
policy with respect to Vt� is equal to the optimal in�nite-horizon policy, ��.
Rather than calculating a bound on t� in advance and running value iteration
for that long, we instead use the following result regarding the Bellman error
magnitude [58] in order to terminate with a near-optimal policy.

If jVt(s)�Vt�1(s)j < � for all s, then the value of the greedy policy with respect

7

to Vt does not di�er from V � by more than 2�
=(1�
) at any state. That is,

max
s2S

jV�Vt
(s)� V �(s)j < 2�

1�

:

It is often the case that �Vt = �� long before Vt is near V
�; tighter bounds

may be obtained using the span semi-norm on the value function [42].

3 Partial Observability

For mdps we can compute the optimal policy � and use it to act by simply
executing �(s) for current state s. What happens if the agent is no longer
able to determine the state it is currently in with complete reliability? A
naive approach would be for the agent to map the most recent observation
directly into an action without remembering anything from the past. In our
hallway navigation example, this amounts to performing the same action in
every location that looks the same|hardly a promising approach. Somewhat
better results can be obtained by adding randomness to the agent's behavior:
a policy can be a mapping from observations to probability distributions over
actions [49]. Randomness e�ectively allows the agent to sometimes choose
di�erent actions in di�erent locations with the same appearance, increasing
the probability that it might choose a good action; in practice deterministic
observation-action mappings are prone to getting trapped in deterministic
loops [26].

In order to behave truly e�ectively in a partially observable world, it is nec-
essary to use memory of previous actions and observations to aid in the dis-
ambiguation of the states of the world. The pomdp framework provides a
systematic method of doing just that.

3.1 POMDP Framework

A partially observable Markov decision process can be described as a tuple
hS;A; T; R;
; Oi, where

� S, A, T , and R describe a Markov decision process;
�
 is a �nite set of observations the agent can experience of its world; and
� O : S �A ! �(
) is the observation function, which gives, for each action
and resulting state, a probability distribution over possible observations (we
write O(s0; a; o) for the probability of making observation o given that the
agent took action a and landed in state s0).

8

AGENT

Action
Observation

SE
b

WORLD

π

Fig. 2. A pomdp agent can be decomposed into a state estimator (SE) and a policy
(�).

A pomdp is an mdp in which the agent is unable to observe the current state.
Instead, it makes an observation based on the action and resulting state. 4

The agent's goal remains to maximize expected discounted future reward.

3.2 Problem Structure

We decompose the problem of controlling a pomdp into two parts, as shown
in Figure 2. The agent makes observations and generates actions. It keeps an
internal belief state, b, that summarizes its previous experience. The compo-
nent labeled SE is the state estimator: it is responsible for updating the belief
state based on the last action, the current observation, and the previous belief
state. The component labeled � is the policy: as before, it is responsible for
generating actions, but this time as a function of the agent's belief state rather
than the state of the world.

What, exactly, is a belief state? One choice might be the most probable state
of the world, given the past experience. Although this might be a plausible
basis for action in some cases, it is not su�cient in general. In order to act
e�ectively, an agent must take into account its own degree of uncertainty. If
it is lost or confused, it might be appropriate for it to take sensing actions
such as asking for directions, reading a map, or searching for a landmark.
In the pomdp framework, such actions are not explicitly distinguished: their
informational properties are described via the observation function.

Our choice for belief states will be probability distributions over states of the

4 It is possible to formulate an equivalent model in which the observation depends
on the previous state instead of, or in addition to, the resulting state, but it com-
plicates the exposition and adds no more expressive power; such a model could be
converted into a pomdp model as described above, at the cost of expanding the
state space.

9

1 2 3 4

Fig. 3. Simple pomdp to illustrate belief state evolution.

world. These distributions encode the agent's subjective probability about the
state of the world and provide a basis for acting under uncertainty. Further-
more, they comprise a su�cient statistic for the past history and initial belief
state of the agent: given the agent's current belief state (properly computed),
no additional data about its past actions or observations would supply any
further information about the current state of the world [1,50]. This means
that the process over belief states is Markov, and that no additional data
about the past would help to increase the agent's expected reward.

To illustrate the evolution of a belief state, we will use the simple example
depicted in Figure 3; the algorithm for computing belief states is provided in
the next section. There are four states in this example, one of which is a goal
state, indicated by the star. There are two possible observations: one is always
made when the agent is in state 1, 2, or 4; the other, when it is in the goal
state. There are two possible actions: east and west. These actions succeed
with probability 0:9, and when they fail, the movement is in the opposite
direction. If no movement is possible in a particular direction, then the agent
remains in the same location.

Assume that the agent is initially equally likely to be in any of the three non-

goal states. Thus, its initial belief state is
�
0:333 0:333 0:000 0:333

�
, where the

position in the belief vector corresponds to the state number.

If the agent takes action east and does not observe the goal, then the new

belief state becomes
�
0:100 0:450 0:000 0:450

�
. If it takes action east again,

and still does not observe the goal, then the probability mass becomes concen-

trated in the right-most state:
�
0:100 0:164 0:000 0:736

�
. Notice that as long

as the agent does not observe the goal state, it will always have some non-zero
belief that it is in any of the non-goal states, since the actions have non-zero
probability of failing.

3.3 Computing Belief States

A belief state b is a probability distribution over S. We let b(s) denote the
probability assigned to world state s by belief state b. The axioms of proba-
bility require that 0 � b(s) � 1 for all s 2 S and that

P
s2S b(s) = 1. The

state estimator must compute a new belief state, b0, given an old belief state

10

b, an action a, and an observation o. The new degree of belief in some state
s0, b0(s0), can be obtained from basic probability theory as follows:

b0(s0)=Pr(s0jo; a; b)

=
Pr(ojs0; a; b) Pr(s0ja; b)

Pr(oja; b)

=
Pr(ojs0; a)

P
s2S Pr(s

0ja; b; s) Pr(sja; b)

Pr(oja; b)

=
O(s0; a; o)

P
s2S T (s; a; s

0)b(s)

Pr(oja; b)

The denominator, Pr(oja; b), can be treated as a normalizing factor, indepen-
dent of s0, that causes b0 to sum to 1. The state estimation function SE(b; a; o)
has as its output the new belief state b0.

Thus, the state-estimation component of a pomdp controller can be con-
structed quite simply from a given model.

3.4 Finding an Optimal Policy

The policy component of a pomdp agent must map the current belief state
into action. Because the belief state is a su�cient statistic, the optimal policy
is the solution of a continuous-space \belief mdp." It is de�ned as follows:

� B, the set of belief states, comprise the state space;
� A, the set of actions, remains the same;
� �(b; a; b0) is the state-transition function, which is de�ned as

�(b; a; b0)=Pr(b0ja; b)

=
X
o2

Pr(b0ja; b; o) Pr(oja; b) ;

where

Pr(b0jb; a; o) =

8><
>:
1 if SE(a; b; o) = b0

0 otherwise ;

and
� �(b; a) is the reward function on belief states, constructed from the original
reward function on world states:

�(b; a) =
X
s2S

b(s)R(s; a) :

11

The reward function may seem strange; the agent appears to be rewarded for
merely believing that it is in good states. However, because the state estimator
is constructed from a correct observation and transition model of the world,
the belief state represents the true occupation probabilities for all states s 2 S,
and therefore the reward function � represents the true expected reward to
the agent.

This belief mdp is such that an optimal policy for it, coupled with the correct
state estimator, will give rise to optimal behavior (in the discounted in�nite-
horizon sense) for the original pomdp [52,1]. The remaining problem, then, is
to solve this mdp. It is very di�cult to solve continuous-space mdps in the
general case, but, as we shall see in the next section, the optimal value function
for the belief mdp has special properties that can be exploited to simplify the
problem.

4 Value functions for POMDPs

As in the case of discrete mdps, if we can compute the optimal value func-
tion, then we can use it to directly determine the optimal policy. This section
concentrates on �nding an approximation to the optimal value function. We
approach the problem using value iteration to construct, at each iteration, the
optimal t-step discounted value function over belief space.

4.1 Policy Trees

When an agent has one step remaining, all it can do is take a single action.
With two steps to go, it can take an action, make an observation, then take
another action, perhaps depending on the previous observation. In general,
an agent's non-stationary t-step policy can be represented by a policy tree as
shown in Figure 4. It is a tree of depth t that speci�es a complete t-step policy.
The top node determines the �rst action to be taken. Then, depending on the
resulting observation, an arc is followed to a node on the next level, which
determines the next action. This is a complete recipe for t steps of conditional
behavior. 5

Now, what is the expected discounted value to be gained from executing a
policy tree p? It depends on the true state of the world when the agent starts.

