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GRAPHICAL MODELS

� Graphical models are a marriage between graph
theory and probability theory

� They clarify the relationship between neural
networks and related network-based models such as
HMMs, MRFs, and Kalman �lters

� Indeed, they can be used to give a fully probabilistic
interpretation to many neural network architectures

� Some advantages of the graphical model point of view

{ inference and learning are treated together

{ supervised and unsupervised learning are merged
seamlessly

{ missing data handled nicely

{ a focus on conditional independence and
computational issues

{ interpretability (if desired)



Graphical models (cont.)

� There are two kinds of graphical models; those based
on undirected graphs and those based on directed
graphs. Our main focus will be directed graphs.

� Alternative names for graphical models: belief
networks, Bayesian networks, probabilistic
independence networks, Markov random �elds,
loglinear models, in
uence diagrams

� A few myths about graphical models:

{ they require a localist semantics for the nodes

{ they require a causal semantics for the edges

{ they are necessarily Bayesian

{ they are intractable



Learning and inference

� A key insight from the graphical model point of view:

It is not necessary to learn that which can
be inferred

� The weights in a network make local assertions about
the relationships between neighboring nodes

� Inference algorithms turn these local assertions into
global assertions about the relationships between
nodes

{ e.g., correlations between hidden units conditional
on an input-output pair

{ e.g., the probability of an input vector given an
output vector

� This is achieved by associating a joint probability
distribution with the network



Directed graphical models|basics

� Consider an arbitrary directed (acyclic) graph, where
each node in the graph corresponds to a random
variable (scalar or vector):

A

B

C

D

E

F

� There is no a priori need to designate units as
\inputs," \outputs" or \hidden"

�We want to associate a probability distribution
P (A;B;C;D;E; F ) with this graph, and we want
all of our calculations to respect this distribution

e.g.,

P (F jA;B) =
�C�D�EP (A;B;C;D;E; F )

�C�D�E�FP (A;B;C;D;E; F )



Some ways to use a graphical model

Prediction:

Diagnosis, control, optimization:

Supervised learning:

� we want to marginalize over the unshaded nodes in
each case (i.e., integrate them out from the joint
probability)

� \unsupervised learning" is the general case



Speci�cation of a graphical model

� There are two components to any graphical model:

{ the qualitative speci�cation

{ the quantitative speci�cation

�Where does the qualitative speci�cation come from?

{ prior knowledge of causal relationships

{ prior knowledge of modular relationships

{ assessment from experts

{ learning from data

{ we simply like a certain architecture (e.g., a
layered graph)



Qualitative speci�cation of graphical models

A BC

A BC

� A and B are marginally dependent

� A and B are conditionally independent

A B

C

A B

C

� A and B are marginally dependent

� A and B are conditionally independent



Semantics of graphical models (cont)

A B

C

A B

C

� A and B are marginally independent

� A and B are conditionally dependent

� This is the interesting case...



\Explaining away"

Burglar

Alarm

Earthquake

Radio

� All connections (in both directions) are \excitatory"

� But an increase in \activation" of Earthquake leads
to a decrease in \activation" of Burglar

�Where does the \inhibition" come from?



Quantitative speci�cation of directed models

� Question: how do we specify a joint distribution over
the nodes in the graph?

� Answer: associate a conditional probability with
each node:

P(C|A,B)
P(A)

P(B)

P(D|C)

P(E|C)

P(F|D,E)

and take the product of the local probabilities to
yield the global probabilities



Justi�cation

� In general, let fSg represent the set of random
variables corresponding to the N nodes of the graph

� For any node Si, let pa(Si) represent the set of
parents of node Si

� Then

P (S) = P (S1)P (S2jS1) � � �P (SN jSN�1; : : : ; S1)

=
Y
i
P (SijSi�1; : : : ; S1)

=
Y
i
P (Sijpa(Si))

where the last line is by assumption

� It is possible to prove a theorem that states that if
arbitrary probability distributions are utilized for
P (Sijpa(Si)) in the formula above, then the family
of probability distributions obtained is exactly that
set which respects the qualitative speci�cation (the
conditional independence relations) described
earlier



Semantics of undirected graphs

A BC

A BC

� A and B are marginally dependent

� A and B are conditionally independent



Comparative semantics

A B

C

A B

C

D

� The graph on the left yields conditional
independencies that a directed graph can't represent

� The graph on the right yields marginal
independencies that an undirected graph can't
represent



Quantitative speci�cation of undirected models

A

B

C

D

E

F

� identify the cliques in the graph:

A, C

B, C

C, D, E D, E, F

� de�ne a con�guration of a clique as a speci�cation of
values for each node in the clique

� de�ne a potential of a clique as a function that
associates a real number with each con�guration of
the clique

A, C

B, C

C, D, E D, E, F

Φ

Φ

Φ Φ



Quantitative speci�cation (cont.)

� Consider the example of a graph with binary nodes

� A \potential" is a table with entries for each
combination of nodes in a clique

A B

A

B

0

1

0 1

1.5 .4

.7 1.2

� \Marginalizing" over a potential table simply means
collapsing (summing) the table along one or more
dimensions

A
0

1

1.9

1.9

B
0 1

2.2 1.6

marginalizing over Amarginalizing over B



Quantitative speci�cation (cont.)

