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Abstract We study online regret minimization algorithms in an experts setting. In this set-
ting, the algorithm chooses a distribution over experts at each time step and receives a gain
that is a weighted average of the experts’ instantaneous gains. We consider a bicriteria set-
ting, examining not only the standard notion of regret to the best expert, but also the regret
to the average of all experts, the regret to any given fixed mixture of experts, or the regret
to the worst expert. This study leads both to new understanding of the limitations of exist-
ing no-regret algorithms, and to new algorithms with novel performance guarantees. More
specifically, we show that any algorithm that achieves only O(

√
T ) cumulative regret to

the best expert on a sequence of T trials must, in the worst case, suffer regret Ω(
√

T ) to
the average, and that for a wide class of update rules that includes many existing no-regret
algorithms (such as Exponential Weights and Follow the Perturbed Leader), the product of
the regret to the best and the regret to the average is, in the worst case, Ω(T ). We then
describe and analyze two alternate new algorithms that both achieve cumulative regret only
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O(
√

T logT ) to the best expert and have only constant regret to any given fixed distribution
over experts (that is, with no dependence on either T or the number of experts N ). The key
to the first algorithm is the gradual increase in the “aggressiveness” of updates in response
to observed divergences in expert performances. The second algorithm is a simple twist on
standard exponential-update algorithms.

Keywords Online learning · Regret minimization · Prediction with expert advice · Lower
bounds

1 Introduction

Beginning at least as early as the 1950s, the long and still-growing literature on no-regret
learning has established the following type of result. On any sequence of T trials in which
the predictions of N “experts” are observed, it is possible to maintain a dynamically
weighted prediction whose cumulative regret to the best single expert in hindsight (that
is, after the full sequence has been revealed) is O(

√
T logN), with absolutely no statisti-

cal assumptions on the sequence. Such results are especially interesting in light of the fact
that even in known stochastic models, there is a matching lower bound of Ω(

√
T logN).

The term “no-regret” derives from the fact that the per-step regret is only O(
√

(logN)/T ),
which approaches zero as T becomes large.

In this paper we revisit no-regret learning, but with a bicriteria performance measure that
is of both practical and philosophical interest. More specifically, in addition to looking at
the cumulative regret to the best expert in hindsight, we simultaneously analyze the regret
to the average gain of all experts (or more generally, any fixed weighting of the experts).
For comparisons to the average, the gold standard will be only constant regret (independent
of T and N ). Note that considering regret to the average in isolation, zero regret is easily
achieved by simply leaving the weights uniform at all times.

We consider a setting in which each expert receives a bounded (e.g., in [0,1]) gain at
each time step. The gain of the algorithm on a given time step is then a weighted average of
these expert gains; this can be interpreted as the expected gain the algorithm would receive if
it chose a single expert to follow on each time step according to its current distribution. The
regret of the algorithm is measured in terms of cumulative expected gains over time. Our re-
sults establish strict trade-offs between regret to the best expert and the regret to the average
in this setting, demonstrate that most known algorithms manage this trade-off poorly, and
provide new algorithms with near optimal bicriteria performance. On the practical side, our
new algorithms augment traditional no-regret results with a “safety net”: while still manag-
ing to track the best expert near-optimally, they are guaranteed to never underperform the
average (or any other given fixed weighting of experts) by more than just constant regret.
On the philosophical side, the bicriteria analyses and lower bounds shed new light on prior
no-regret algorithms, showing that the unchecked aggressiveness of their updates can indeed
cause them to badly underperform simple benchmarks like the average.

Viewed at a suitably high level, many existing no-regret algorithms have a similar flavor.
These algorithms maintain a distribution over the experts that is adjusted according to per-
formance. Since we would like to compete with the best expert, a “greedy” or “momentum”
algorithm that rapidly adds weight to an outperforming expert (or set of experts) is natural.
Most known algorithms shift weight between competing experts at a rate proportional to
1/

√
T , in order to balance the tracking of the current best expert with the possibility of

this expert’s performance suddenly dropping. Updates on the scale of 1/
√

T can be viewed
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Table 1 Summary of lower bounds and algorithmic results presented in this paper

Summary of lower bounds

Algorithm: If Regret to Best Is: Then Regret to Average Is:

Any Algorithm O(
√

T ) Ω(
√

T )

Any Algorithm ≤ √
T logT /10 Ω(T ε)

Any Difference Algorithm O(T
1
2 +α

) Ω(T
1
2 −α

)

Summary of algorithmic results

Algorithm: Regret to Best: Regret to Average: Regret to Worst:

Phased Aggression O(
√

T logN(logT + log logN)) O(1) O(1)

D-Prod O(
√

T logN + √
T/ logN logT ) O(1) O(1)

BestWorst O(N
√

T logN) O(
√

T logN) 0

EW O(T
1
2 +α logN ) O(T

1
2 −α

) O(T
1
2 −α

)

as “aggressive”, at least in comparison to the minimal average update of 1/T required for
any interesting learning effects. (If updates are o(1/T ), the algorithm cannot make even a
constant change to any given weight in T steps.)

