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ABSTRACT

Linear program and its duality have long been ubiquitous tools for analyzing NP-hard

problems and designing fast approximation algorithms. Plotkin et al proposed a primal-

dual combinatorial algorithm based on linear duality for fractional packing and covering,

which achieves significant speedup on a wide range of problems including multicommod-

ity flow. The key ideas there are: 1) design a primal oracle with partial constraints which

can employ existing efficient combinatorial algorithms; 2) perform multiplicative updates

on dual variables from the “feedback” of the oracle and drive the solution to optimal.

Recently, this algorithm is extended to SDP based relaxation on max-cut, sparsest cut

(Arora et al), and general convex programming (Khandekar et al). In this paper, we

summarize previous primal-dual algorithms as a unified computational paradigm. We

show how several important applications can be derived from this framework. We also

summarize the characteristics of them and address some common issues.
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Chapter 1

Introduction

Linear programming (LP) has been widely used for analyzing combinatorial problems

and designing fast approximation algorithms. The LP formulation leads to principle

approaches for the large class of packing and covering problems [18, 23], multicommodity

flow [18, 19], travelling salesman problem (TSP) [13], faculty location [21], etc. The

power of LP based algorithms largely attributes to the duality which simultaneously

considers two different but coupled problems: the primal and the dual. Each one of them

serves the guidance and bound on solving its counterpart, with a different perspective

to the problem.

In a seminal work [18], Plotkin et al proposed a primal-dual combinatorial algorithm

for fractional packing and covering, which greatly outperformed previous approaches on

the a large set of problems such as minimal cost multicommodity flow, the Held-Karp

bound for TSP, and cutting stock. The key idea is to feed the current estimate of the

dual to improve the primal during iterations, and vice versa. On the primal side, one

solves an oracle with partial constraints and a simplified cost function induced by dual

variables. This provides a freedom of designing oracles adapted to different problems and

can employ existing efficient combinatorial algorithms. On the dual side, dual variables

are adjusted by a multiplicative update rule according to the ”feedback” from the oracle.

The updated dual variables thus give a tighter bound in the next iteration.

The primal-dual formulation provides more insight to the problem than just treating

LP as a blackbox. Computationally, while solving LP using general purpose solutions

[20, 16, 22] (e.g. interior point methods) has shown some degree of success, combinatorial

algorithms built on the primal-dual formulation can exploit specific structures, generate

much more efficient approximation solutions, and provide explicit manipulation to the

computation routine.

The computation paradigm has been extended in many directions recently. Garg

et al [8] developed width independent algorithms for multicommodity flow, maximum

concurrent flow and other fractional packing problems by making adaptive advances.

Semidefinite programming (SDP) based relaxation has proved to give tighter bounds

3



on a set of NP-hard problems such as MaxCut [10], Sparsest Cut [1, 4], and Bal-

anced Separator [4]. Arora et al extended the primal-dual LP algorithm to the SDP

relaxation setting, which achieved significant speedup [3, 2]. Also, Khandekar et al gen-

eralized the technique to convex programming [13, 9].

In this paper, we unify the previous primal-dual approaches into one computational

framework and summarize into a common algorithm. We present the complexity analysis

based on a exponential potential function in the online prediction setting. In additional

to fractional packing and covering, we show how existing algorithms on multicommodity

flow, SDP relaxation, boosting and matrix game can be derived from this common

paradigm.
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Chapter 2

Fractional Packing and Covering

In this chapter, we define the packing and covering problem, and introduce the frac-

tional packing and covering which is the central problem throughout the paper. The

linear programming formulation of these two problems are dual to each other and hence

have the same optimum. We also give an equivalent min-max/max-min formulation of

fractional packing/covering, which suggests connection to applications developed later.

2.1 Packing and Covering

The packing problem arises from choosing the most valuable objects to fill knapsacks.

Suppose there are n objects whose prices are pi (i = 1, ..., n). One would like to choose

a subset of these items maximizing their total price, subject to m capacity constraints

such as weight, dimension, etc. Denote the maximum value of each capacity constraint

as cj and the contribution from item i as Wji. The capacity constraint requires the

total contribution
∑

i selected Wji not to exceed cj . Finding the optimal packing can be

written as the following integer programming problem:

max
x∈{0,1}n

∑

i

pixi

s.t.
∑

i

Wjixi ≤ cj , j = 1, ..., m (2.1)

where xi is the 0/1 indicator of whether object i is selected. By relaxing the integer

constraint x ∈ {0, 1}n to 0 ≤ x ≤ 1, we obtain a linear program which provides a lower

bound to eq. (2.2). We call it fractional packing in the following form:

max
x∈Rn

pTx (2.2)