5 Policy trees are essentially equivalent to \decision trees" as used in decision theory
to represent a sequential decision policy; but not to \decision trees" as used in
machine learning to compactly represent a single-stage decision rule.

12

O2
Ok

O1

O2
Ok

A

A A A

A

A

A A

O1
t steps to go

t-1 steps to go

2 steps to go

1 step to go

Fig. 4. A t-step policy tree.

In the simplest case, p is a 1-step policy tree (a single action). The value of
executing that action in state s is

Vp(s) = R(s; a(p)) ;

where a(p) is the action speci�ed in the top node of policy tree p. More gen-
erally, if p is a t-step policy tree, then

Vp(s)=R(s; a(p)) +
 Expected value of the future

=R(s; a(p)) +

X
s02S

Pr(s0js; a(p))
X
oi2

Pr(oijs
0; a(p))Voi(p)(s

0)

=R(s; a(p)) +

X
s02S

T (s; a(p); s0)
X
oi2

O(s0; a(p); oi)Voi(p)(s
0) ;

where oi(p) is the (t � 1)-step policy subtree associated with observation oi
at the top level of a t-step policy tree p. The expected value of the future is
computed by �rst taking an expectation over possible next states, s0, then con-
sidering the value of each of those states. The value depends on which policy
subtree will be executed which, itself, depends on which observation is made.
So, we take another expectation, with respect to the possible observations, of
the value of executing the associated subtree, oi(p), starting in state s0.

Because the agent will never know the exact state of the world, it must be able
to determine the value of executing a policy tree, p, from some belief state b.
This is just an expectation over world states of executing p in each state:

Vp(b) =
X
s2S

b(s)Vp(s) :

It will be useful, in the following exposition, to express this more compactly.
If we let �p = hVp(s1); : : : ; Vp(sn)i, then Vp(b) = b � �p.

Now we have the value of executing the policy tree p in every possible belief
state. To construct an optimal t-step policy, however, it will generally be

13

0 1b s1()

Vp1

Vp2

Vp3expected
t-step

discounted
value

Fig. 5. The optimal t-step value function is the upper surface of the value functions
associated with all t-step policy trees.

necessary to execute di�erent policy trees from di�erent initial belief states.
Let P be the �nite set of all t-step policy trees. Then

Vt(b) = max
p2P

b � �p :

That is, the optimal t-step value of starting in belief state b is the value of
executing the best policy tree in that belief state.

This de�nition of the value function leads us to some important geometric
insights into its form. Each policy tree, p, induces a value function Vp that is
linear in b, and Vt is the upper surface of this collection of functions. So, Vt

is piecewise-linear and convex. Figure 5 illustrates this property. Consider a
world with only two states. In such a world, a belief state consists of a vector
of two non-negative numbers, hb(s1); b(s2)i, that sum to 1. Because of this
constraint, a single number is su�cient to describe the belief state. The value
function associated with a policy tree p1, Vp1, is a linear function of b(s1) and
is shown in the �gure as a line. The value functions of other policy trees are
similarly represented. Finally, Vt is the maximum of all the Vpi at each point
in the belief space, giving us the upper surface, which is drawn in the �gure
with a bold line.

When there are three world states, a belief state is determined by two values
(again because of the simplex constraint, which requires the individual values
to be non-negative and sum to 1). The belief space can be seen as the triangle in
two-space with vertices (0; 0), (1; 0), and (0; 1). The value function associated
with a single policy tree is a plane in three-space, and the optimal value
function is a bowl shape that is composed of planar facets; a typical example
is shown in Figure 6, but it is possible for the \bowl" to be tipped on its side
or to degenerate to a single plane. This general pattern repeats itself in higher
dimensions, but becomes di�cult to contemplate and even harder to draw!

The convexity of the optimal value function makes intuitive sense when we
think about the value of belief states. States that are in the \middle" of the
belief space have high entropy|the agent is very uncertain about the real
underlying state of the world. In such belief states, the agent cannot select

14

(0, 1)

(1, 0)

(0, 0)

s1

s2

Fig. 6. A value function in three dimensions.

actions very appropriately and so tends to gain less long-term reward. In low-
entropy belief states, which are near the corners of the simplex, the agent can
take actions more likely to be appropriate for the current state of the world
and, so, gain more reward. This has some connection to the notion of \value
of information," [19] where an agent can incur a cost to move it from a high-
entropy to a low-entropy state; this is only worthwhile when the value of the
information (the di�erence in value between the two states) exceeds the cost
of gaining the information.

Given a piecewise-linear convex value function and the t-step policy trees from
which it was derived, it is straightforward to determine the optimal policy for
execution on the tth step from the end. The optimal value function can be
projected back down onto the belief space, yielding a partition into polyhedral
regions. Within each region, there is some single policy tree p such that b � �p

is maximal over the entire region. The optimal action for each belief state in
this region is a(p), the action in the root node of policy tree p; furthermore,
the entire policy tree p can be executed from this point by conditioning the
choice of further actions directly on observations, without updating the belief
state (though this is not necessarily an e�cient way to represent a complex
policy). Figure 7 shows the projection of the optimal value function down
into a policy partition in the two-dimensional example introduced in Figure 5;
over each of the intervals illustrated, a single policy tree can be executed to
maximize expected reward.

15

0 1

Vp1

Vp2

Vp3expected
t-step

discounted
value

a p1() a p2() a p3()

Fig. 7. The optimal t-step policy is determined by projecting the optimal value
function back down onto the belief space.

0 1b s1()

Vpa

Vpc

Vpbexpected
t-step

discounted
value

Vpd

Fig. 8. Some policy trees may be totally dominated by others and can be ignored.

4.2 Value Functions as Sets of Vectors

It is possible, in principle, that every possible policy tree might represent the
optimal strategy at some point in the belief space and, hence, that each would
contribute to the computation of the optimal value function. Luckily, however,
this seems rarely to be the case. There are generally many policy trees whose
value functions are totally dominated by or tied with value functions associated
with other policy trees. Figure 8 shows a situation in which the value function
associated with policy pd is completely dominated by (everywhere less than or
equal to) the value function for policy pb. The situation with the value function
for policy pc is somewhat more complicated; although it is not completely
dominated by any single value function, it is completely dominated by pa and
pb taken together.

Given a set of policy trees, ~V, it is possible to de�ne a unique 6 minimal subset
V that represents the same value function. We will call this a parsimonious
representation of the value function, and say that a policy tree is useful if it
is a component of the parsimonious representation of the value function.

Given a vector, �, and a set of vectors V, we de�ne R(�;V) to be the region

6 We assume here that two policy trees with the same value function are identical.

16

of belief space over which � dominates; that is,

R(�;V) = fb j b � � > b � ~�; for all ~� 2 V � � and b 2 Bg :

It is relatively easy, using a linear program, to �nd a point in R(�;V) if one
exists, or to determine that the region is empty [8].

The simplest pruning strategy, described by Monahan [35], is to test R(�; ~V)
for every � in ~V and remove those � that are nowhere dominant. A much
more e�cient pruning method was proposed by Lark and White [57] and is
described in detail by Littman [29] and by Cassandra [8]. Because it has many
subtle technical details, it is not described here.

4.3 One Step of Value Iteration

The value function for a pomdp can be computed using value iteration, with
the same basic structure as for the discrete mdp case. The new problem, then,
is how to compute a parsimonious representation of Vt from a parsimonious
representation of Vt�1.

One of the simplest algorithms for solving this problem, attributed by Mona-
han [35] to someone, works by constructing a large representation of Vt, then
pruning it. We let V stand for a set of policy trees, though for each tree we
need only actually store the top-level action and the vector of values, �. The
idea behind this algorithm is the following: Vt�1, the set of useful (t� 1)-step
policy trees, can be used to construct a superset of the useful t-step policy
trees. A t-step policy tree is composed of a root node with an associated ac-
tion, a, with j
j subtrees, which are (t � 1)-step policy trees. We propose to
restrict our choice of subtrees to those (t�1)-step policy trees that were useful.
For any belief state and any choice of policy subtree, there is always a useful
subtree that is at least as good at that state; so there is never any reason to
include a non-useful policy subtree.