How poorly can existing regret minimization algorithms perform with respect to the
average? Consider a sequence of gains for two experts where the gains for expert 1 are
1,0,1,0, . . ., while the gains for expert 2 are 0,1,0,1, . . .. Typical regret minimization al-
gorithms (such as Exponential Weights, Littlestone and Warmuth 1994; Freund 2003, Fol-
low the Perturbed Leader, Kalai and Vempala 2005, and the Prod algorithm, Cesa-Bianchi
et al. 2007) will yield a gain of T/2 − Θ(

√
T ), meeting their guarantee of O(

√
T ) regret

with respect to the best expert. However, this performance leaves something to be desired.
Note that in this example the performance of the best expert, worst expert, and average of
the experts is identically T/2. Thus all of the algorithms mentioned above actually suffer a
regret to the average (and to the worst expert) of Ω(

√
T ). The problem stems from the fact

that in all even time steps the probability of expert 1 is exactly 1/2. After expert 1 observes
a gain of 1 we increase its probability by c/

√
T , where the precise value of c depends on the

specific algorithm. Therefore in odd steps the probability of expert 2 is only (1/2 − c/
√

T ).
Note that adding a third expert, which is defined as the average of the original two, would
not change this.1

This paper establishes a sequence of results that demonstrate the inherent tension be-
tween regret to the best expert and the average, illuminates the problems of existing algo-
rithms in managing this tension, and provides new algorithms that enjoy optimal bicriteria
performance guarantees.

On the negative side, we show that any algorithm that has a regret of O(
√

T ) to the best
expert must suffer a regret of Ω(

√
T ) to the average in the worst case. We also show that any

regret minimization algorithm that achieves at most
√

T logT /10 regret to the best expert,
must, in the worst case, suffer regret Ω(T ε) to the average, for some constant ε ≥ 0.02.
These lower bounds are established even when N = 2.

1The third expert would clearly have a gain of 1/2 at every time step. At odd time steps, the weight of the

first expert would be 1/3+ c/
√

T , while that of the second expert would be 1/3− c/
√

T , resulting in a regret
of Ω(

√
T ) to the average.
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On the positive side, we describe a new algorithm, Phased Aggression, that almost
matches the lower bounds above. Given any algorithm whose cumulative regret to the
best expert is at most R (which may be a function of T and N but not of any data-
dependent measures), we can use it to derive an algorithm whose regret to the best ex-
pert is O(R logR) with only constant regret to the average (or any given fixed distribution
over the experts). Using an O(

√
T logN) regret algorithm, this gives regret to the best of

O(
√

T logN(logT + log logN)). In addition, we show how to use an R-regret algorithm to
derive an algorithm with regret O(NR) to the best expert and zero regret to the worst expert.
These algorithms treat the given R-regret algorithm as a black box.

Phased Aggression is somewhat different from many of the traditional regret minimiza-
tion algorithms, especially in its use of restarts that are driven by observed differences in
expert performance. (Restarts have been used previously in the literature, but for other pur-
poses (Cesa-Bianchi and Lugosi 2006).) We show that this difference is no coincidence.
For a wide class of update rules that includes many existing algorithms (such as Weighted
Majority/Exponential Weights, Follow the Perturbed Leader, and Prod), we show that the
product of the regret to the best and the regret to the average is Ω(T ). This establishes a
frontier from which such algorithms inherently cannot escape. Furthermore, any point on
this frontier can in fact be achieved by such an algorithm (i.e., a standard multiplicative
update rule with an appropriately tuned learning rate). However, we show it is possible to
circumvent the lower bound by using an algorithm “similar to” Prod to achieve guarantees
close to those achieved by Phased Aggression without the use of restarts. This algorithm,
D-Prod, escapes the lower bound by using a modified update rule that directly depends on
the average of the experts’ instantaneous gains at each time step.

It is worth noting that it is not possible in general to guarantee o(
√

T ) regret to any
arbitrary pair of distributions, D1 and D2. Consider a setting in which there are only two
experts. Suppose distribution D1 places all weight on one expert, while distribution D2

places all weight on a second. Competing simultaneously with both distributions is then
equivalent to competing with the best expert, so we cannot expect to do better than known
lower bounds of Ω(

√
T ).

Related work Previous work by Auer et al. (2002) considered adapting the learning rate of
expert algorithms gradually. However, the goal of their work was to get an any-time regret
bound without using the standard doubling technique and thus it is not surprising that their
algorithm performance under the bicriteria setting is similar to the other existing algorithms.
Vovk (1998) also considered trade-offs in best expert algorithms. His work examined for
which values of a and b it is possible for an algorithm’s gain to be bounded by aGbest,T +
b logN , where Gbest,T is the gain of the best expert.

2 Preliminaries

We consider the classic experts framework, in which each expert i ∈ {1, . . . ,N} receives
a gain gi,t ∈ [0,1] at each time step t .2 The cumulative gain of expert i up to time t

is Gi,t = ∑t

t ′=1 gi,t ′ . We denote the average cumulative gain of the experts by time t as
Gavg,t = (1/N)

∑N

i=1 Gi,t , and the gain of the best and worst expert as Gbest,t = maxi Gi,t

and Gworst,t = mini Gi,t . For any fixed distribution D over the experts, we define the gain of
this distribution to be GD,t = ∑N

i=1 D(i)Gi,t .

2All results presented in this paper can be generalized to hold for instantaneous gains in any bounded region.
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At each time t , an algorithm A assigns a weight wi,t to each expert i. These weights are
normalized to probabilities pi,t = wi,t /Wt where Wt = ∑

i wi,t . Algorithm A then receives
a gain gA,t = ∑N

i=1 pi,tgi,t . The cumulative gain of algorithm A up to time t is GA,t =∑t

t ′=1 gA,t ′ = ∑t

t ′=1

∑N

i=1 pi,t ′gi,t ′ .
The standard goal of an algorithm in this setting is to minimize the regret to the best

expert at a fixed time T . In particular, we would like to minimize the regret Rbest,A,T =
max{Gbest,T − GA,T ,1}.3 In this work, we are simultaneously concerned with minimizing
both this regret and the regret to the average and worst expert, Ravg,A,T = max{Gavg,T −
GA,T ,1} and Rworst,A,T = max{Gworst,T − GA,T ,1} respectively, in addition to the regret
RD,A,T to a given distribution D, which is defined similarly.