� �nally, de�ne the probability of a global
con�guration of the nodes as the product of the local
potentials on the cliques:

P (A;B;C;D;E; F ) = �(A;B)�(B;C)�(C;D;E)�(D;E;F )

where, without loss of generality, we assume that the
normalization constant (if any) has been absorbed
into one of the potentials

� It is then possible to prove a theorem that states
that if arbitrary potentials are utilized in the
product formula for probabilities, then the family
of probability distributions obtained is exactly that
set which respects the qualitative speci�cation (the
conditional independence relations) described
earlier

(This theorem is known as the Hammersley-Cli�ord
theorem)



Boltzmann machine

� The Boltzmann machine is a special case of an
undirected graphical model

� For a Boltzmann machine all of the potentials are
formed by taking products of factors of the form
expfJijSiSjg

Si

Sj
J ji

� Setting Jij equal to zero for non-neighboring nodes
guarantees that we respect the clique boundaries

� But we don't get the full conditional probability
semantics with the Boltzmann machine
parameterization

{ i.e., the family of distributions parameterized by a
Boltzmann machine on a graph is a proper subset
of the family characterized by the conditional
independencies



Evidence and Inference

� \Absorbing evidence" means observing the values of
certain of the nodes

� Absorbing evidence divides the units of the network
into two groups:

visible units those for which we have
fV g instantiated values

(\evidence nodes").

hidden units those for which we do not
fHg have instantiated values.

� \Inference" means calculating the conditional
distribution

P (HjV ) =
P (H; V )

�fHg P (H;V )

{ prediction and diagnosis are special cases



Inference algorithms for directed graphs

� There are several inference algorithms; some of which
operate directly on the directed graph

� The most popular inference algorithm, known as the
junction tree algorithm (which we'll discuss here),
operates on an undirected graph

� It also has the advantage of clarifying some of the
relationships between the various algorithms

To understand the junction tree algorithm, we need to
understand how to \compile" a directed graph into an
undirected graph



Moral graphs

� Note that for both directed graphs and undirected
graphs, the joint probability is in a product form

� So let's convert local conditional probabilities into
potentials; then the products of potentials will give
the right answer

� Indeed we can think of a conditional probability, e.g.,
P (CjA;B) as a function of the three variables A;B,
and C (we get a real number for each con�guration):

P(C|A,B)A

B C

� Problem: A node and its parents are not generally in
the same clique

� Solution: Marry the parents to obtain the \moral
graph"

A

B C

P(C|A,B)Φ =A,B,C



Moral graphs (cont.)

� De�ne the potential on a clique as the product over
all conditional probabilities contained within the
clique

� Now the products of potentials gives the right
answer:

P (A;B;C;D;E; F )

= P (A)P (B)P (CjA;B)P (DjC)P (EjC)P (F jD;E)

= �(A;B;C)�(C;D;E)�(D;E;F )

where

�(A;B;C) = P (A)P (B)P (CjA;B)

and
�(C;D;E) = P (DjC)P (EjC)

and
�(D;E;F ) = P (F jD;E)

A

B

C

D

E

F A

B

C

D

E

F



Propagation of probabilities

� Now suppose that some evidence has been absorbed.
How do we propagate this e�ect to the rest of the
graph?



Clique trees

� A clique tree is an (undirected) tree of cliques

A, C

B, C

C, D, E D, E, F

� Consider cases in which two neighboring cliques V
and W have an overlap S (e.g., (A;C) overlaps with
(C;D;E)).

V S W

ΦV ΦS
ΦW

{ the cliques need to \agree" on the probability of
nodes in the overlap; this is achieved by
marginalizing and rescaling:

��S =
X
V nS

�V

��W = �W
��S
�S

{ this occurs in parallel, distributed fashion
throughout the clique tree



Clique trees (cont.)

� This simple local message-passing algorithm on a
clique tree de�nes the general probability
propagation algorithm for directed graphs!

�Many interesting algorithms are special cases:

{ calculation of posterior probabilities in mixture
models

{ Baum-Welch algorithm for hidden Markov models

{ posterior propagation for probabilistic decision
trees

{ Kalman �lter updates

� The algorithm seems reasonable. Is it correct?



A problem

� Consider the following graph and a corresponding
clique tree:

A B

C D

A,B

A,C

B,D

C,D

� Note that C appears in two non-neighboring cliques.

� Question: What guarantee do we have that the
probability associated with C in these two cliques
will be the same?

� Answer: Nothing. In fact this is a problem with the
algorithm as described so far. It is not true that in
general local consistency implies global consistency.

�What else do we need to get such a guarantee?



Triangulation (last idea, hang in there)

� A triangulated graph is one in which no cycles with
four or more nodes exist in which there is no chord

�We triangulate a graph by adding chords:

A B

C D

A B

C D

� Now we no longer have our problem:

B,C,D

A B

C D

A,B,C

� A clique tree for a triangulated graph has the
running intersection property : if a node appears in
two cliques, it appears everywhere on the path
between the cliques

� Thus local consistency implies global consistency
for such clique trees



Junction trees

� A clique tree for a triangulated graph is referred to as
a junction tree

� In junction trees, local consistency implies global
consistency. Thus the local message-passing
algorithm is (provably) correct.

� It's also possible to show that only triangulated
graphs have the property that their clique trees are
junction trees. Thus, if we want local algorithms, we
must triangulate.