The time complexity of a single iteration of this algorithm can be divided into
two parts: generation and pruning. There are jAjjVt�1j

j
j elements in V+
t : there

are jAj di�erent ways to choose the action and all possible lists of length j
j
may be chosen from the set Vt�1 to form the subtrees. The value functions for
the policy trees in V+

t can be computed e�ciently from those of the subtrees.
Pruning requires one linear program for each element of the starting set of
policy trees and does not add to asymptotic complexity of the algorithm.

Although it keeps parsimonious representations of the value functions at each
step, this algorithm still does more much work than may be necessary. Even if
Vt is very small, we must go through the step of generating V+

t , which always

17

has size exponential in j
j. In the next sections, we brie
y outline some existing
algorithms that attempt to be more e�cient than Monahan. Then we present
the Witness algorithm and some complexity analysis.

4.4 The Witness Algorithm

To improve the complexity of the value-iteration algorithm, we must avoid
generating V+

t ; instead, we would like to generate the elements of Vt directly.
If we could do this, we might be able to reach a computation time per iteration
that is polynomial in jSj, jAj, j
j, jVt�1j, and jVtj. Cheng [9] and Smallwood
and Sondik [50] also try to avoid generating all of V+

t by constructing Vt

directly. However, their algorithms still have worst-case running times expo-
nential in at least one of the problem parameters [28]. In fact, the existence
of an algorithm that runs in time polynomial in jSj, jAj, j
j, jVt�1j, and jVtj
would settle the long-standing complexity-theoretic question \Does NP=RP?"
in the a�rmative [28], so we will pursue a slightly di�erent approach.

Instead of computing Vt directly, we will compute, for each action a, a set Qa
t

of t-step policy trees that have action a at their root. We can compute Vt by
taking the union of the Qa

t sets for all actions and pruning as described in the
previous section. The witness algorithm is a method for computing Qa

t in time
polynomial in jSj, jAj, j
j, jVt�1j, and jQ

a
t j (speci�cally, run time is polynomial

in the size of the inputs, the outputs, and an important intermediate result).
It is possible that the Qa

t are exponentially larger than Vt, but this seems to
be rarely the case in practice 7 .

In what sense is the witness algorithm superior to previous algorithms for solv-
ing pomdps, then? Experiments indicate that the witness algorithm is faster
in practice over a wide range of problem sizes [28]. The primary complexity-
theoretic di�erence is that the witness algorithm runs in polynomial time in
the number of policy trees in Qa

t . There are example problems that cause the
other algorithms, although they never construct the Qa

t 's directly, to run in
time exponential in the number of policy trees inQa

t . That means, if we restrict
ourselves to problems in which jQa

t j is polynomial, that the resulting running
time is polynomial. It is worth noting, however, that it is possible to create
families of pomdps that Cheng's algorithm can solve in polynomial time that
take the witness exponential time to solve; they are problems in which S and
Vt are very small and Qa

t is exponentially larger for some action a.

From the de�nition of the state estimator, SE, and the t-step value function,

7 A more recent algorithm by Zhang [59], inspired by the witness algorithm, has
the same asymptotic complexity but appears to be the current fastest algorithm
empirically for this problem.

18

V1 := fh0; 0; : : : ; 0ig
t := 1
loop

t := t+ 1
foreach a in A

Qa
t := witness(Vt�1; a)

prune
S

aQ
a
t to get Vt

until supb jVt(b)� Vt�1(b)j < �

Table 2
Outer loop of the witness algorithm.

Vt(b), we can express Qa
t (b) (recall that this is the value of taking action a in

belief state b and continuing optimally for t� 1 steps) formally as

Qa
t (b) =

X
s2S

b(s)R(s; a) +

X
o2

Pr(oja; b)Vt�1(b
0
o) ;

where b0o is the belief state resulting from taking action a and observing o from
belief state b; that is, b0 = SE(b; a; o). Since V is the value of the best action,
we have Vt(b) = maxaQ

a
t (b).

Using arguments similar to those in the previous section, we can show that
these Q-functions are piecewise-linear and convex and can be represented by
collections of policy trees. Let Qa

t be the collection of policy trees that specify
Qa

t . Once again, we can de�ne a unique minimal useful set of policy trees for
each Q function. Note that the policy trees needed to represent the function
Vt are a subset of the policy trees needed to represent all of the Qa

t functions:
Vt �

S
aQ

a
t . This is because maximizing over actions and then policy trees is

the same as maximizing over the pooled sets of policy trees.

The code in Table 2 outlines our approach to solving pomdps. The basic
structure remains that of value iteration. At iteration t, the algorithm has a
representation of the optimal t-step value function. Within the value-iteration
loop, separate Q-functions for each action, represented by parsimonious sets
of policy trees, are returned by calls to witness using the value function from
the previous iteration. The union of these sets forms a representation of the
optimal value function. Since there may be extraneous policy trees in the
combined set, it is pruned to yield the useful set of t-step policy trees, Vt.

4.4.1 Witness inner loop

The basic structure of the witness algorithm is as follows. We would like to
�nd a minimal set of policy trees for representing Qa

t for each a. We consider
the Q-functions one at a time. The set Ua of policy trees is initialized with a
single policy tree, with action a at the root, that is the best for some arbitrary

19

pnew

...

-step policy treest 1–

a p()

o1 p() p' ok p()

...

Fig. 9. Constructing a new policy.

belief state (this is easy to do). At each iteration we ask, Is there some belief
state, b, for which the true value,Qa

t (b), computed by one-step lookahead using
Vt�1, is di�erent from the estimated value, Q̂a

t (b), computed using the set Ua?
We call such a belief state a witness because it can, in a sense, testify to the
fact that the set U is not yet a perfect representation of Qa

t (b). Note that for
all b, Q̂a

t (b) � Qa
t (b); the approximation is always an underestimate of the true

value function.

Once a witness is identi�ed, we �nd the policy tree with action a at the root
that will yield the best value at that belief state. To construct this tree, we
must �nd, for each observation o, the (t � 1)-step policy tree that should be
executed if observation o is made after executing action a. If this happens, the
agent will be in belief state b0 = SE(b; a; o), from which it should execute the
(t � 1)-step policy tree po 2 Vt�1 that maximizes Vpo(b

0). The tree p is built
with subtrees po for each observation o. We add the new policy tree to Ua to
improve the approximation. This process continues until we can prove that no
more witness points exist and therefore that the current Q-function is perfect.

4.4.2 Identifying a witness

To �nd witness points, we must be able to construct and evaluate alternative
policy trees. If p is a t-step policy tree, oi an observation, and p0 a (t� 1)-step
policy tree, then we de�ne pnew as a t-step policy tree that agrees with p in its
action and all its subtrees except for observation oi, for which oi(pnew) = p0.
Figure 9 illustrates the relationship between p and pnew.

Now we can state the witness theorem [28]: The true Q-function, Qa
t , di�ers

from the approximate Q-function, Q̂a
t , if and only if there is some p 2 Ua,

o 2
, and p0 2 Vt�1 for which there is some b such that

Vpnew(b) > V~p(b) ; (1)

for all ~p 2 Ua. That is, if there is a belief state, b, for which pnew is an
improvement over all the policy trees we have found so far, then b is a witness.
Conversely, if none of the trees can be improved by replacing a single subtree,

20

there are no witness points. A proof of this theorem is included in the appendix.

4.4.3 Checking the witness condition

The witness theorem requires us to search for a p 2 Ua, an o 2
, a p0 2 Vt�1

and a b such that Condition 1 holds, or to guarantee that no such quadruple
exists. Since Ua,
, and Vt�1 are �nite and (we hope) small, checking all
combinations will not be too time consuming. However, for each combination,
we need to search all the belief states to test Condition 1. This we can do
using linear programming.

For each combination of p, o and p0 we compute the policy tree pnew, as de-
scribed above. For any belief state b and policy tree ~p 2 Ua, Vpnew(b) � V~p(b)
gives the advantage of following policy tree pnew instead of ~p starting from b.
We would like to �nd a b that maximizes the advantage over all policy trees
~p the algorithm has found so far.