While in general the bounds on the regret of the algorithms can be defined using the
time (for example, a regret of O(

√
T )) and these bounds are tight, this is considered a crude

estimate and better measures are at hand. We present our results in terms of the maximal
absolute gains Gmax = maxi Gi,T .

3 The Θ(T ) frontier for difference algorithms

We begin our results with an analysis of the trade-off between regret to the best and average
for a wide class of existing algorithms, showing that the product between the two regrets for
this class is Θ(T ). A more general lower bound that holds for any algorithm is provided in
Sect. 5.

Definition 1 (Difference algorithm) We call an algorithm A a difference algorithm if, when
N = 2 and instantaneous gains are restricted to {0,1}, the normalized weights A places on
each of the two experts depend only on the difference between the experts’ cumulative gains.
In other words, A is a difference algorithm if there exists a function f such that when N = 2
and gi,t ∈ {0,1} for all i and t , p1,t = f (dt ) and p2,t = 1 − f (dt ) where dt = G1,t − G2,t .

Exponential Weights (Littlestone and Warmuth 1994; Freund 2003), Follow the Per-
turbed Leader (Kalai and Vempala 2005), and the Prod algorithm (Cesa-Bianchi et al. 2007)
are all examples of difference algorithms; for Prod, this follows from the restriction on the
instantaneous gains to {0,1}. While a more general definition of the class of difference al-
gorithms might be possible, this simple definition is sufficient to show the lower bound.

3.1 Difference frontier lower bound

Theorem 1 Let A be any difference algorithm. Then

Rbest,A,T · Ravg,A,T ≥ Rbest,A,T · Rworst,A,T = Ω(T ).

Proof For simplicity, assume that T is an even integer. We will consider the behavior of the
difference algorithm A on two sequences of expert payoffs. Both sequences involve only
two experts with instantaneous gains in {0,1}. (Since the theorem provides a lower bound,
it is sufficient to consider an example in this restricted setting.) Assume without loss of
generality that initially p1,1 ≤ 1/2.

3This minimal value of 1 makes the presentation of the trade-off “nicer” (for example in the statement of
Theorem 1), but has no real significance otherwise.
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In the first sequence, S1, Expert 1 has a gain of 1 at every time step while Expert 2 always
has a gain 0. Let ρ be the first time t at which A has p1,t ≥ 2/3. If such a ρ does not exist,
then Rbest,A,T = Ω(T ) and we are done. Assuming such a ρ does exist, A must have regret
Rbest,A,T ≥ ρ/3 since it loses at least 1/3 to the best expert on each of the first ρ time steps
and cannot compensate for this later.

Since the probability of Expert 1 increases from p1,1 ≤ 1/2 to at least 2/3 in ρ time steps
in S1, there must be one time step τ ∈ [2, ρ] in which the probability of Expert 1 increased
by at least 1/(6ρ), i.e., p1,τ − p1,τ−1 ≥ 1/(6ρ). The second sequence S2 we consider is as
follows. For the first τ time steps, Expert 1 will have a gain of 1 (as in S1). For the last
τ time steps, Expert 1 will have a gain of 0. For the remaining T − 2τ time steps (in the
range [τ, T − τ ]), the gain of Expert 1 will alternate 0,1,0,1, . . .. Throughout the sequence,
Expert 2 will have a gain of 1 whenever Expert 1 has a gain of 0 and a gain of 0 every time
Expert 1 has a gain of 1. This implies that each expert has a gain of exactly T/2 (and hence
Gbest,T = Gavg,T = Gworst,T = T/2).

During the period [τ, T − τ ], consider a pair of consecutive times such that g1,t = 0 and
g1,t+1 = 1. Since A is a difference algorithm we have that p1,t = p1,τ and p1,t+1 = p1,τ−1.
The gain of algorithm A in time steps t and t + 1 is (1 − p1,τ ) + p1,τ−1 ≤ 1 − 1/(6ρ), since
p1,τ − p1,τ−1 ≥ 1/(6ρ). In every pair of time steps t and T − t , for t ≤ τ , the gain of A in
those times steps is exactly 1, since the difference between the experts is identical at times
t and T − t , and hence the probabilities are identical. This implies that the total gain of the
algorithm A is at most

τ + T − 2τ

2

(
1 − 1

6ρ

)
≤ T

2
− T − 2τ

12ρ
.

On sequence S1, the regret of algorithm A with respect to the best expert is Ω(ρ). There-
fore, if ρ ≥ T/4 we are done. Otherwise, on sequence S2, the regret with respect to the
average and worst is Ω(T/ρ). The theorem follows. �

3.2 A difference algorithm achieving the frontier

We now show that the standard Exponential Weights (EW) algorithm with an appropriate
choice of the learning rate parameter η (Freund 2003) is a difference algorithm achieving the
trade-off described in Sect. 3.1, thus rendering it tight for this class. Recall that for all experts
i, EW assigns initial weights wi,1 = 1, and at each subsequent time t , updates weights with
wi,t+1 = eηGi,t = wi,t e

ηgi,t . The probability with which expert i is chosen at time t is then
given by pi,t = wi,t /Wt where Wt = ∑N

j=1 wj,t .

Theorem 2 Let G∗ ≤ T be an upper bound on Gmax . For any α such that 0 ≤ α ≤ 1/2, let
EW = EW(η) with η = (G∗)−(1/2+α). Then

Rbest,EW,T ≤ (G∗)1/2+α(1 + lnN)

and

Ravg,EW,T ≤ (G∗)1/2−α.

Proof These bounds can be derived using a series of bounds on the quantity ln(WT +1/W1).
First we bound this quantity in terms of the gain of the best expert and the gain of EW.
This piece of the analysis is standard (see, for example, Theorem 2.4 in Cesa-Bianchi and
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Lugosi 2006). The first piece of the bound follows from the fact that W1 = N and that
wbest,t+1 ≤ Wt+1.