s.t. A · x ≤ c

x ≥ 0

Here A = [W; I] and c = [c1, ..., cm, 1, ..., 1︸ ︷︷ ︸
n

]T . Hence the constraint x ≤ 1 has been

folded into the matrix constraint A · x ≤ c.
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The covering problem is to find sets with minimal total cost to cover elements. Let

cj ’s be the costs of the n sets. Each set j covers element i for Wij times. The multiplicity

of each element i to be covered is required to be at least pi. Let yj be the number of

copies of set j that are selected (choosing multiple copies are allowed). Similar to

packing, the covering problem can be written as an integer program, and relaxed to

fractional covering :

min
y∈Nn

∑

j

ciyj (2.3)

s.t.
∑

j

Wijyj ≥ pi, i = 1, ..., n

min
y∈Rn

cTy (2.4)

s.t. AT · y ≥ p

y ≥ 0

We will focus on the fractional packing and covering eq. (2.2),(2.4). In the following

chapters, we will see that they are the foundation of designing algorithms for numerous

NP-hard problems.

2.2 Lagrangian Dual

The fractional packing problem eq. (2.2) and fractional covering eq. (2.4) are actually

Lagrangian duals. By introducing nonnegative Lagrangian multipliers (y, λ) to the

constraints A · x ≤ c and x ≥ 0 respectively, the Lagrangian function L(x,y, λ) =

pTx + yT(c−Ax) + λTx always serves a upper bound of the fractional packing cost

function eq. (2.2) pTx, whenever x is feasible or not. Therefore, maxx L(x,y, λ) bounds

the optimum of eq. (2.2). To obtain the best upper bound, one would like to solve:

min
y,λ

max
x
L(x,y, λ) = min

y,λ
max

x
pTx + yT(c−Ax) + λTx

= min
y,λ

max
x

cTy + (p−ATy + λ)Tx

= min
p−ATy+λ=0

cTy

= min
AT y≥p

cTy (2.5)

The third equality is due to the fact that if p−ATy + λ 6= 0, one can always choose

appropriate x such that L(x,y, λ) goes to infinity. Hence only when the condition

p−ATy + λ = 0 is satisfied, it gives a finite bound. Now eq. (2.5) is exactly the

fractional covering problem eq. (2.4). By strong duality of linear program, the optimum

of eq. (2.2) and eq. (2.4) coincides with [5]. Therefore packing and covering are essentially

flipped sides of the same coin: solving one implies the other.
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2.3 Min-Max Formulation

Interestingly, the packing problem has an alternative min-max formulation, which sug-

gests its intimate connection to zero-sum game and Von Neumann’s celebrated minimax

theorem [17]. We will discuss this application in Chapter 4.

To simplify the formulation, we assume c > 0 for now and for many packing problem

the capacity c is indeed positive. Let P be a convex set defined on x and fj(x) (j =

1, ..., m) be a set of convex functions. The general min-max problem is defined as:

min
x∈P

max
j∈[m]

fi(x) (2.6)

where [m] = {1, ..., m} denotes the set of indices.

For fractional packing problem, we set

P = {x : pTx = 1, x ≥ 0} (2.7)

fj(x) = Aj · x/cj (2.8)

where Aj is the jth row of matrix A. The optimal value of eq. (2.6) µ∗mm and that of

eq. (2.2) µ∗p is related by µ∗mm = 1/µ∗p. For any feasible solution xmm with objective

value µmm, x = xmm/µmm is feasible for the packing eq. (2.2), meaning µ∗mm ≥ 1/µ∗p.

Conversely, any feasible packing solution xp produces a feasible solution xmm = xp/µp

whose objective value is 1/µp ≥ µ∗mm. Therefore, the min-max formulation eq. (2.6) is

equivalent to the original packing formulation eq. (2.2).

Similarly, covering eq. (2.4) can be formulated as a max-min problem:

max
y∈P

min
j∈[n]

gj(y) (2.9)

In fact, Young et al [23] called eq. (2.6) generalized packing problem.

The extra condition of b ≥ 0 can be removed if the range of aT
j · x is bounded.

The Lagrangian dual of eq. (2.6) provides a way to bound the cost function which

is developed as an oracle in the rest of the paper. The min-max formulation can be

rewritten as

min
x∈P,λ

λ

s.t. fj(x) ≤ λ, j = 1, ..., m

The Lagrangian dual function is L(x,y, λ) = λ+
∑

j yj [fj(x)−λ] =
∑

j yjfj(x)+λ(1−∑
j yj). maxy minx,λ L(x,y, λ) gives the dual formulation:

max
y

min
x∈P

∑

j

yjfj(x) (2.10)

s.t.
∑

j

yj = 1, y ≥ 0
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If there is an efficient routine computing minx∈P

∑
j yjfj(x) given a distribution y, one

can generate lower bounds on-the-fly from the current dual variables y. As we will see

later, this opens the door to efficient combinatorial algorithms.
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Chapter 3

Primal Dual Algorithms for Fractional

Packing and Covering

3.1 Feasibility Problem

First we start with a feasibility version of the fractional packing problem:

(Feasibility) Given a convex set P ⊆ Rn, an m× n constraint matrix A and

an n× 1 vector c, determine whether there exists x ∈ P such that

aT
j x− cj ≤ 0, j = 1, ..., m (3.1)

Here aT
j is the jth row of matrix A as defined before.