Summary of the junction tree algorithm

1.Moralize the graph

2. Triangulate the graph

3. Propagate by local message-passing in the junction
tree

� Note that the �rst two steps are \o�-line"

� Note also that these steps provide a bound of the
complexity of the propagation step



Example: Gaussian mixture models

� A Gaussian mixture model is a popular clustering
model

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

x1

x2

0
1

0

1
0

0

1
0
0

q =

q =

q =

� hidden state q is a multinomial RV

� output x is a Gaussian RV

� prior probabilities on hidden states:

�i = P (qi = 1)

� class-conditional probabilities:

P (xjqi = 1) =
1

(2�)d=2j�ij1=2
expf�

1

2
(x� �i)

T��1
i (x� �i)g



Gaussian mixture models as a graphical model

qq

x x

� The inference problem is to calculate the posterior
probabilities:

P (qi = 1jx) =
P (xjqi = 1)P (qi = 1)

P (x)

=

�i
j�i j

1=2
expf�1

2(x� �i)
T��1

i (x� �i)g
P
j

�j
j�j j

1=2
expf�1

2(x� �j)T�
�1
j (x� �j)g

� This is a (trivial) example of the rescaling operation
on a clique potential



Example: Hidden Markov models

� A hidden Markov model is a popular time series
model

� It is a \mixture model with dynamics"

A A

B B B B

q qq q q q1 2 3 T

y
1 2 3 T

y y y

π

� T time steps

�M states (qt is a multinomial RV)

� N outputs (yt is a multinomial RV)

� state transition probability matrix A:

A = P (qt+1jqt)

� emission matrix B:

B = P (ytjqt)

� initial state probabilities �:

� = P (q1)



HMM as a graphical model

� Each node has a probability distribution associated
with it.

� The graph of the HMM makes conditional
independence statements.

� For example,

P (qt+1jqt;qt�1) = P (qt+1jqt)

can be read o� the graph as a separation property.



HMM probability calculations

A A

B B B B

q qq q q q1 2 3 T

y1 2 3 Ty y y

π

� The time series of yt values is the evidence

� The inference calculation involves calculating the
probabilities of the hidden states qt given the
evidence

� The classical algorithm for doing this calculation is
the forward-backward algorithm

� The forward-backward algorithm involves:

{ multiplication (conditioning)

{ summation (marginalization) in the lattice.

� It is a special case of the junction tree algorithm (cf.
Smyth, et al., 1997)



Is the algorithm e�cient?

� To answer this question, let's consider the junction
tree

� Note that the moralization and triangulation steps
are trivial, and we obtain the following junction tree:

q2q1, q3q2,

q1, y1
q2, 2y

. . .

� The cliques are no bigger than N 2, thus the
marginalization and rescaling required by the
junction tree algorithm runs in time O(N 2) per clique

� There are T such cliques, thus the algorithm is
O(N 2T ) overall



Hierarchical mixture of experts

� The HME is a \soft" decision tree

� The input vector x drops through a tree of \gating
networks," each of which computes a probability for
the branches below it

υ1 υi υn

x

θ

ij

θθ ij1 ijk ijn

ω ω ω

ω ω ω

ω

1 i n

i1

i1

in

inij

ω ωij1 ijk ijn

ζ

η

ζ ζ

y y y

� At the leaves, the \experts" compute a probability
for the output y

� The overall probability model is a conditional
mixture model



Representation as a graphical model

y

x

i

ij

ijkω

ω

ω

� For learning and inference, the nodes for x and y are
observed (shaded)

y

x

i

ij

ijkω

ω

ω

�We need to calculate probabilities of unshaded nodes
(E step of EM)



Learning (parameter estimation)

� The EM algorithm is natural for graphical models

� The E step of the EM algorithm involves calculating
the probabilities of hidden variables given visible
variables

{ this is exactly the inference problem

A

B

C

D

E

F

� The M step involves parameter estimation for a fully
observed graph

{ this is generally straightforward

A

B

C

D

E

F



Example|Hidden Markov models

A A

B B B B

q qq q q q1 2 3 T

y1 2 3 Ty y y

π

Problem: Given a sequence of outputs

y1;T = fy1;y2; : : : ;yTg

infer the parameters A, B and �.

� To see how to solve this problem, let's consider a
simpler problem



Fully observed Markov models

� Suppose that at each moment in time we know what
state the system is in:

A A

B B B B

qq q q1 2 3 T

y
1 2 3 T

y y y

π

� Parameter estimation is easy in this case:

{ to estimate the state transition matrix elements,
simply keep a running count of the number nij of
times the chain jumps from state i to state j.
Then estimate aij as:

âij =
nijP
j nij

{ to estimate the Gaussian output probabilities,
simply record which data points occurred in which
states and compute sample means and covariances

{ as for the initial state probabilities, we need
multiple output sequences (which we usually have
in practice)



HMM parameter estimation

�When the hidden states are not in fact observed (the
case we're interested in), we �rst estimate the
probabilities of the hidden states

{ this is a straightforward application of the junction
tree algorithm (i.e., the forward-backward
algorithm)

�We then use the probability estimates instead of the
counts in the parameter estimation formulas to get
update formulas

� This gives us a better model, so we run the junction
tree algorithm again to get better estimates of the
hidden state probabilities

� And we iterate this procedure



CONCLUSIONS (PART I)