ηGbest,T − lnN ≤ ln

(
WT +1

W1

)
.

The second pieces follows from a simple application of Taylor approximation.

ln

(
WT +1

W1

)
≤ (

η + η2
)
GEW,T . (1)

Therefore, we derive that

Gbest,T − GEW,T ≤ ηGEW,T + lnN

η
.

Next we bound the same quantity in terms of the average cumulative gain, using the fact
that the arithmetic mean of a set of nonnegative numbers is always greater than or equal to
the geometric mean.

ln

(
WT +1

W1

)
= ln

(∑N

i=1 wi,T +1

N

)
≥ ln

((
N∏

i=1

wi,T +1

) 1
N

)

= 1

N

N∑

i=1

lnwi,T +1 = 1

N

N∑

i=1

ηGi,T = ηGavg,T . (2)

Combined with the upper bound in (1), this gives us

Gavg,T − GEW,T ≤ ηGEW,T .

Note that if Gbest,T ≤ GEW,T , both the regret to the best expert and the regret to the
average will be minimal, so we can assume this is not the case and replace the term GEW,T

on the right hand side of these bounds with Gbest,T which is in turn bounded by G∗. This
yields the following pair of bounds.

Gbest,T − GEW,T ≤ ηG∗ + lnN/η

Gavg,T − GEW,T ≤ ηG∗.

By changing the value of η, we can construct different trade-offs between the two bounds.
Setting η = (G∗)−(1/2+α) yields the desired result. �

This trade-off can be generalized to hold when we would like to compete with an arbitrary
distribution D by initializing wi,1 = D(i) and substituting an alternate inequality into (2).
The ln(N) term in the regret to the best expert will be replaced by maxi∈N ln(1/D(i)),
making this practical only for distributions that lie inside the probability simplex and not
too close to the boundaries.

4 Breaking the difference frontier

The results so far have established a Θ(T ) frontier on the product of regrets to the best and
average experts for difference algorithms. In this section, we will show how this frontier can
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BestWorst (A,R), where A guarantees Rbest,A,T ≤ R

while (Gbest,t − Gworst,t ≤ NR) do
Use probabilities pi,t = 1

N
for all i

end
Reset and run algorithm A for all remaining time steps.

Fig. 1 BestWorst algorithm for N experts

be broken by non-difference algorithms that gradually increase the aggressiveness of their
updates via a series of restarts invoked by observed differences in performance so far. As
a warm-up, we first show how a very simple algorithm that is not a difference algorithm
can enjoy standard regret bounds compared to the best expert in terms of T (though worse
in terms of N ), while having zero cumulative regret to the worst. In Sects. 4.2 and 4.3,
we present two alternative algorithms that compete well with both the best expert and the
average with only logarithmic dependence on N .

4.1 Regret to the best and worst experts

Using a standard regret-minimization algorithm as a black box, we can produce a very sim-
ple algorithm, BestWorst, that achieves a clear trade-off between regret to the best expert and
regret to the worst expert. Let A be a regret minimization algorithm such that Rbest,A,T ≤ R

for some R which may be a function of T and N but not of any data dependent measures.
We define the modified algorithm BestWorst(A) as follows. While the difference between
the cumulative gains of the best and worst experts is smaller than NR, BestWorst(A) places
equal weight on each expert, playing the average. After the first time τ at which this con-
dition is violated, it begins running a fresh instance of algorithm A and continues to use A

until the end of the sequence.
Until time τ , this algorithm must be performing at least as well as the worst expert since it

is playing the average. At time τ , the algorithm’s gain must be R more than that of the worst
expert since the gain of the best expert is NR above the gain of the worst. Now since from
time τ algorithm A is run, we know that the gain of BestWorst(A) in the final T − τ time
steps will be within R of the gain of the best expert. Therefore, BestWorst(A) will maintain
a lead over the worst expert. In addition, the regret of the algorithm to the best expert will be
bounded by NR, since up to time τ it will have a regret of at most (N − 1)R with respect
to the best expert. This establishes the following theorem.

Theorem 3 Let A be a regret minimization algorithm with regret at most R to the best
expert and let BW be BestWorst(A,R). Then

Rbest,BW,T ≤ NR

and

GBW,T ≥ Gworst,T .

It follows immediately that using a standard regret minimization algorithm with R =
O(

√
T logN) as the black box, we can achieve a regret of O(N

√
T logN) to the best expert

while maintaining a lead over the worst.
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PhasedAggression (A,R,D)
for k = 1 to �log(R)	 do

Let η = 2k−1/R

Reset and run a new instance of A

while (G
p

best,t − G
p

D,t < 2R) do
Feed A with the previous gains gt−1 and let qt be its distribution
Use pt = ηqt + (1 − η)D

end
end
Reset and run a new instance of A until time T

Fig. 2 The Phased Aggression algorithm for N experts

4.2 Phased aggression

Again using any standard regret-minimization algorithm as a black box, we can produce an
algorithm, Phased Aggression, that achieves a trade-off between regret to the best expert
and regret to the average without sacrificing too much in terms of the dependence on N .
Figure 2 shows Phased Aggression. This algorithm can achieve a constant regret to any
specified distribution D, not only the average, with no change to the bounds. The name of
the algorithm refers to the fact that it operates in distinct phases separated by restarts, with
each phase more aggressive than the last.

The idea behind the algorithm is rather simple. We take a regret minimization algo-
rithm A, and mix between A and the target distribution D. As the gain of the best expert
exceeds the gain of D by larger amounts, we put more and more weight on the regret min-
imization algorithm A, “resetting” A to its initial state at the start of each phase. Once the
weight on A has been increased, it is never decreased again. In other words, in each suc-
cessive phase of this algorithm (or reduction), weight is moved from something that is not
learning at all (the fixed distribution D) to an algorithm that is implicitly learning aggres-
sively (the given algorithm A). New phases are invoked only in response to greater and
greater outperformance by the current best expert, allowing the amount of aggression to
increase only as needed.