The linear program in Table 3 solves exactly this problem. The variable � is
the minimum amount of improvement of pnew over any policy tree in Ua at b.
It has a set of constraints that restrict � to be a bound on the di�erence and a
set of simplex constraints that force b to be a well-formed belief state. It then
seeks to maximize the advantage of pnew over all ~p 2 Ua. Since the constraints
are all linear, this can be accomplished by linear programming. The total size
of the linear program is one variable for each component of the belief state
and one representing the advantage, plus one constraint for each policy tree in
U , one constraint for each state, and one constraint to ensure that the belief
state sums to one. 8

If the linear program �nds that the biggest advantage is not positive, that is,
that � � 0, then pnew is not an improvement over all ~ps. Otherwise, it is and
b is a witness point.

4.4.4 A single step of value iteration

The complete value-iteration step starts with an agenda containing any single
policy tree and with Ua empty. It takes a policy tree o� the top of the agenda
and uses it as pnew in the linear program of Table 3 to determine whether it is
an improvement over the policy trees in Ua. If a witness point is discovered,
the best policy tree for that point is calculated and added to Ua and all policy
trees that di�er from the current policy tree in a single subtree are added to the

8 In many linear-programming packages, all variables have implicit non-negativity
constraints, so the b(s) � 0 constraints are not needed.

21

Inputs:
Ua; pnew

Variables:
�, b(s) for each s 2 S

Maximize: �

Improvement constraints:
For each ~p in Ua: Vpnew(b)� V~p(b) � �

Simplex constraints:
For each s 2 S: b(s) � 0P

s2S b(s) = 1

Table 3
The linear program used to �nd witness points.

agenda. If no witness points are discovered, then that policy tree is removed
from the agenda. When the agenda is empty, the algorithm terminates.

Since we know that no more than Qa
t witness points are discovered (each

adds a tree to the set of useful policy trees), only jVt�1jj
jjjQ
a
t j trees can ever

be added to the agenda (in addition to the one tree in the initial agenda).
Each linear program solved has jSj variables and no more than 1 + jSj+ jQa

t j
constraints. Each of these linear programs either removes a policy from the
agenda (this happens at most 1+ (jVt�1j� 1)j
jjQa

t j times) or a witness point
is discovered (this happens at most jQa

t j times).

These facts imply that the running time of a single pass of value iteration
using the witness algorithm is bounded by a polynomial in the size of the state
space (jSj), the size of the action space (jAj), the number of policy trees in the
representation of the previous iteration's value function (jVt�1j), the number
of observations (j
j), and the number of policy trees in the representation of
the current iteration's Q-functions (

P
a jQ

a
t j). Note that we must assume that

the number of bits of precision used in specifying the model is polynomial in
these quantities since the polynomial running time of linear programming is
expressed as a function of the input precision [48].

4.5 Alternative Approaches

One paragraph each on Cheng, Sondik 1 and 2, Incremental Pruning??. And
a short discussion of their relative e�ciencies.

22

4.6 The In�nite Horizon

Be sure this is right, given Tony's new insights (cite thesis).

In the previous section, we showed that the optimal t-step value function is
always piecewise-linear and convex. This is not necessarily true for the in�nite-
horizon discounted value function; it remains convex [56], but may have in-
�nitely many facets. Still, the optimal in�nite-horizon discounted value func-
tion can be approximated arbitrarily closely by a �nite-horizon value function
for a su�ciently long horizon [52,44].

The optimal in�nite-horizon discounted value function can be approximated
via value iteration, in which the series of t-step discounted value functions is
computed; the iteration is stopped when the di�erence between two succes-
sive results is small, yielding an arbitrarily good piecewise-linear and convex
approximation to the desired value function. From the approximate value func-
tion we can extract a stationary policy that is approximately optimal.

5 Understanding Policies

In this section we introduce a very simple example and use it to illustrate
some properties of pomdp policies. Other examples are explored in an earlier
paper [7].

5.1 The Tiger Problem

Imagine an agent standing in front of two closed doors. Behind one of the
doors is a tiger and behind the other is a large reward. If the agent opens the
door with the tiger, then a large penalty is received (presumably in the form
of some amount of bodily injury). Instead of opening one of the two doors,
the agent can listen, in order to gain some information about the location
of the tiger. Unfortunately, listening is not free; in addition, it is also not
entirely accurate. There is a chance that the agent will hear a tiger behind the
left-hand door when the tiger is really behind the right-hand door, and vice
versa.

We refer to the state of the world when the tiger is on the left as sl and when
it is on the right as sr. The actions are left, right, and listen. The reward
for opening the correct door is +10 and the penalty for choosing the door with
the tiger behind it is �100. The cost of listening is �1. There are only two
possible observations: to hear the tiger on the left (tl) or to hear the tiger

23

left rightlisten

[0.00, 0.10] [0.10, 0.90] [0.90, 1.00]

Fig. 10. Tiger example optimal policy for t = 1

on the right (tr). Immediately after the agent opens a door and receives a
reward or penalty, the problem resets, randomly relocating the tiger behind
one of the two doors.

The transition and observation models can be described in detail as follows.
The listen action does not change the state of the world. The left and
right actions cause a transition to world state sl with probability .5 and to
state sr with probability .5 (essentially resetting the problem). When the world
is in state sl, the listen action results in observation tl with probability 0.85
and the observation tr with probability 0.15; conversely for world state sr.
No matter what state the world is in, the left and right actions result in
either observation with probability 0.5.

5.2 Finite-Horizon Policies

The optimal undiscounted �nite-horizon policies for the tiger problem are
rather striking in the richness of their structure. Let us begin with the policy
for the time step t = 1, when the agent only gets to make a single decision.
If the agent believes with high probability that the tiger is on the left, then
the best action is to open the right door; if it believes that the tiger is on the
right, the best action is to open the left door. But what if the agent is highly
uncertain about the tiger's location? The best thing to do is listen. Guessing
incorrectly will incur a penalty of �100, whereas guessing correctly will yield
a reward of +10. When the agent's belief has no bias either way, it will guess
wrong as often as it guesses right, so its expected reward for opening a door
will be (�100+ 10)=2 = �45. Listening always has value �1, which is greater
than the value of opening a door at random. Figure 10 shows the optimal
1-step policy. Each of the policy trees is shown as a node; below each node is
the belief interval 9 over which the policy tree dominates; inside each node is
the action at the root of the policy tree.

We now move to the case in which the agent can act for two time steps. The
optimal non-stationary 2-step policy begins with the situation-action mapping
for t = 2 shown in Figure 11. This situation-action mapping has a surprising
property: it never chooses to act, only to listen. Why? Because if the agent
were to open one of the doors at t = 2, then, on the next step, the tiger would

9 The belief interval is speci�ed in terms of b(sl) only since b(sr) = 1� b(sl).

24

listenlistenlisten listen listen

[0.39, 0.61] [0.61, 0.98] [0.98, 1.00][0.02, 0.39][0.00, 0.02]

Fig. 11. Tiger example optimal policy for t = 2

listenlistenlisten listen listen

left rightlisten

TL/TR
TL/TR

TL/TR
TL

TL
TR

TR

[0.00, 0.10] [0.10, 0.90] [0.90, 1.00]

[0.39, 0.61] [0.61, 0.98] [0.98, 1.00][0.02, 0.39][0.00, 0.02]

Fig. 12. Optimal non-stationary policy for t = 2 illustrating belief state transfor-
mations from t = 2 to t = 1

be randomly placed behind one of the doors and the agent's belief state would
be reset to (0:5; 0:5). So after opening a door, the agent would be left with no
information about the tiger's location and with one action remaining. We just
saw that with one step to go and b = (0:5; 0:5) the best thing to do is listen.
Therefore, if the agent opens a door when t = 2, it will listen on the last step.
It is a better strategy to listen when t = 2 in order to make a more informed
decision on the last step.

Another interesting property of the 2-step policy is that there are multiple
policy trees with the same action. This implies that the value function is not
linear, but is made up of �ve linear regions. The belief states within a single
region are similar in that when they are transformed, via SE(b; a; o), the
resulting belief states will all lie in the same belief region de�ned by the policy
for t = 1. In other words, every single belief state in a particular region, r,
for t = 2 will, for the same action and observation, be transformed to a belief
state that lies in some region, r0 of the policy for t = 1. This relationship is
shown in Figure 12.

The optimal policy for t = 3 also consists solely of policy trees with the listen
action at their roots. If the agent starts from the uniform belief state, b =
(0:5; 0:5), listening once does not change the belief state enough to make the
expected value of opening a door greater than that of listening. The argument
for this parallels that for the t = 22 case.