� Graphical models provide a general formalism for
putting together graphs and probabilities

{ most so-called \unsupervised neural networks" are
special cases

{ Boltzmann machines are special cases

{ mixtures of experts and related mixture-based
models are special cases

{ some supervised neural networks can be treated as
special cases

� The graphical model framework allows us to treat
inference and learning as two sides of the same coin



INTRACTABLE GRAPHICAL MODELS

� There are a number of examples of graphical models
in which exact inference is e�cient:

{ chain-like graphs

{ tree-like graphs

� However, there are also a number of examples of
graphical models in which exact inference can be
(hopelessly) ine�cient:

{ dense graphs

{ layered graphs

{ coupled graphs

� A variety of methods are available for approximate
inference in such situations:

{Markov chain Monte Carlo (stochastic)

{ variational methods (deterministic)



Computational complexity of exact computation

� passing messages requires marginalizing and scaling
the clique potentials

� thus the time required is exponential in the number
of variables in the largest clique

� good triangulations yield small cliques

{ but the problem of �nding an optimal
triangulation is hard (#P in fact)

� in any case, the triangulation is \o�-line"; our
concern is generally with the \on-line" problem of
message propagation



Quick Medical Reference (QMR)
(University of Pittsburgh)

� 600 diseases, 4000 symptoms

� arranged as a bipartite graph

diseases

symptoms

� Node probabilities P (symptomijdiseases) were
obtained from an expert, under a noisy-OR model

�Want to do diagnostic calculations:

P (diseasesjfindings)

� Current methods (exact and Monte Carlo) are
infeasible



QMR (cont.)

diseases

symptoms

� \noisy-OR" parameterization:

P (fi = 0jd) = (1� qi0)
Y

j2pai
(1� qij)

dj

� rewrite in an exponential form:

P (fi = 0jd) = e��i0�
P
j2pai

�ijdj

where �ij � � log(1� qij)

� probability of positive �nding:

P (fi = 1jd) = 1� e��i0�
P
j2pai

�ijdj



QMR (cont.)

diseases

symptoms

� Joint probability:

P (f; d) = P (f jd)P (d)

=
2
64Y
i
P (fijd)

3
75
2
64Y
j
P (dj)

3
75

=
" 
1� e��10�

P
j2pa1

�1jdj
!  
1� e��20�

P
j2pa2

�2jdj
!

� � �
 
1� e��k0�

P
j2pak

�kjdj
!# 264Y

j
P (dj)

3
75

� Positive �ndings couple the disease nodes

�Median size of maximal clique is 151 nodes



Multilayer neural networks as graphical models
(cf. Neal, 1992; Saul, Jaakkola, & Jordan, 1996)

� Associate with node i a latent binary variable whose
conditional probability is given by:

P (Si = 1jSpai) =
1

1 + e�
P
j2pai

�ijSj��i0

where pai indexes the parents of node i

� A multilayer neural network with logistic hidden
units:

Input

Hidden

Output

� has a joint distribution that is a product of logistic
functions:

P (S) =
Y
i

2
66664
e(

P
j2pai

�ijSj+�i0)Si

1 + e
P
j2pai

�ijSj+�i0
:

3
77775



Complexity of neural network inference

�When an output node is known (as it is during
learning), moralization links the hidden units:

Hidden

Output

� So inference scales at least as badly as O(2N)

� And triangulation adds even more links



Hidden Markov models

� Recall the hidden Markov model:

A A

B B B B

q qq q q q1 2 3 T

y
1 2 3 T

y y y

π

� T time steps

�M states (qt is a multinomial RV)

� N outputs (yt is a multinomial RV)

� state transition probability matrix A:

A = P (qt+1jqt)

� emission matrix B:

B = P (ytjqt)

� initial state probabilities �:

� = P (q1)



Factorial hidden Markov models
(cf. Williams & Hinton, 1991; Ghahramani & Jordan, 1997)

� Imagine that a time series is created from a set of M
loosely-coupled underlying mechanisms

� Each of these mechanisms may have their own
particular dynamic laws, and we want to avoid
merging them into a single \meta-state," with a
single transition matrix

{ avoid choosing a single time scale

{ avoid over-parameterization

� Here is the graphical model that we would like to use:

...

...

...
X(1)

1 X(1)
2 X(1)

3

2X(2)
3X(2)X(2)

1

1X(3)
2X(3)

3X(3)

1Y 2Y 3Y

�When we triangulate do we get an e�cient structure?



Triangulation?

� Unfortunately, the following graph is not
triangulated:

...

...

...

� Here is a triangulation:

...

...

...

�We have created cliques of size N 4. The junction tree
algorithm is not e�cient for factorial HMMs.



Hidden Markov decision trees
(Jordan, Ghahramani, & Saul, 1997)

�We can combine decision trees with factorial HMMs

� This gives a \command structure" to the factorial
representation

U1

Y1

U2

Y2

U3

Y3

� Appropriate for multiresolution time series

� Again, the exact calculation is intractable and we
must use variational methods



Markov chain Monte Carlo (MCMC)

� Consider a set of variables S = fS1; S2; : : : ; SNg

� Consider a joint probability density P (S)

�We would like to calculate statistics associated with
P (S):

{ marginal probabilities, e.g., P (Si), or P (Si; Sj)

{ conditional probabilities, e.g., P (HjV )

{ likelihoods, i.e., P (V )

� One way to do this is to generate samples from P (S)
and compute empirical statistics

{ but generally it is hard to see how to sample from
P (S)

�We set up a simple Markov chain whose equilibrium
distribution is P (S)



Gibbs sampling

� Gibbs sampling is a widely-used MCMC method

� Recall that we have a set of variables
S = fS1; S2; : : : ; SNg

�We set up a Markov chain as follows:

{ initialize the Si to arbitrary values

{ choose i randomly

{ sample from P (SijSnSi)

{ iterate

� It is easy to prove that this scheme has P (S) as its
equilibrium distribution

� How to do Gibbs sampling in graphical models?