In the packing problem, the convex set P is a simple polytope:

P = {x : pTx ≤ α, 0 ≤ x ≤ 1} (3.2)

where α is a constant. If eq. (3.1) is feasible, then the optimal value µ∗p of eq. (2.2) is

at least α. Otherwise it is less than α. By a binary search on α, one can find a (1 + β)

approximation to the optimization problem within O(log β). Our discussion will focus

on eq. (3.1) in the subsequent sections.

3.2 Primal-Dual Framework

Primal and dual formulation provides different perspectives on the problem: for the

feasibility version, primal solution serves as “yes” certificate while the dual solution

serves as “no” certificate. Just as the divide-and-conquer strategy, one would like to

generate a series of yes and no certificates to narrow down the search space. Therefore,

primal and dual need to communicate, and use one to update the other.

3.2.1 Multiplicative Weight Update: from Primal to Dual

Suppose we are given a primal estimate and its corresponding cost as feedback, how can

we update the current dual estimate? We start with considering an online prediction
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problem.

Online Prediction. There are m experts who make predictions on uncertain events in

the world. Our goal is to construct the best strategy over time from these experts. At

time t, if the prediction from the jth expert is taken, the event (possibly adversarial)

incurs a positive reward Rt
j and a negative loss −Lt

j . Hence the net value gained is Vt
j =

Rt
j −Lt

j . One can construct a mixed strategy from these experts by linearly combining

their predictions. A mixed strategy specifies positives weights yt = (y1, ..., ym)T on

all the experts. The total net value of the strategy will be Vt =
∑

j yt
jVt

j where yt =

yt/
∑

j yt
j are the normalized weights. Consider the event sequence from time t = 0

to T . At time t, the strategy chooses weights yt on the experts based on all previous

observations Rk and Lk with 0 ≤ k ≤ t − 1, and gains a value Vt. One would like to

maximize the cumulative value over time V =
∑T

t=0 Vt.

Intuitively, experts making correct predictions previously should be up-weighted

while experts predicting incorrectly should be down-weighted. In other words, the

weights should be updated according to the “feedback” of the experts from the world

Vt
j . We introduce a multiplicative weight update scheme to guide the strategy from the

feedback:

(Multiplicative Weight Update) Initialize weights y(0) = (1, ..., 1)T . At

time t, prediction from expert j produces a value of Vt
j ∈ [−1, 1]. Given a

constant ε ∈ (0, 1), update the weights yt+1 at time t + 1 by

yt+1
j = yt

j exp(εVt
j) (3.3)

Theorem 1. (Perturbed Value of the Strategy) LetR =
∑

t

∑
j yt

jRt
j and L =

∑
t

∑
j yt

jLt
j

be the cumulative reward and loss of the strategy using eq. (3.3). The perturbed value of

the strategy given by eq. (3.3) is worse than the performance of best pure strategy only

by log m
ε , as stated in the following inequality:

max
j
Vj ≤ exp(ε)R− exp(−ε)L+

log m

ε
(3.4)

Proof. Consider the potential function Φt =
∑

j yt
j .
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On the one hand, we can compute it using the update rule:

Φt =
∑

j

yt
j

=
∑

j

y(0)
t∏

k=1

exp[εVk
j ] (Update rule (3.3))

=
∑

j

exp[ε
t∑

k=1

Vk
j ] (y(0)

j = 1)

≥ exp[ε ·
t∑

k=1

Vk
j ] (3.5)

Note the above inequality holds for any j. Therefore, Φt is bounded below by

Φt ≥ exp[ε ·max
j
Vj ] (3.6)

On the other hand, we have

yt+1
j − yt

j = yt[exp(εVt
j)− 1]

≤ yt · (εVt
j) · exp(εVt

j)

= yt[ε exp(εVt
j)Rt

j − ε exp(εVt
j)Lt

j ]

≤ yt[ε exp(ε)Rt
j − ε exp(−ε)Lt

j ]

= ytεṼt
j

Here Ṽt
j = exp(ε)Rt

j − exp(−ε)Lt
j is the “perturbed” version of value Vt

j . The first

inequality holds because exp(x)− 1 ≤ x · exp(x) for any x. The second inequality is due

to the fact that Vt
j ∈ [−1, 1].