This argument for listening in the �rst steps no longer applies after t = 3;
the optimal situation-action mappings for t > 3 all choose to open a door for
some belief states. Figure 13 shows the structure that emerges in the optimal
non-stationary policy for t = 4. Notice that for t = 3 there are two nodes that

25

listenlistenlisten listen listen

left rightlisten

TL/TR
TL/TR

TL/TR
TL

TL
TR

TR

listenlistenlisten listen listen listenlisten

listenlistenleft listen right

[0.00, 0.10] [0.10, 0.90] [0.90, 1.00]

TL/TRTL/TR
TLTLTL

TLTLTR TR
TR

TR
TR

TL/TRTL/TR
TLTLTLTR

TR TR

[0.38, 0.62] [0.62, 0.93] [0.93, 1.00][0.06, 0.38][0.00, 0.06]

t=1

t=4

Fig. 13. Optimal non-stationary policy for t = 4

do not have any incoming arcs from t = 4. This happens because there is no
belief state at t = 4 for which the optimal action and any resulting observation
generates a new belief state that lies in either of the regions de�ned by the
unused nodes at t = 3.

This graph can also be interpreted as a compact representation of all of the
useful policy trees at every level. The forest of policy trees is transformed into
a directed acyclic graph by collapsing all of the nodes that stand for the same
policy tree into one.

5.3 In�nite-Horizon Policies

When we include a discount factor to decrease the value of future rewards, the
structure of the �nite-horizon pomdp value function changes slightly. As the
horizon, t, increases, the rewards received for the �nal few steps have decreas-
ing in
uence on the policy for earlier time steps and the value function be-
gins to converge. In many discounted pomdp problems, the optimal situation-
action mapping for large t looks much the same as the optimal situation-action
mapping for t � 1. Figure 14 shows a portion of the optimal non-stationary
policy for the discounted �nite-horizon version of the tiger problem for large
values of t. Notice that the structure of the graph is exactly the same from
one time to the next. The vectors for each of the nodes, which together de�ne
the value function, di�er only after the �fteenth decimal place. This structure
�rst appears at time step t = 56 and remains constant through t = 105. When
t = 105, the precision of the algorithm used to calculate the policy can no

26

listenlistenlisten listen listen listenlistenleft right

listenlistenlisten listen listen listenlistenleft right

listenlistenlisten listen listen listenlistenleft right

t=103

t=104

t=105

Fig. 14. Portion of optimal non-stationary policy for large t

longer discern any di�erence between the vectors' values for succeeding inter-
vals. At this point, we have an approximately optimal value function for the
in�nite-horizon discounted problem.

This pomdp has the property that the optimal in�nite-horizon value function
has a �nite number of linear segments. An associated optimal policy has a
�nite description and is called �nitely transient [51,44]. Pomdps with optimal
�nitely transient policies can sometimes be solved in �nite time using value
iteration. In pomdps with optimal policies that are not �nitely transient, the
in�nite-horizon value function has an in�nite number of segments; on these
problems the sets Vt grow with each iteration. The best we can hope for is
to solve these pomdps approximately. It is not known whether there is a way
of using the value-iteration approach described in this paper for solving all
pomdps with �nitely transient optimal policies in �nite time; we conjecture
that it can. The only �nite-time algorithm that has been described for solving
pomdps with �nitely transient optimal policies over the in�nite horizon is a
version of policy iteration described by Sondik [51].

5.4 Plan Graphs

One drawback of the pomdp approach is that the agent must maintain a belief
state and use it to select an optimal action on every step; if the underlying
state space or V is large, then this computation can be expensive. In many
cases, it is possible to encode the policy in a graph that can be used to select
actions without any explicit representation of the belief state [52]; we refer to
such graphs as plan graphs. Recall Figure 14, in which the algorithm has nearly
converged upon an in�nite-horizon policy for the tiger problem. Because the
situation-action mappings at every level have the same structure, we can make
the non-stationary policy into a stationary one by redrawing the edges from
one level to itself as if it were the succeeding level. This rearrangement of
edges is shown in Figure 15, and the result is redrawn in Figure 16 as a plan
graph.

27

listenlistenlisten listen listen listenlistenleft right

listenlistenlisten listen listen listenlistenleft right

listenlistenlisten listen listen listenlistenleft right

t=103

t=104

t=105

Fig. 15. Rearranging edges to form a stationary policy

listen
listen

TL/TR

TL

TL

TR

left

listen

TL/TR

TR

TR
TL

right

listenlisten

TR

TR

TL

listen listen

TR

TL

TL

TR

TL

Fig. 16. Plan graph for tiger example

listen
listen

TL/TR

TL

TL

TR

left

listen

TL/TR

TR

TR
TL

right

Fig. 17. Trimmed plan graph for tiger example

Some of the nodes of the graph will never be visited once either door is opened
and the belief state is reset to (0:5; 0:5). If the agent always starts in a state
of complete uncertainty, then it will never be in a belief state that lies in the
region of these non-reachable nodes. This results in a simpler version of the
plan graph, shown in Figure 17. The plan graph has a simple interpretation:
keep listening until you have heard the tiger twice more on one side than the
other.

Because the nodes represent a partition of the belief space and because all
belief states within a particular region will map to a single node on the next
level, the plan graph representation does not require the agent to maintain
an on-line representation of the belief state; the current node is a su�cient

28

listen

TL/TR

right

TL/TR

TL

left

TR

listen
listen

listen

listen listen

listen

listen

listen

TL

TL

TL

TL

TL

TL

TL

TL

TR

TR

TR

TR

TR

TR

TR

TR

Fig. 18. Trimmed plan graph for tiger example with listening reliability of 0.65

representation of the current belief. In order to execute a plan graph, the initial
belief state is used to choose a starting node. After that, the agent need only
maintain a pointer to a current node in the graph. On every step, it takes the
action speci�ed by the current node, receives an observation, then follows the
arc associated with that observation to a new node. This process continues
inde�nitely.

A plan graph is essentially a �nite-state controller. It uses the minimal possible
amount of memory to act optimally in a partially observable environment. It
is a surprising and pleasing result that it is possible to start with a discrete
problem, reformulate it in terms of a continuous belief space, then map the
continuous solution back into a discrete controller. Furthermore, the extraction
of the controller can be done automatically from two successive equal value
functions.

It is also important to note that there is no a priori bound on the size of the
optimal plan graph in terms of the size of the problem. In the tiger problem,
for instance, if the probability of getting correct information from the listen
action is reduced from 0.85 to 0.65, then the optimal plan graph, shown in
Figure 18, is much larger, because the agent must hear the tiger in one place
5 times more than in the other before being su�ciently con�dent to act. As
the observation reliability decreases, an increasing amount of memory will be
required.

6 Related Work

In this section, we examine how the assumptions of the pomdp model relate
to earlier work on planning in AI. We consider only models with �nite state
and action spaces and static underlying dynamics, as these assumptions are
consistent with the majority of work in this area. Our comparison focusses
on issues of imperfect knowledge, uncertainty in initial state, the transition
model, the observation model, the objective of planning, the representation

29

of domains, and plan structures. The most closely related work to our own
is that of Kushmerick, Hanks, and Weld [24] on the Buridan system, and
Draper, Hanks and Weld [13] on the C-Buridan system.

6.1 Imperfect Knowledge

Plans generated using standard mdp algorithms and classical (strips-like
or partial-order) planning algorithms assume that the underlying state of the
process will be known with certainty during plan execution. In the mdp frame-
work, the agent is informed of the current state each time it takes an action.
In many classical planners (e.g., snlp [32], ucpop [38]), the current state
can be calculated trivially from the known initial state and knowledge of the
deterministic operators.

The assumption of perfect knowledge is not valid in many domains. Research
on epistemic logic [36,37,45] relaxes this assumption by making it possible
to reason about what is and is not known at a given time. Unfortunately,
epistemic logics have not been used as a representation in automatic planning
systems, perhaps because the richness of representation they provide makes
e�cient reasoning very di�cult.

A step towards building a working planning system that reasons about knowl-
edge is to relax the generality of the logic-based schemes. The approach of
cnlp [39] uses three-valued propositions where, in addition to true and false,
there is a value unknown, which represents the state when the truth of the
proposition is not known. Operators can then refer to whether propositions
have an unknown value in their preconditions and can have the value in their
e�ects. This representation for imperfect knowledge is only appropriate when
the designer of the system knows, in advance, what aspects of the state will
be known and unknown. It is also insu�cient for multiple agents reasoning
about each others' knowledge.