Markov blankets

� The Markov blanket of node Si is the minimal set of
nodes that renders Si conditionally independent of all
other nodes

� For undirected graphs, the Markov blanket is just the
set of neighbors

� For directed graphs, the Markov blanket is the set of
parents, children and co-parents:

Si

� The conditional P (SijSnSi) needed for Gibbs
sampling is formed from the product of the
conditional probabilities associated with Si and each
of its children

� This implies that the conditioning set needed to form
P (SijSnSi) is the Markov blanket of Si (which is
usually much smaller than SnSi)



Issues in Gibbs sampling

� Gibbs sampling is generally applicable

� It can be very slow

{ i.e., the time to converge can be long

�Moreover it can be hard to diagnose convergence

{ but reasonable heuristics are available

� It is often possible to combine Gibbs sampling with
exact methods



Variational methods

� Variational methods are deterministic approximation
methods

{ perhaps unique among deterministic methods in
that they tend to work best for dense graphs

� They have some advantages compared to MCMC
methods

{ they can be much faster

{ they yield upper and lower bounds on probabilities

� And they have several disadvantages

{ they are not as simple and widely applicable as
MCMC methods

{ they require more art (thought on the part of the
user) than MCMC methods

� But both variational approaches and MCMC
approaches are evolving rapidly

� Note also that they can be combined (and can be
combined with exact methods)



Introduction to variational methods

� Intuition|in a dense graph, each node is subject to
many stochastic in
uences from nodes in its Markov
blanket

{ laws of large numbers

{ coupled, nonlinear interactions between averages

Si

�We want to exploit such averaging where applicable
and where needed, while using exact inference
algorithms on tractable \backbones"



Example of a variational transformation

5

3

1

-1

-3

-5
0 1 2 30.5 1.5 2.5

�

log(x) = min
�
f�x� log �� 1g

� �x� log �� 1

{ � is a variational parameter

{ transforms a nonlinearity into a linearity



Example of a variational transformation

1.8

1.4

1.0

0.6

0.2

-0.2

-3 -2 -1 0 1 2 3

�

g(x) =
1

1 + e�x
= min

�
fe�x�H(�)g

� e�x�H(�)

{ where H(�) is the binary entropy

{ a nonlinear function now a simple exponential

{ cf. \tilted distributions"



Convex duality approach
(Jaakkola & Jordan, NIPS '97)

� for concave f(x):

f(x) = min
�

�
�Tx� f �(�)

�

f�(�) = min
x

�
�Tx� f(x)

�

� yields bounds:

f(x) � �Tx� f�(�)

f�(�) � �Tx� f(x)

2

1

0

-1

-2

-3
1 2

� (lower bounds obtained from convex f(x))



Variational transformations and inference

� Two basic approaches|sequential and block

{ we discuss the sequential approach �rst and return
to the block approach later

� In the sequential approach, we introduce variational
transformations sequentially, node by node

{ this yields a sequence of increasingly simple
graphical models

{ every transformation introduces a new variational
parameter, which we (lazily) put o� evaluating
until the end

{ eventually we obtain a model that can be handled
by exact techniques, at which point we stop
introducing transformations



Variational QMR
(Jaakkola & Jordan, 1997)

� Recall the noisy-OR probability of a positive �nding:

P (fi = 1jd) = 1� e��i0�
P
j2pai

�ijdj

� The logarithm of this function is concave, thus we
can utilize convex duality

{ evaluating the conjugate function, we obtain:

f�(�) = �� ln � + (� + 1) ln(� + 1)

� Thus we upper bound the probability of a positive
�nding:

P (fi = 1jd) � e�i(�i0+
P
j2pai

�ijdj)�f
�(�i)

= e�i�i0�f
�(�i) Y

j2pai

"
e�i�ij

#dj

� This is a factorized form; it e�ectively changes the
\priors" P (dj) by multiplying them by e�i�ij and
delinking the ith node from the graph



Variational QMR (cont.)

� Recall the joint distribution:

P (f; d) =
" 
1� e��10�

P
j2pa1

�1jdj
!  
1� e��20�

P
j2pa2

�2jdj
!

� � �
 
1� e��k0�

P
j2pak

�kjdj
!# 264Y

j
P (dj)

3
75

� After a variational transformation:

P (f; d) �
" 
1� e��10�

P
j2pa1

�1jdj
!  
1� e��20�

P
j2pa2

�2jdj
!