Theorem 4 Let A be any algorithm with regret R to the best expert, D be any distribution,
and PA be an instantiation of PhasedAggression(A,R,D). Then

Rbest,PA,T ≤ 2R(logR + 1)

and

RD,PA,T ≤ 1.

Proof We will again analyze the performance of the algorithm compared to the best ex-
pert and the distribution D both during and at the end of any phase k. First consider any
time t during phase k. The regret of the algorithm is split between the regret of the fixed
mixture and the regret of the no-regret algorithm according to their weights. Since A is an
R-regret algorithm its regret to both the best expert and to the distribution D is bounded
by R, and thus the regret of the algorithm due to the weight on A is 2k−1/R times R. With
the remaining 1 − (2k−1/R) weight, the regret to the best expert is bounded by 2R since



30 Mach Learn (2008) 72: 21–37

G
p

best,t − G
p

D,t < 2R during the phase, and its regret to distribution D is 0. Thus at any time
t during phase k we have

G
p

best,t − G
p

PA,t ≤ R

(
2k−1

R

)
+ 2R

(
1 − 2k−1

R

)
≤ 2R

and

G
p

D,t − G
p

PA,t ≤ R

(
2k−1

R

)
= 2k−1.

Now consider what happens when the algorithm exits phase k. A phase is only exited
at some time t such that G

p

best,t − G
p

D,t ≥ 2R. Since A is R-regret, its gain (in the current
phase) will be within R of the gain of the best expert, resulting in the algorithm PA gaining
a lead over distribution D for the phase: G

p

PA,t − G
p

D,t ≥ R(2k−1/R) = 2k−1.
Combining these inequalities, it is clear that if the algorithm ends in phase k at time T ,

then

Gbest,T − GPA,T ≤ 2Rk ≤ 2R(logR + 1)

and

GD,T − GPA,T ≤ 2k−1 −
k−1∑

j=1

2j−1 = 2k−1 − (2k−1 − 1) = 1.

These inequalities hold even when the algorithm reaches the final phase and has all of its
weight on A, thus proving the theorem. �

4.3 D-Prod

While Exponential Weights and Prod are both difference algorithms and cannot avoid the
Ω(T ) frontier lower bound, it is possible to create an algorithm with exponential updates
that can achieve guarantees similar to those of Phased Aggression without requiring the use
of restarts. This can be accomplished via a simple algorithm that we refer to as D-Prod since
its update rules and analysis are inspired by those of Prod.

D-Prod differs from Prod in two important ways that together allow it to compete well
with the best expert while simultaneously guaranteeing only constant regret to a given fixed
distribution D (Zhang 2007). First, an additional expert (denoted expert 0) representing the
distribution D is added with a large prior weight. Second, the update rule is modified to take
into account the difference in performance between each expert and the distribution D rather
than the gains of each expert alone. Because of this second modification, D-Prod is not a
difference algorithm and is able to avoid the Ω(T ) frontier.

Formally, let gi,t ∈ [0,1] be the gain of expert i at time t as before for i ∈ {1, . . . ,N}, and
let g0,t be the instantaneous gain of the distribution D (or the special expert 0). Each expert
i starts with an initial or prior weight wi,1 = μi , and updates are made as follows:

wi,t+1 = wi,t (1 + η(gi,t − g0,t )).

Lemma 1 For any expert i (including the special expert 0), for any η ≤ 1/2,

GD−Prod,T ≥ Gi,T + ln(μi)

η
− η

T∑

t=1

(gi,t − g0,t )
2.
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The proof is nearly identical to the proof of Lemma 2 of Cesa-Bianchi et al. (2007).
Notice that when i = 0 (the special expert), the last term in the bound is 0. The following
theorem shows how to set the parameters η and μ to achieve a constant error rate to the
distribution D without losing much with respect to the best expert.

Theorem 5 Let η = √
lnN/T , μ0 = 1 − η, and μi = η/N for i ∈ {1, . . . ,N}. Then

Rbest,D−Prod,T = O

(√
T lnN +

√
T

lnN
lnT

)

and

RD,D−Prod,T = O(1).

5 A general lower bound

So far we have seen that a wide class of existing algorithms (namely all difference algo-
rithms) is burdened with a stark best/average regret trade-off, but that this frontier can be
avoided by simple algorithms that tune how aggressively they update, in phases modulated
by the observed payoffs so far. What is the limit of what can be achieved in our bicriteria
regret setting?

In this section we show a pair of general lower bounds that hold for all algorithms. The
bounds are stated and proved for the average but once again hold for any fixed distribution D.
These lower bounds come close to the upper bound achieved by the algorithms described in
the previous section.

Theorem 6 Any algorithm with regret O(
√

T ) to the best expert must have regret Ω(
√

T )

to the average. Furthermore, any algorithm with regret at most
√

T logT /10 to the best
expert must have regret Ω(T ε) to the average for some positive constant ε ≥ 0.02.

More specifically, we show that for any constant α > 0, there exists a constant β > 0
such that for sufficiently large values of T (i.e. T > (150α)2), for any algorithm A, there
exists a sequence of gains g of length T such that if Rbest,A,T ≤ α

√
T then Ravg,A,T ≥ β

√
T

even when N = 2. Additionally, for any constant α′ ≤ 1/10 there exist constants β ′ > 0
and ε > 0 such that for sufficiently large values of T (i.e., T > 2(10α′)2

), for any algorithm
A, there exists a sequence of gains of length T such that if Rbest,A,T ≤ α′√T logT then
Ravg,A,T ≥ β ′T ε .