Formulating knowledge as predicate values that are either known or unknown
makes it impossible to reason about gradations of knowledge. For example,
an agent that is fairly certain that it knows the combination to a lock might
be willing to try to unlock it before seeking out more precise knowledge. Rea-
soning about levels of knowledge is quite common and natural in the pomdp
framework. As long as an agent's state of knowledge can be expressed as a
probability distribution over possible states of the world, the pomdp perspec-
tive applies.

30

6.2 Initial State

Many classical planning systems (snlp, ucpop, cnlp) require the starting
state to be known during the planning phase. An exception is the U-Plan [31]
system, which creates a separate plan for each possible initial state with the
aim of making these plans easy to merge to form a single plan. Conditional
planners typically have some aspects of the initial state unknown. If these as-
pects are important to the planning process, they are tested during execution.

In the pomdp framework, the starting state is not required to be known
precisely and can instead be represented as a probability distribution over
possible states. Buridan and C-Buridan also use probability distributions
over states as an internal representation of uncertainty, so they can deal with
initial-state uncertainty in much the same way.

6.3 Transition Model

In classical planning systems, operators have deterministic e�ects. The plans
constructed are brittle, since they apply to a speci�c starting state and require
the trajectory through the states to go exactly as expected. Many domains
are not easily modeled with deterministic actions, since an action can have
di�erent results, even when applied in exactly the same state.

Extensions to classical planning, such as cnlp [39] and Cassandra [41] have
considered operators with nondeterministic e�ects. For each operator, there
is a set of possible next states that could occur. A drawback of this approach
is that it gives no information about the relative likelihood of the possible
outcomes. These systems plan for every possible contingency to ensure that
the resulting plan is guaranteed to lead to a goal state.

Another approach used in modeling nondeterministic actions is to de�ne a
probability distribution over the possible next states. This makes it possible to
reason about which of the resulting states are more likely and makes it possible
to assess whether a plan is likely to reach the goal even if it is not guaranteed
to do so. This type of action model is used in mdps and pomdps as well as in
Buridan and C-Buridan. Other work [5,14] has used representations that
can be used to compute probability distributions over future states.

31

6.4 Observation Model

When the starting state is known and actions are deterministic, there is no
need to get feedback from the environment when executing a plan. However,
if the starting state is unknown or the actions have nondeterministic e�ects,
more e�ective plans can be built by exploiting feedback, or observations, from
the environment concerning the identity of the current state.

If observations reveal the precise identity of the current state, the planning
model is called \completely observable." The mdp model, as well as some
planning systems such as cnlp and Cassandra assume complete observ-
ability. Other systems, such as Buridan, have no observation model and can
solve \completely unobservable" problems. Classical planning systems typi-
cally have no observation model, but the fact that the initial state is known
and operators are deterministic means that they can also be thought of as
solving completely observable problems.

Completely observable and completely unobservable models are particularly
clean but are unrealistic. The pomdp and C-Buridan frameworks model par-
tially observable environments, in that observations provide some information
about the underlying state, but not enough to guarantee that it will be known
with certainty. This model provides for a great deal of expressiveness (both
completely observable and completely unobservable models can be viewed as
special cases), but is quite di�cult to solve. It is an interesting and power-
ful model because it allows systems to reason about taking actions to gather
knowledge that will be important for later decision making.

6.5 Objective

The job of a planner is to �nd a plan that satis�es a particular objective; most
often, the objective is a goal of achievement, that is, to arrive at some state that
is in a set of problem-speci�c goal states. When probabilistic information is
available concerning the initial state and transitions, a more general objective
can be used|reaching a goal state with su�cient probability (see, for example,
work on Buridan and C-Buridan).

A popular alternative to goal attainment is maximizing total expected dis-
counted reward (total-reward criterion). Under this objective, each action re-
sults in an immediate reward that is a function of the current state. The
exponentially discounted sum of these rewards over the execution of a plan
(�nite or in�nite horizon) constitutes the value of the plan. This objective is
used extensively in most work with mdps and pomdps, including ours.

32

Several authors (for example, Koenig [21]) have pointed out that, given a
completely observable problem stated as one of goal achievement, reward func-
tions can be constructed so that a policy that maximizes reward can be used
to maximize the probability of goal attainment in the original problem. This
shows that the total-reward criterion is no less general than goal achievement
in completely observable domains. The same holds for �nite-horizon partially
observable domains.

Interestingly, a more complicated transformation holds in the opposite direc-
tion: any total expected discounted reward problem (completely observable or
�nite horizon) can be transformed into a goal-achievement problem of simi-
lar size [11,60]. Roughly, the transformation simulates the discount factor by
introducing an absorbing state with a small probability of being entered on
each step. Rewards are then simulated by normalizing all reward values to be
between zero and one and then \siphoning o�" some of the probability of ab-
sorption equal to the amount of normalized reward. The (perhaps counterintu-
itive) conclusion is that goal-attainment problems and reward-type problems
are computationally equivalent.

There is a qualitative di�erence in the kinds of problems typically addressed
with pomdp models and those addressed with planning models. Quite fre-
quently, pomdps are used to model situations in which the agent is expected
to go on behaving inde�nitely, rather than simply until a goal is achieved.
Given the inter-representability results between goal-probability problems and
discounted-optimality problems, it is hard to make technical sense of this dif-
ference. In fact, many pomdp models should probably be addressed in an
average-reward context [15]. Using a discounted-optimal policy in a truly
in�nite-duration setting is a convenient approximation, similar to the use of
a situation-action mapping from a �nite-horizon policy in receding horizon
control.

Littman [29] catalogs some alternatives to the total-reward criterion, all of
which are based on the idea that the objective value for a plan is based on
a summary of immediate rewards over the duration of a run. Koenig and
Simmons [22] examine risk-sensitive planning and showed how planners for
the total-reward criterion could be used to optimize risk-sensitive behavior.
Haddawy et al. [16] looked at a broad family of decision-theoretic objectives
that make it possible to specify trade-o�s between partially satisfying goals
quickly and satisfying them completely. Bacchus, Boutilier, and Grove [2] show
how some richer objectives based on evaluations of sequences of actions can
actually be converted to total-reward problems. Other objectives considered
in planning systems, aside from simple goals of achievement, include goals of
maintenance and goals of prevention [14]; these types of goals can typically be
represented using immediate rewards as well.

33

6.6 Representation of Problems

The propositional representations most often used in planning have a number
of advantages over the
at state-space representations associated with mdps
and pomdps. The main advantage comes from their compactness|combined
with operator schemata, which can represent many individual actions in a sin-
gle operator, propositional representations can be exponentially more concise
than a fully expanded state-based transition matrix for an mdp.

Algorithms for manipulating compact (or factored) pomdps have begun to
appear [13,6]|this is a promising area for future research. At present, however,
there is no evidence that these algorithms result in improved planning time
signi�cantly over the use of a \
at" representation of the state space.

6.7 Plan Structures

Planning systems di�er in the structure of the plans they produce. It is im-
portant that a planner be able to express the optimal plan if one exists for
a given domain. We brie
y review some popular plan structures along with
domains in which they are su�cient for expressing optimal behavior.

Traditional plans are simple sequences of actions. They are su�cient when
the initial state is known and all actions are deterministic. A slightly more
elaborate structure is the partially ordered plan (generated, for example, by
snlp and ucpop), or the parallel plan [4]. In this type of plan, actions can be
left unordered if all orderings are equivalent under the performance metric.

When actions are stochastic, partially ordered plans can still be used (as in
Buridan), but contingent plans can be more e�ective. The simplest kind of
contingent or branching plan is one that has a tree structure (generated by
cnlp). In such a plan, some of the actions have di�erent possible outcomes
that can be observed, and the
ow of execution of the plan is conditioned on
the outcome. Branching plans are su�cient for representing optimal plans for
�nite-horizon domains. Directed acyclic graphs (DAGs) can represent the same
class of plans, but potentially do so much more succinctly, because separate
branches can share structure. C-Buridan uses a representation of contingent
plans that also allows for structure sharing (although of a di�erent type than
our DAG-structured plans). Our work on pomdps �nds DAG-structured plans
for �nite-horizon problems.

For in�nite-horizon problems, it is necessary to introduce loops into the plan
representation [39,25]. (Loops might also be useful in long �nite-horizon pomdps
for representational succinctness.) A simple loop-based plan representation de-

34

picts a plan as a labeled directed graph. Each node of the graph is labeled
with an action and there is one labeled outgoing edge for each possible out-
come of the action. It is possible to generate this type of plan graph for some
pomdps [40,52,7,17].