� � �

0
BB@e�k�k0�f�(�k) Y

j2pak

"
e�k�kj

#dj
1
CCA
3
775
2
64Y
j
P (dj)

3
75

� Use a greedy method to introduce the variational
transformations

{ choose the node that is estimated to yield the
most accurate transformed posterior

� Optimize across the variational parameters �i

{ this turns out to be a convex optimization problem



QMR results

�We studied 48 clinicopathologic (CPC) cases

� 4 of these CPC cases had less than 20 positive
�ndings; for these we calculated the disease posteriors
exactly

� Scatterplots of exact vs. variational posteriors for (a)
4 positive �ndings treated exactly, (b) 8 positive
�ndings treated exactly:
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� Scatterplots of exact vs. variational posteriors for (a)
12 positive �ndings treated exactly, (b) 16 positive
�ndings treated exactly:

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1



QMR results (cont.)

� For the remaining 44 CPC cases, we had no way to
calculate the gold standard

� Thus we assessed the variational accuracy via a
sensitivity estimate

{ we calculated the squared di�erence in posteriors
when a particular node was treated exactly or
variationally transformed, and averaged across
nodes

{ a small value of this average suggests that we have
the correct posteriors

{ (we validated this surrogate on the 4 cases for
which we could do the exact calculation)

� Sensitivity estimates vs. number of positive �ndings
when (a) 8 positive �ndings treated exactly, (b) 12
positive �ndings treated exactly:
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QMR results (cont.)

� Timing results in seconds (Sparc 10) as a function of
the number of positive �ndings treated exactly (solid
line|average across CPC cases; dashed
line|maximum across CPC cases):
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A cautionary note

� these disease marginals are based on the upper
variational distribution, which appears tight

� this distribution is guaranteed to upper bound the
likelihood

� to obtain direct upper and lower bounds on the
disease marginals, which are conditional
probabilities, we need upper and lower bounds on
the likelihood

� the lower bounds we obtain in our current
implementation, however, are not tight enough

� thus, although the marginals we report appear to
yield good approximations empirically, we cannot
guarantee that they bound the true marginals



Variational transformations and inference

� Two basic approaches|sequential and block

� The block approach treats the approximation
problem as a global optimization problem

� Consider a dense graph characterized by a joint
distribution P (H;V j�)

�We remove links to obtain a simpler graph
characterized by a conditional distribution
Q(HjV; �; �)

� (Examples will be provided below...)



Variational inference (cont.)
(Dayan, et al., 1995; Hinton, et al., 1995; Saul & Jordan, 1996)

� Q(HjV; �; �) has extra degrees of freedom, given by
variational parameters �i

{ we can think of these as being obtained by a
sequence of variational transformations applied to
the nodes

{ but we now want to take a more global view

� Choose �i so as to minimize

KL(QkP ) =
X
H
Q(HjV; �; �) log

Q(HjV; �; �)

P (HjV; �)

�We will show that this yields a lower bound on the
probability of the evidence (the likelihood)

�Minimizing the KL divergence requires us to
compute averages under the Q distribution; we must
choose Q so that this is possible

{ i.e., we choose our simpli�ed graph so that it is
amenable to exact methods



Variational inference (cont.)

� The fact that this is a lower bound follows from
Jensen's inequality

logP (V ) = log �HP (H;V )

= log �HQ(HjV ) �
P (H; V )

Q(HjV )

� �HQ(HjV ) log

2
664
P (H;V )

Q(HjV )

3
775

� The di�erence between the left and right hand side is
the KL divergence:

KL(QjjP ) = �HQ(HjV ) log

2
664
Q(HjV )

P (HjV )

3
775

which is positive; thus we have a lower bound



Linking the two approaches
(Jaakkola, 1997)

� The block approach can be derived within the convex
duality framework

f(x) � �Tx� f�(�)

{ treat the distribution Q(HjV; �; �) as �; a
vector-valued variational parameter (one value for
each con�guration H)

{ the argument x becomes logP (H;V j�); also a
vector-valued variable (one value for each
con�guration H)

{ the function f(x) becomes logP (V j�)

{ it turns out that the conjugate function f�(x) is
the negative entropy function

� Thus convex duality yields:

logP (V ) �
X
H
Q(HjV ) logP (H; V )

�
X
H
Q(HjV ) logQ(HjV )

which is the bound derived earlier from Jensen's
inequality



Learning via variational methods
(Neal & Hinton, in press)

�MAP parameter estimation for graphical models:

{ the EM algorithm is a general method for MAP
estimation

{ \inference" is the E step of EM for graphical
models (calculate P (HjV ) to \�ll in" the hidden
values)

{ variational methods provide an approximate E
step

{ more speci�cally we increase the lower bound on
the likelihood at each iteration



Neural networks and variational approximations
(Saul, Jaakkola, & Jordan, 1996)

� A multilayer neural network with logistic hidden
units:

Input

Hidden

Output

has a joint distribution that is a product of logistic
functions:

P (H;V j�) =
Y
i

2
66664
e(

P
j2pai

�ijSj+�i0)Si

1 + e
P
j2pai

�ijSj+�i0
:

3
77775

� The simplest variational approximation, which we
will refer to as a mean �eld approximation considers
the factorized approximation:

Q(HjV; �) = �i2H �
Si
i (1� �i)

1�Si:



Division of labor

� The KL bound has two basic components:

0
BB@ variational

entropy

1
CCA = ��H Q(HjV ) logQ(HjV )

0
BB@ variational

energy

1
CCA = ��H Q(HjV ) logP (H;V )

�What we need is the di�erence:

logP (V j�) �

0
BB@ variational

entropy

1
CCA�

0
BB@ variational

energy

1
CCA



Maximizing the lower bound

�We �nd the best approximation by varying f�ig to
minimize KL(QjjP ).