The proof of this theorem begins by defining a procedure for creating a “bad” sequence g
of expert gains for a given algorithm A. This sequence can be divided into a number of (pos-
sibly noncontiguous) segments. By first analyzing the maximum amount that the algorithm
can gain over the average and the minimum amount it can lose to the average in each seg-
ment, and then bounding the total number of segments possible under the assumption that an
algorithm is no-regret, we can show that it is not possible for an algorithm to have O(

√
T )

regret to the best expert without having Ω(
√

T ) regret to the average. The remainder of the
section is devoted to the proof of Theorem 6.

Fix a constant α > 0. Fig. 3 shows a procedure that, given an algorithm A, generates
a sequence of expert gains g of length T > (150α)2 such that g will be “bad” for A. In
this procedure, the variable dt keeps track of the difference between the gains of the two
experts at time t . At each time step, this difference either increases by one or decreases
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GenerateBadSeq(A,f,γ )
t = 1; Gavg,0 = GA,0 = d0 = 0;
while (Gavg,t−1 − GA,t−1 ≤ 0.115

√
T /γ ) do

p1,t = A(g);p2,t = 1 − A(g)

if (dt−1 = 0) then
if

(
p1,t ≤ 1

2

)
then

g1,t = 1;g2,t = 0; last(|dt−1|) = p1,t ;
else

g1,t = 0;g2,t = 1; last(|dt−1|) = p2,t ;
end

else
it = argmaxi Gi,t−1; jt = argminj Gj,t−1;
last(|dt−1|) = pit ,t ;
εt = pit ,t − last(|dt−1 − 1|);
if (εt ≤ f (|dt−1|)) then

git ,t = 1;gjt ,t = 0;
else

git ,t = 0;gjt ,t = 1;
end

end
GA,t = GA,t−1 + p1,t g1,t + p2,t g2,t ;
Gavg,t = Gavg,t−1 + (g1,t + g2,t )/2;
dt = dt−1 + g1,t − g2,t ;
t = t + 1;

end
g1,t = g2,t = 1

2 for the rest of the sequence

Fig. 3 Algorithm for creating a bad sequence for any algorithm A

by one, since one expert receives a gain of one and the other zero. The variable last (d)

holds the probability that the algorithm assigned to the leading expert the most recent time
that the distance between expert gains was d . The variable εt then represents the difference
between the probability that the algorithm assigned to the current best expert at the last time
step at which the difference in expert gains was smaller than dt−1 and the probability that
the algorithm assigns to the best expert for the upcoming time step t . This is used by the
sequence generation algorithm to ensure that the best expert will only do well when the
algorithm does not have “too much” weight on it. The function f and parameter γ used in
the procedure will be defined later in the analysis.

The sequence of gains generated by the procedure in Fig. 3 is specifically designed to
fool the algorithm A. In particular, whenever the algorithm updates its weights aggressively,
the procedure assigns positive gains to the second-place expert, inducing mean reversion.
On the contrary, when the algorithm updates its weights conservatively, the procedure as-
signs positive gains to the best expert, causing added momentum. These competing issues
of conservative versus aggressive updates force the algorithm to have “bad” regret to either
the best expert or the average on some sequence of gains.

We say that an algorithm A is f -compliant (for the specific function f which will be
defined shortly) if at every time t we have (1) εt = f (dt−1) ± δ, for an arbitrarily small δ

(for example δ = 1/T 2), and (2) p1,t = p2,t = 1/2 if dt−1 = 0. Since δ can be arbitrarily
small, we can think of this requirement as enforcing that εt be exactly equal to f (dt−1), and
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allowing the algorithm to “choose” whether it should be considered larger or smaller. The
following lemma implies that given the sequence generation process in Fig. 3, we need only
to consider the class of f -compliant algorithms, since for any other algorithm that does not
have Ω(

√
T ) regret to the average, there exists an f -compliant algorithm with better gains

for which the same sequence is generated.

Lemma 2 Consider any algorithm A such that for all t < T , (Gavg,t−1 − GA,t−1 ≤
0.115

√
T /γ ), and let g = GenerateBadSeq(A,f, γ ). There exists an f -compliant algo-

rithm A′ such that GenerateBadSeq(A′, f, γ ) = g and at every time t ≤ T , gA′,t ≥ gA,t .

Proof First consider any time t at which dt−1 = 0. When this is the case, the procedure will
always assign a gain of 1 to the expert with the lower probability. Thus if A sets p1,t < p2,t

or p2,t < p1,t , it is possible to achieve a higher gain by setting p1,t = p2,t = 1/2 without
altering the sequence g generated by GenerateBadSeq.

Suppose dt−1 
= 0. We can assume without loss of generality that dt−1 > 0. Note that
when εt ≤ f (|dt−1|) we have a gain g1,t = 1, so maximizing εt by setting it arbitrarily close
to f (|dt−1|) increases the gain without changing GenerateBadSeq(A′, f, γ ). Similarly, when
εt > f (|dt−1|) we have g2,t = 1, so minimizing εt by setting it arbitrarily close to f (|dt−1|)
maximizes the gain of A without changing GenerateBadSeq(A′, f, γ ). In both cases, letting
εt approach f (|dt−1|) is better for the algorithm and thus the modified algorithm A′ will
always have a higher payoff on GenerateBadSeq(A′, f, γ ). �

Given an f -compliant algorithm, we can write its probabilities as a function of the dif-
ference between expert gains. In particular, we define a function F(d) = 1/2 + ∑|d|

i=1 f (i),
where F(0) = 1/2. It is easy to verify that an algorithm A that sets the probability of the best
expert at time t to F(dt−1) is an f -compliant algorithm. Furthermore, as δ approaches 0,
every f -compliant algorithm will assign expert weights arbitrarily close to these weights. It
is convenient to think of the algorithm weights in this way for the next steps of the analysis.