For completely observable problems with a high branching factor, a more
convenient representation is a policy which maps the current state (situation)
to a choice of action. Because there is an action choice speci�ed for all possible
initial states, policies are also called universal plans [47]. This representation is
not appropriate for pomdps, since the underlying state is not fully observable.
However, pomdp policies can be viewed as universal plans over belief space.

It is interesting to note that there are in�nite-horizon pomdps for which
no �nite-state plan is su�cient. Simple 2-state examples can be constructed
for which optimal behavior requires counting (i.e., a simple stack machine);
there is reason to believe that general pushdown automata and perhaps even
Turing machines are necessary to represent optimal plans in general. This
argues that, in the limit, a plan is actually a program. Several techniques
have been proposed recently for searching for good program-like controllers in
pomdps [46,23] We restrict our attention to the simpler �nite-horizon case and
a small set of in�nite-horizon problems that have optimal �nite-state plans.

7 Extensions and Conclusions

The pomdp model provides a �rm foundation for work on planning under
uncertainty in action and observation. It gives a uniform treatment of action
to gain information and action to change the world. Although they are derived
through the domain of continuous belief spaces, elegant �nite-state controllers
may sometimes be constructed using algorithms such as the witness algorithm.

However, experimental results [28] suggest, even the witness algorithm be-
comes impractical for problems of modest size (jSj > 15 and j
j > 15). Our
current work explores the use of function-approximation methods for repre-
senting value functions and the use of simulation in order to concentrate the
approximations on the frequently visited parts of the belief space [27]. The
results of this work are encouraging and have allowed us to get a very good
solution to an 89 state, 16 observation instance of a hallway navigation prob-
lem similar to the one described in the introduction. We are optimistic and
hope to extend these techniques (and others) to get good solutions to large
problems.

Another area that is not addressed in this paper is the acquisition of a world
model. One approach is to extend techniques for learning hidden Markov mod-

35

els [43,53] to learn pomdp models. Then, we could apply algorithms of the
type described in this paper to the learned models. Another approach is to
combine the learning of the model with the computation of the policy. This
approach has the potential signi�cant advantage of being able to learn a model
that is complex enough to support optimal (or good) behavior without mak-
ing irrelevant distinctions; this idea has been pursued by Chrisman [10] and
McCallum [33,34].

A Appendix

Theorem 1 Let Ua be a non-empty set of useful policy trees, and Qa
t be the

complete set of useful policy trees. Then Ua 6= Qa
t if and only if there is some

tree p 2 Ua, o
� 2
, and p0 2 Vt�1 for which there is some belief state b such

that

Vpnew(b) > V~p(b) (A.1)

for all ~p 2 Ua, where pnew is a t-step policy tree that agrees with p in its action
and all its subtrees except for observation o�, for which o�(pnew) = p0.

Note that we are assuming that two trees are equal if they have the same value
function.

PROOF. The \if" direction is easy since the b can be used to identify a
policy tree missing from Ua.

The \only if" direction can be rephrased as: If Ua 6= Qa
t then there is a belief

state b, a p 2 Ua, and a pnew such that pnew has a larger value than any other
~p 2 Ua at b.

Start by picking some p� 2 Qa
t � Ua and choose any b such that p� has the

highest value at b (there must be such a b since p� is useful). Let

p = argmax
p02Ua

Vp0(b):

Since p� is the policy tree in Qa
t � Ua that has the highest value at b, and

p is the policy tree in Ua that has the highest value at b. By construction,
Vp�(b) > Vp(b).

Now, if p and p� di�er in only one subtree, then we are done, p� can serve as
a pnew in the theorem.

36

If p and p� di�er in more than one subtree, we will identify another policy tree
that can act as pnew. Choose an observation o� 2
 such that

X
s

b(s)

0
@X

s02S

T (s; a(p�); s0)Vo�(p�)(s
0)

1
A >

X
s

b(s)

0
@X

s02S

T (s; a(p�); s0)Vo�(p)(s
0)

1
A :

There must be a o� satisfying this inequality since otherwise we get the con-
tradiction

Vp�(b)=
X
s

b(s)

0
@R(s; a(p�)) +

X
s02S

T (s; a(p�); s0)
X
oi2

O(s0; a(p�); oi)Voi(p�)(s
0)

1
A

�
X
s

b(s)

0
@R(s; a(p)) +

X
s02S

T (s; a(p); s0)
X
oi2

O(s0; a(p); oi)Voi(p)(s
0)

1
A

= Vp(b) :

De�ne pnew to be identical to p except that in the place of subtree o�(p), we
put o�(p�). addition,

Vpnew(b) =
X
s

b(s)

0
@R(s; a(pnew)) +

X
s02S

T (s; a(pnew); s
0)
X
oi2

O(s0; a(pnew); oi)Voi(pnew)(s
0)

1
A

>
X
s

b(s)

0
@R(s; a(p)) +

X
s02S

T (s; a(p); s0)
X
oi2

O(s0; a(p); oi)Voi(p)(s
0)

1
A

=Vp(b)

�V~p(b)

for all ~p 2 Ua. Therefore the policy trees p and pnew, the observation o�,
p0 = o�(p�), and the belief state b satisfy the conditions of the theorem.

References

[1] K. J. Astr�om. Optimal control of Markov decision processes with incomplete
state estimation. Journal of Mathematical Analysis and Applications, 10:174{
205, 1965.

[2] Fahiem Bacchus, Craig Boutilier, and Adam Grove. Rewarding behaviors. In
Proceedings of the Thirteenth National Conference on Arti�cial Intelligence,
pages 1160{1167. AAAI Press/The MIT Press, 1996.

[3] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scienti�c, Belmont, Massachusetts, 1995. Volumes 1 and 2.

37

[4] Avrim Blum and Merrick Furst. Fast planning through planning graph
analysis. In Proceedings of the 14th International Joint Conference on Arti�cial

Intelligence (IJCAI), pages 1636{1642, August 1995.

[5] Jim Blythe. Planning with external events. In Proceedings of the Tenth

Conference on Uncertainty in Arti�cial Intelligence, pages 94{101, 1994.

[6] Craig Boutilier and David Poole. Computing optimal policies for partially
observable decision processes using compact representations. In Proceedings of
the Thirteenth National Conference on Arti�cial Intelligence, pages 1168{1175.
AAAI Press/The MIT Press, 1996.

[7] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman.
Acting optimally in partially observable stochastic domains. In Proceedings

of the Twelfth National Conference on Arti�cial Intelligence, pages 1023{1028,
Seattle, WA, 1994.

[8] Anthony Rocco Cassandra. Exact and Approximate Algorithms for Partially

Observable Markov Decision Problems. PhD thesis, Department of Computer
Science, Brown University, May 1998.

[9] Hsien-Te Cheng. Algorithms for Partially Observable Markov Decision

Processes. PhD thesis, University of British Columbia, British Columbia,
Canada, 1988.

[10] Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach. In Proceedings of the Tenth National

Conference on Arti�cial Intelligence, pages 183{188, San Jose, California, 1992.
AAAI Press.

[11] Anne Condon. The complexity of stochastic games. Information and

Computation, 96(2):203{224, February 1992.

[12] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson.
Planning under time constraints in stochastic domains. Arti�cial Intelligence,
76(1-2):35{74, 1995.

[13] Denise Draper, Steve Hanks, and Dan Weld. Probabilistic planning with
information gathering and contingent execution. Technical Report 93-12-04,
University of Washington, Seattle, WA, December 1993.

[14] Mark Drummond and John Bresina. Anytime synthetic projection: Maximizing
the probability of goal satisfaction. In Proceedings of the Eighth National

Conference on Arti�cial Intelligence, pages 138{144. Morgan Kaufmann, 1990.

[15] Emmanuel Fern�andez-Gaucherand, Aristotle Arapostathis, and Steven I.
Marcus. On the average cost optimality equation and the structure of optimal
policies for partially observable Markov processes. Annals of Operations

Research, 29:471{512, 1991.

[16] Peter Haddawy and Steve Hanks. Utility models for goal-directed decision-
theoretic planners. Technical Report 93-06-04, Department of Computer
Science and Engineering, University of Washington, June 1993.

38

[17] Eric A. Hansen. Cost-e�ective sensing during plan execution. In Proceedings

of the Twelfth National Conference on Arti�cial Intelligence, pages 1029{1035.
AAAI Press/The MIT Press, 1994.