� This amounts to maximizing the lower bound:

logP (V j�) �

0
BB@ variational

entropy

1
CCA�

0
BB@ variational

energy

1
CCA :

� Abuse of notation: we de�ne clamped values (0 or 1)
for the instantiated nodes,

�i = Si for i 2 V:



Variational entropy

� The variational entropy is:

��H Q(HjV ) logQ(HjV )

� Our factorized approximation is:

Q(HjV ) = �i �
Si
i (1� �i)

1�Si;

� The joint entropy is the sum of the
individual unit entropies:

��i [�i log �i + (1� �i) log(1� �i)] :



Variational energy

� The variational energy is:

��H Q(HjV ) logP (H;V )

� In sigmoid networks:

logP (H;V ) = �
X
ij
�ijSiSj

+
X
i
log

"
1 + e

P
j �ijSj

#
:

� The �rst term are common to undirected networks.
The last term is not.

� Averaging over Q(HjV ) gives:

�
X
ij
�ij�i�j

X
i

*
log

"
1 + e

P
j �ijSj

#+

� The last term is intractable, so (again)
we use Jensen's inequality to obtain an
upper bound. . .



� Lemma (Seung): for any random variable z, and
any real number �:

hlog[1 + ez]i � �hzi + log
*
e��z + e(1��)z

+
:

� Ex: z is Gaussian with zero mean and unit variance.
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1
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exact
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� Ex: z is the sum of weighted inputs to Si;

z =
X
j
�ijSj + hi:

The lemma provides an upper bound on the
intractable terms in the variational energy:

X
i

*
log

"
1 + e

P
j �ijSj

#+



Variational (mean �eld) equations

� The bound on the log-likelihood,

logP (V j�) �

0
BB@ variational

entropy

1
CCA�

0
BB@ variational

energy

1
CCA ;

is valid for any setting of the variational parameters,
f�ig

� The optimal f�ig are found by solving the
variational equations:

�i = �

0
B@X
j
[�ij�j + �ji(�j � �j)�Kji]

1
CA

Si

� The e�ective input to Si is composed of
terms from its Markov blanket



Numerical experiments

� For small networks, the variational bound can
be compared to the true likelihood obtained
by exact enumeration.

�We considered the event that all the units in
the bottom layer were inactive.

� This was done for 10000 random networks
whose weights and biases were uniformly
distributed between -1 and 1.



�Mean �eld approximation:
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� Uniform approximation:
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Digit recognition

� Images:

� Confusion matrix:

0 1 2 3 4 5 6 7 8 9

0 388 2 2 0 1 3 0 0 4 0

1 0 393 0 0 0 1 0 0 6 0

2 1 2 376 1 3 0 4 0 13 0

3 0 2 4 373 0 12 0 0 6 3

4 0 0 2 0 383 0 1 2 2 10

5 0 2 1 13 0 377 2 0 4 1

6 1 4 2 0 1 6 386 0 0 0

7 0 1 0 0 0 0 0 388 3 8

8 1 9 1 7 0 7 1 1 369 4

9 0 4 0 0 0 0 0 8 5 383

� Comparative results:

algorithm test error
nearest neighbor 6.7
back propagation 5.6
Helmholtz machine 4.8

variational 4.6



Example|Factorial HMM
(Ghahramani & Jordan, 1997)

� Recall the factorial hidden Markov model, which
yielded intractably large cliques when triangulated:

...

...

...
X(1)

1 X(1)
2 X(1)

3

2X(2)
3X(2)X(2)

1

1X(3)
2X(3)

3X(3)

1Y 2Y 3Y

�We can variationally transform this model into:

...

...

...

where we see that we have to solve separate simple
HMM problems on each iteration. The variational
parameters couple the chains.



Example|Factorial HMM (cont.)

...

...

...
X(1)

1 X(1)
2 X(1)

3

2X(2)
3X(2)X(2)

1

1X(3)
2X(3)

3X(3)

1Y 2Y 3Y

�M independent Markov chains given the observations

Q(fXtgj�) =
MY
m=1

Q(X
(m)
1 j�)

TY
t=2

Q(X
(m)
t jX

(m)
t�1 ; �);

where

Q(X
(m)
1 j�) = �(m)h

(m)
1

Q(X
(m)
t jX

(m)
t�1 ; �) = P (m)h

(m)
t :

� The parameters of this approximation are the h
(m)
t ,

which play the role of observation log probabilities
for the HMMs.



Example|Factorial HMM (cont.)

�Minimizing the KL divergence results in the following
�xed point equation:

h
(m)
t / expfW (m)0C�1

 
Yt � Ŷt

!
+ W (m)0C�1W (m)hX

(m)
t i

�
1

2
�(m)g;

where

Ŷ t =
MX
`=1

W (`)hX
(`)
t i;

and �(m) is the vector of diagonal elements of
W (m)0C�1W (m).