We are now ready to define the function f used in sequence generation. Let

f (d) = 2m(d)−1

γ
√

T
where m(d) =

⌈
16α√

T
|d|

⌉
.

It then follows that

F(d) = 1

2
+

|d|∑

i=1

2m(i)−1

γ
√

T
≤ 1

2
+

m(d)∑

j=1

2j−1

γ
√

T

(√
T

16α

)
≤ 1

2
+ 2m(d)

16γα
. (3)

We next define the (possibly noncontiguous) m segment Tm to be the set of all times t for
which m(dt ) = m. More explicitly,

Tm = {t : (m − 1)(
√

T /(16α)) ≤ |dt | < m(
√

T /(16α))}.
We also need to introduce the notion of matched times and unmatched times. We define a

pair of matched times as two times t1 and t2 such that the difference between the cumulative
gains the two experts changes from d to d + 1 by time t1 and stays at least as high as
d + 1 until changing from d + 1 back to d at time t2. More formally, for some difference
d , dt1−1 = d , dt1 = d + 1, dt2 = d , and for all t such that t1 < t < t2, dt > d (which implies
that dt2−1 = d + 1). Clearly each pair of matched times consists of one time step in which



34 Mach Learn (2008) 72: 21–37

the gain of one expert is 1 and the other 0 while at the other time step the reverse holds.
We refer to any time at which one expert has gain 1 while the other has gain 0 that is not
part of a pair of matched times as an unmatched time. If at any time t we have dt = d , then
there must have been d unmatched times at some point before time t . We denote by Mm and
UMm the matched and unmatched times in Tm, respectively. These concepts will become
important due to the fact that an algorithm will lose with respect to the average for every
pair of matched times, but will gain with respect to the average on every unmatched time.

The following lemma quantifies the regret of the algorithm to the best expert and the
average of all experts for each pair of matched times.

Lemma 3 For any f -compliant algorithm A and any pair of matched times t1 and t2 in
the m segment, the gain of the algorithm from times t1 and t2 (i.e., gA,t1 + gA,t2 ) is 1 −
2m−1/(γ

√
T ), while the gain of the average and the best expert is 1.

Proof Let d = dt1 − 1. Without loss of generality assume that the leading expert is expert
1, i.e., d ≥ 0. The gain of the algorithm at time t1 is p1,t1 = F(d), while the gain at t2 is
p2,t2 = 1 − p1,t2 = 1 − F(d + 1) = 1 − (F (d) + f (d)). Thus the algorithm has a total gain
of 1 − f (d) = 1 − 2m−1/(γ

√
T ) for these time steps. �

Our next step is to provide an upper bound for the gain of the algorithm over the average
expert from the unmatched times only.

Lemma 4 The gain of any f -compliant algorithm A in only the unmatched times in the m

segment of the algorithm is at most 2m
√

T /(256γα2) larger than the gain of the average
expert in the unmatched times in segment m, i.e.,

∑

t∈UMm

(
gA,t − 1

2

)
≤ 2m

√
T

256γα2
.

Proof Since the leading expert does not change in the unmatched times (in retrospect), we
can assume w.l.o.g. that it is expert 1. From (3), it follows that

∑

t∈UMm

gA,t − 1/2 ≤
√

T
16α

−1∑

i=0

(
F(d + i) − 1

2

)
≤ 2m

16γα

√
T

16α
≤ 2m

√
T

256γα2
. �

Combining Lemmas 3 and 4, we can compute the number of matched times needed in
the m segment in order for the loss of the algorithm to the average from matched times to
cancel the gain of the algorithm over the average from unmatched times.

Lemma 5 For any fixed integer x, if there are at least T/(128α2) + x pairs of matched
times in the m segment, then the gain of any f -compliant algorithm A in the m segment is
bounded by the gain of the average expert in the m segment minus x2m−1/(γ

√
T ), i.e.,

∑

t∈Tm

gA,t ≤
∑

t∈Tm

1

2
− 2m−1x

γ
√

T
.

Proof From Lemma 4, A cannot gain more than 2m
√

T /(256α2γ ) over the average in the m

segment. From Lemma 3, the loss of A with respect to the average for each pair of matched
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times is 2m−1/(γ
√

T ). Since there are at least T/(128α2) + x pairs of matched times, the
total amount the algorithm loses to the average in the m segment is at least 2m−1x/(γ

√
T ). �

The next lemma bounds the number of segments in the sequence using the fact that A is
α
√

T -regret algorithm.

Lemma 6 For any f -compliant algorithm A such that Rbest,A,T < α
√

T and for γ =
248α2

/α, there are at most 48α2 segments in g = GenerateBadSeq(A,f, γ ).

Proof Once again we assume that leading expert is expert 1. Setting γ = 248α2
/α in (3), en-

sures that F(d) is bounded by 2/3 as long as m remains below 48α2. Thus F(d) is bounded
by 2/3 for all unmatched times until we reach segment 48α2. This implies that if the se-
quence reaches segment 48α2, then the regret with respect to the best expert will be at least
48α2

√
T /(16α)(1/3) = α

√
T which contradicts the fact that A is a α

√
T -regret algorithm,

so it cannot be the case that the sequence has 48α2 or more segments. �

Define a monotone f -compliant algorithm to be an f -compliant algorithm A such that
when GenerateBadSeq is applied to A it is the case that for all m and m′, for all t ∈ Tm

and t ′ ∈ Tm′ , if m < m′ then t < t ′. In other words, an f -compliant algorithm is monotone
if every m segment consists of a contiguous set of time steps. The following observation
is useful in simplifying the proof, allowing us to further restrict our attention to the class
of monotone f -compliant algorithms. It says that a lower bound on the performance of
monotone algorithms will imply the general lower bound.