[18] Ronald A. Howard. Dynamic Programming and Markov Processes. The MIT
Press, Cambridge, Massachusetts, 1960.

[19] Ronald A. Howard. Information value theory. IEEE Transactions on Systems

Science and Cybernetics, SSC-2(1):22{26, August 1966.

[20] R. E. Kalman. A new approach to linear �ltering and prediction problems.
Transactions of the American Society of Mechanical Engineers, Journal of Basic

Engineering, 82:35{45, March 1960.

[21] Sven Koenig. Optimal probabilistic and decision-theoretic planning using
Markovian decision theory. Technical Report UCB/CSD 92/685, Berkeley, May
1992.

[22] Sven Koenig and Reid G. Simmons. Risk-sensitive planning with probabilistic
decision graphs. In Proceedings of the 4th International Conference on

Principles of Knowledge Representation and Reasoning, pages 363{373, 1994.

[23] John R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. The MIT Press, 1992.

[24] Nicholas Kushmerick, Steve Hanks, and Daniel S. Weld. An algorithm for
probabilistic planning. Arti�cial Intelligence, 76(1-2):239{286, September 1995.

[25] Shieu-Hong Lin and Thomas Dean. Generating optimal policies for high-level
plans with conditional branches and loops. In Proceedings of the Third European
Workshop on Planning, pages 205{218, 1995.

[26] Michael L. Littman. Memoryless policies: Theoretical limitations and practical
results. In Dave Cli�, Philip Husbands, Jean-Arcady Meyer, and Stewart W.
Wilson, editors, From Animals to Animats 3: Proceedings of the Third

International Conference on Simulation of Adaptive Behavior, Cambridge, MA,
1994. The MIT Press.

[27] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling.
Learning policies for partially observable environments: Scaling up. In Armand
Prieditis and Stuart Russell, editors, Proceedings of the Twelfth International

Conference on Machine Learning, pages 362{370, San Francisco, CA, 1995.
Morgan Kaufmann.

[28] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling.
E�cient dynamic-programming updates in partially observable Markov decision
processes. Technical Report CS-95-19, Brown University, Providence, RI, 1996.

[29] Michael Lederman Littman. Algorithms for Sequential Decision Making. PhD
thesis, Department of Computer Science, Brown University, February 1996.
Also Technical Report CS-96-09.

39

[30] William S. Lovejoy. A survey of algorithmic methods for partially observable
Markov decision processes. Annals of Operations Research, 28(1):47{65, 1991.

[31] T. M. Mansell. A method for planning given uncertain and incomplete
information. In Proceedings of the 9th Conference on Uncertainty in Arti�cial

Intelligence, pages 350{358. Morgan Kaufmann Publishers, July 1993.

[32] David McAllester and David Rosenblitt. Systematic nonlinear planning. In
Proceedings of the 9th National Conference on Arti�cial Intelligence, pages 634{
639, 1991.

[33] R. AndrewMcCallum. Overcoming incomplete perception with utile distinction
memory. In Proceedings of the Tenth International Conference on Machine

Learning, pages 190{196, Amherst, Massachusetts, 1993. Morgan Kaufmann.

[34] R. Andrew McCallum. Instance-based utile distinctions for reinforcement
learning with hidden state. In Proceedings of the Twelfth International

Conference on Machine Learning, pages 387{395, San Francisco, CA, 1995.
Morgan Kaufmann.

[35] George E. Monahan. A survey of partially observable Markov decision
processes: Theory, models, and algorithms. Management Science, 28(1):1{16,
January 1982.

[36] Robert C. Moore. A formal theory of knowledge and action. In Jerry R. Hobbs
and Robert C. Moore, editors, Formal Theories of the Commonsense World,
pages 319{358. Ablex Publishing Company, Norwood, New Jersey, 1985.

[37] L. Morgenstern. Knowledge preconditions for actions and plans. In Proceedings

of the 10th International Joint Conference on Arti�cial Intelligence, pages 867{
874, 1987.

[38] J. S. Penberthy and D. Weld. UCPOP: A sound, complete, partial order planner
for ADL. In Proceedings of the third international conference on principles of
knowledge representation and reasoning, pages 103{114, 1992.

[39] Mark A. Peot and David E. Smith. Conditional nonlinear planning. In
Proceedings of the First International Conference on Arti�cial Intelligence

Planning Systems, pages 189{197, 1992.

[40] Loren K. Platzman. A feasible computational approach to in�nite-horizon
partially-observed Markov decision problems. Technical report, Georgia
Institute of Technology, Atlanta, GA, January 1981.

[41] Louise Pryor and Gregg Collins. Planning for contingencies: A decision-based
approach. Journal of Arti�cial Intelligence Research, 4:287{339, 1996.

[42] Martin L. Puterman. Markov Decision Processes|Discrete Stochastic Dynamic

Programming. John Wiley & Sons, Inc., New York, NY, 1994.

[43] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257{286,
February 1989.

40

[44] Katsushige Sawaki and Akira Ichikawa. Optimal control for partially observable
Markov decision processes over an in�nite horizon. Journal of the Operations

Research Society of Japan, 21(1):1{14, March 1978.

[45] R. B. Scherl and H. J. Levesque. The frame problem and knowledge-
producing actions. In Proceedings of the 11th National Conference on Arti�cial

Intelligence, pages 689{697, 1993.

[46] Jieyu Zhao J�urgen H. Schmidhuber. Incremental self-improvement for life-time
multi-agent reinforcement learning. In Pattie Maes, Maja J. Mataric, Jean-
Arcady Meyer, Jordan Pollack, and Stewart W. Wilson, editors, From Animals

to Animats: Proceedings of the Fourth International Conference on Simulation

of Adaptive Behavior, pages 516{525. The MIT Press, 1996.

[47] Marcel J. Schoppers. Universal plans for reactive robots in unpredictable
environments. In Proceedings of the International Joint Conference on Arti�cial

Intelligence 10, pages 1039{1046, 1987.

[48] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-
Interscience, New York, NY, 1986.

[49] Satinder Pal Singh, Tommi Jaakkola, and Michael I. Jordan. Model-free
reinforcement learning for non-Markovian decision problems. In Proceedings

of the Eleventh International Conference on Machine Learning, pages 284{292,
San Francisco, California, 1994. Morgan Kaufmann.

[50] Richard D. Smallwood and Edward J. Sondik. The optimal control of partially
observable Markov processes over a �nite horizon. Operations Research,
21:1071{1088, 1973.

[51] Edward Sondik. The Optimal Control of Partially Observable Markov

Processes. PhD thesis, Stanford University, 1971.

[52] Edward J. Sondik. The optimal control of partially observable Markov processes
over the in�nite horizon: Discounted costs. Operations Research, 26(2):282{304,
1978.

[53] Andreas Stolcke and Stephen Omohundro. Hidden Markov model induction
by Bayesian model merging. In Stephen Jos�e Hanson, Jack D. Cowan, and
C. Lee Giles, editors, Advances in Neural Information Processing Systems 5,
pages 11{18, San Mateo, California, 1993. Morgan Kaufmann.

[54] Jonathan Tash and Stuart Russell. Control strategies for a stochastic planner.
In Proceedings of the 12th National Conference on Arti�cial Intelligence, pages
1079{1085, 1994.

[55] Paul Tseng. Solving H-horizon, stationary Markov decision problems in time
proportional to log(H). Operations Research Letters, 9(5):287{297, 1990.

[56] C. C. White and D. Harrington. Application of Jensen's inequality for adaptive
suboptimal design. Journal of Optimization Theory and Applications, 32(1):89{
99, 1980.

41

[57] Chelsea C. White, III. Partially observed Markov decision processes: A survey.
Annals of Operations Research, 32, 1991.

[58] Ronald J. Williams and Leemon C. Baird, III. Tight performance bounds
on greedy policies based on imperfect value functions. Technical Report NU-
CCS-93-14, Northeastern University, College of Computer Science, Boston, MA,
November 1993.

[59] Nevin L. Zhang and Wenju Liu. Planning in stochastic domains: Problem
characteristics and approximation. Technical Report HKUST-CS96-31,
Department of Computer Science, Hong Kong University of Science and
Technology, 1996.

[60] Uri Zwick and Mike Paterson. The complexity of mean payo� games on graphs.
Theoretical Computer Science, 158(1{2):343{359, 1996.

42