� Repeat until convergence of KL(QkP ):

1. Compute h
(m)
t using �xed-point equation, which

depends on hX
(m)
t i

2. Compute hX
(m)
t i using forward-backward

algorithm on HMMs with observation log

probabilities given by h
(m)
t



Results

� Fitting the FHMM to the Bach Chorale dataset:
(Ghahramani & Jordan, 1997):

Modeling J. S. Bach’s chorales

Discrete event sequences:

Attribute Description Representation
pitch pitch of the event int

keysig key signature of the chorale

(num of sharps and flats)

int

timesig time signature of the chorale int (1/16 notes)
fermata event under fermata? binary

st start time of event int (1/16 notes)
dur duration of event int (1/16 notes)

First 40 events of 66 chorale melodies:

training: 30 melodies

test: 36 melodies

See Conklin and Witten (1995).



Fitting a single HMM to the Bach chorale data
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Fitting a factorial HMM to the Bach chorale data
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Example|hidden Markov decision tree
(Jordan, Ghahramani, & Saul, 1997)

� Recall the hidden Markov decision tree, which also
yielded intractably large cliques when triangulated:

U1

Y1

U2

Y2

U3

Y3

�We can variationally transform this model into one of
two simpli�ed models:

...

...

...

or

x

z1
1

z1
2

z1
3

y
1

1 x

z2
1

z2
2

z2
3

y
2

2 x

z3
1

z3
2

z3
3

y
3

3



Forest of chains approximation

� Eliminating the vertical links that couple the states
yields an approximating graph that is a forest of
chains:

� The Q distribution is given by:

Q(fz1t ; z
2
t ; z

3
tg j fytg; fxtg) =

1

ZQ

TY
t=2

~a1t (z
1
t jz

1
t�1)~a

2
t (z

2
t jz

2
t�1)~a

3
t (z

3
t jz

3
t�1)

TY
t=1

~q1t (z
1
t )~q

2
t (z

2
t )~q

3
t (z

3
t )

where ~ait(z
i
tjz

i
t�1) and ~qit(z

i
t) are potentials that

provide the variational parameterization

� The resulting algorithm is e�cient because we know
an e�cient subroutine for single chains (the
forward-backward algorithm)



Forest of trees approximation

� Eliminating the horizontal links that couple the
states yields an approximating graph that is a forest
of trees:

� The Q distribution is given by:

Q(fz1t ; z
2
t ; z

3
tg j fytg; fxtg) =

TY
t=1

~r1t (z
1
1)~r

2
t (z

2
1jz

1
1)~r

3
t (z

3
1jz

1
1; z

2
1)

� The resulting algorithm is e�cient because we know
an e�cient subroutine for decision trees (the upward
recursion from Jordan and Jacobs)



A Viterbi-like approximation

�We can develop a Viterbi-like algorithm by utilizing
an approximation Q that assigns probability one to a
single path f�z1t ; �z

2
t ; �z

3
tg:

Q(fz1t ; z
2
t ; z

3
tg j fytg; fxtg) =

8>><
>>:
1 if zit = �zit; 8t; i
0 otherwise

� Note that the entropy Q lnQ is zero

� The evaluation of the energy Q lnP reduces to
substituting �zit for z

i
t in P

� The resulting algorithm involves a subroutine in
which a standard Viterbi algorithm is run on a single
chain, with the other (�xed) chains providing �eld
terms



Mixture-based variational approximation
(Jaakkola & Jordan, 1997)

� Naive mean �eld approximations are unimodal

� Exact methods running as subroutines provide a way
to capture multimodality

� But we would like a method that allows
multimodality in the approximation itself

� This can be done by letting the Q distribution be a
mixture:

Qmix(HjV ) =
X
m
�mQmf(HjV;m)

where each component Qmix(HjV ) is a factorized
model



Mixture-based approximation (cont.)

� The bound on the likelihood takes the following form:

F(Qmix) =
X
m
�mF(Qmf jm) + I(m;H)

where I(m;H) is the mutual information between
the mixture components

� (Derivation):

F(Qmix) =
X
H
Qmix(H) log

P (H; V )

Qmix(H)

=
X
m;H

�m

2
664Qmf(Hjm) log

P (H;V )

Qmix(H)

3
775

=
X
m;H

�m

2
664Qmf(Hjm) log

P (H; V )

Qmf(Hjm)
+Qmf(Hjm) log

Qmf(

Qmi

=
X
m
�mF(Qmf jm) +

X
m;H

�mQmf(Hjm) log
Qmf(Hjm)

Qmix(H)
=

X
m
�mF(Qmf jm) + I(m;H)

�We see that the bound can be improved vis-a-vis
naive mean �eld via the mutual information term



Mixture-based variational approximation
(Bishop, et al., 1997)
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CONCLUSIONS (PART II)

� General frameworks for probabilistic computation in
graphical models:

{ exact computation

{ deterministic approximation

{ stochastic approximation

� Variational methods are deterministic approximation
methods

{ they aim to take advantage of
law-of-large-numbers phenomena in dense
networks

{ they yield upper and lower bounds on desired
probabilities

� The techniques can be combined to yield hybrid
techniques which may well turn out to be better than
any single technique



ADDITIONAL TOPICS

� There are many other topics that we have not
covered, including:

{ learning structure (see Heckerman tutorial)

{ causality (see UAI homepage)

{ qualitative graphical models (see UAI homepage)

{ relationships to planning (see UAI homepage)

{ in
uence diagrams (see UAI homepage)

{ relationships to error control coding (see Frey
thesis)

� The Uncertainty in Arti�cial Intelligence (UAI)
homepage:

http://www.auai.org
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