Lemma 7 Consider any non-monotone f -compliant algorithm A, and let g =
GenerateBadSeq(A,f, γ ). There exists a monotone f -compliant algorithm A′ with g′ =
GenerateBadSeq(A′, f, γ ) such that

T∑

t=1

g′
A′,t >

T∑

t=1

gA,t .

Proof If A is not monotone, then there must be some time step t and some distance d > 0
such that m(d +2) = m(d +1)+1 and |dt | = d , |dt+1| = d +1, |dt+2| = d +2, and |dt+3| =
d + 1. Here the first crossover into the m(d + 2) segment occurs at time t + 2, and we cross
back into the m(d + 1) segment at time t + 3. Since A is f -compliant,

gA,t+1 + gA,t+2 + gA,t+3 = F(d) + F(d + 1) + (1 − F(d + 2)) = F(d) + 1 − f (d + 2).

Now, consider a modified f -compliant algorithm A′ that is the same as A everywhere
except it chooses to have the weight it places on the leading expert at time t + 2 treated as
arbitrarily close to but greater than 1/2 + F(d + 1) instead of arbitrarily close to but less
than 1/2 + F(d + 1), and sets the weight of this expert at time t + 3 arbitrarily close to
but less than 1/2 + F(d). This has the effect of modifying the sequence of distances so that
|dt+2| = d ; the rest of the sequence remains the same. On this modified sequence,

g′
A′,t+1 + g′

A′,t+2 + g′
A′,t+3 = F(d) + (1 − F(d + 1)) + F(d) = F(d) + 1 − f (d + 1).

Since m(d + 2) > m(d + 1), it must be the case that f (d + 2) > f (d + 1) and the total gain
of A′ is strictly higher than the total gain of A.
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If A′ is not monotone, this transformation process can be repeated until a monotone f -
compliant algorithm is found. Each time, the gain of the algorithm will strictly increase,
yielding the result. �

The above lemma shows how we can change an f -compliant algorithm into a monotone
f -compliant algorithm whose performance is at least as good. Therefore, we can consider
only monotone algorithms.

We are now ready to prove the main lower bound theorem.

Proof of Theorem 6 First, consider the case in which the main while loop of
GenerateBadSeq(A,f, γ ) terminates before time T . It must be the case that Gavg,t−1 −
GA,t−1 > 0.115

√
T /γ = Ω(

√
T ) and there is nothing more to prove.

Throughout the rest of the proof, assume that the main while loop is never exited while
generating the sequence g. From Lemma 5 we know that if there are at least T/(128α2)

pairs of matched times in the m segment, then the loss to the average from these times will
cancel the gain from unmatched times in this segment. By Lemma 6 there are at most 48α2

segments. If the algorithm has exactly T/(128α2) pairs of matched times at each segment,
it will have at most a total of T/(128α2)(48α2) = (3/8)T pairs of matched times and will
cancel all of its gain over the average from the unmatched times in all segments. Note that
there are at most 48α2

√
T /(16α) = 3α

√
T unmatched times. Since we have chosen T such

that α <
√

T /150, we can bound this by 0.02T . This implies that there are at least 0.49T

pairs of matched times. We define the following quantity for algorithm A: xm = |Mm|/2 −
T/(128α2). We have that

48α2∑

m=1

xm =
(

48α2∑

m=1

|Mm|
2

)

− 3T

8
≥ 0.49T − (3/8)T = 0.115T .

Let m∗ be the first segment for which we have
∑m∗

i=1 xi ≥ 0.115T . Since we consider
only monotone algorithms we know that by that time no segments larger than m∗ have been
visited. For every k, 1 ≤ k ≤ m∗, we have zk = ∑m∗

i=k xi > 0 (otherwise m∗ would not be the
first segment). Note that we can bound the regret to the average from below as follows,

m∗∑

i=1

xi

2i−1

γ
√

T
= 1

γ
√

T
x1 + 1

γ
√

T

m∗∑

i=2

xi

(

1 +
i−1∑

j=1

2j−1

)

= 1

γ
√

T

m∗∑

i=1

xi + 1

γ
√

T

m∗∑

i=2

i∑

j=2

2j−2xi

= 1

γ
√

T
z1 + 1

γ
√

T

m∗∑

j=2

2j−2zj ≥ 0.115T

γ
√

T
= 0.115

√
T

γ
.

This shows that the regret to the average must be at least 0.115
√

T /γ = β
√

T where
β = 0.115α/248α2

, yielding the first result of the theorem.
Finally, for any α′ ≤ 1/10, let α = α′√logT ≤ √

logT /10. From the previous result, this
implies that if the regret to the best expert is bounded by α′√T logT = α

√
T , then the regret

to the average must be at least (0.115α/2(48/100) logT )
√

T = 0.115αT 1/2−48/100 = Ω(T 1/50).
This proves the second part of the theorem. �
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6 Open questions

The results in this paper depend heavily on the fact that the gain of the algorithm at each
time step is the weighted average of the gains of the experts. This can be interpreted as
the expected gain that the algorithm would receive if it chose a single expert to follow on
each time step according to its current distribution and subsequently received the gain of
this expert. We might instead consider a scenario in which the algorithm is able to com-
bine the advice of the experts in more sophisticated ways and receive a gain based on
this combination, for example based on the squared loss of the combined prediction. It is
not clear if similar results could be proved in such a setting. It would also be interesting
to determine whether or not similar trade-offs exist in the portfolio setting (Cover 1991;
Helmbold et al. 1998).

It is currently unknown whether or not it is possible to strengthen Theorem 6 to say that
any algorithm with regret O(

√
T logT ) to the best expert must have regret Ω(T ε) to the

average for some constant ε > 0. Such a result would further close the gap between our
positive and negative results.
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