By summing up the above inequality over j, we have

Φt+1 =
∑

j

(yt+1
j − yt

j) + Φt

≤
∑

j

yt
jεṼt

j + Φt

= εΦt ·
∑

j

yt
jṼt

j/
∑

j

yt
j + Φt

= Φt(1 + εṼt)

≤ Φt · exp(εṼt) (1 + x ≤ exp(x))

Using induction over t and Φ0 = m, we bound Φt above by

Φt ≤ m · exp(
∑

k

εṼk) (3.7)
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Finally combining eq. (3.6), (3.7) yields

ε ·max
j
Vj ≤ log m +

∑

k

εṼk (3.8)

which is equivalent to eq. (3.4).

Theorem 1 is essential in all the analysis presented in this paper. It proves the quality

of the multiplicative update rule (3.3). Since the average strategy given by the update

rule cannot exceed the best strategy in the hindsight, we would like the gap between

their values maxj

∑
t Vt

j and
∑

t Vt. This value is called regret of the strategy. The

theorem proves the fact that the regret is as small as log m/ε and constant to time T .

We can bound the regret over time by the following corollary:

Corollary 1. (Regret Over Time) If Vt
j ∈ [−ρ, ρ] for all j, then we have a bound on the

average value V/T :

max
j

Vj

T
≤ V

T
+

ρ log m

εT
+ ρε exp(ε) (3.9)

Proof. Since Vt
j ∈ [−ρ, ρ], we can substitute Vt

j by Vt
j/ρ and prove the following inequal-

ity for Vt
j ∈ [−1, 1]:

max
j
Vj ≤ V +

log m

ε
+ Tε exp(ε)

We set Rt
j = max(0,Vt

j) and Lt
j = max(0,−Vt

j), which satisfies Vt
j = Rt

j − Lt
j .

Under these simplifications, we can apply Theorem 1 on V:

max
j
Vj ≤ Ṽ +

log m

ε

= V +
log m

ε
+ (exp(ε)− 1)R− (exp(−ε)− 1)L

≤ V +
log m

ε
+ ε exp(ε)|V|

≤ V +
log m

ε
+ ε exp(ε)T

The first inequality uses the fact that |V| = R+L, exp(ε)−1 ≤ ε exp(ε) and 1−exp(−ε) ≤
ε < ε exp(ε).

The above bound shows that the regret over time consists of two terms: the term
ρ log m

εT which can be “washed out” by time and the other term ρε exp(ε) which cannot.

If we would like to diminish the regret over time, for example proportional to a small

number δ, we can set ε ∼ δ/ρ and T ∼ ρ2/δ2. However, if V only contains reward or

loss, the result can be strengthened as:
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Corollary 2. (Regret for Reward Only) If Vt
j ∈ [0, ρ] for all j, i.e. Lt

j = 0 for all t and

j, then we have a bound on the average value V/T :

max
j

Vj

T
≤ exp(ε) · V

T
+

ρ log m

εT
(3.10)

Corollary 3. (Regret for Loss Only) If Vt
j ∈ [−ρ, 0] for all j, i.e. Rt

j = 0 for all t and

j, then we have a bound on the average value V/T :

max
j

Vj

T
≤ exp(−ε) · V

T
+

ρ log m

εT
(3.11)

These two corollaries are direct consequences of eq. (3.4). They are stronger claims

than Corollary 1 because we only need to set T ∼ ρ/δ to make the regret over time

small, instead of T ∼ ρ/δ. As we will see later, this is the fundamental difference

between packing/covering and general LP, in which the latter has higher complexity.

Width. We have introduced an important parameter ρ refered as width in the literature.

Since the running time T is proportional to ρ or even ρ2, reducing width is critical for

almost all primal-dual algorithms. We will see the example on multicommodity flow in

Chapter 4.

3.2.2 The Oracle: from Dual to Primal

From the dual formulation eq. (2.10), we would like to improve the current primal

solution by minimizing
∑

j yjfj(x).

(Oracle) Given a convex constraint set P ⊆ Rn, a dual variable y ∈ Rm

and a set of functions Vj(x) (j = 1, ..., m). Optimize the linear combination of

Vj(x) in the constraint set P :

min
x∈P

∑

j

yjVj(x) (3.12)

The constraints in the original problem have been separated into two parts. Con-

straints easy to check and optimize are pushed into Constraint Set P , making the

oracle efficient to compute. Hard constraints are left outside and are only approximated

by the Lagrangian as in eq. (3.12). It is a design choice how to divide the two.

In the case of packing, P is given by eq. (3.2). Define Vj(x) = aT
j x−cj for j = 1, ..., m.

Notice that
∑

j yjVj(x) = (ATy)Tx− cTy, given y, the oracle becomes

min
x

(ATy)Tx (3.13)

s.t. cTx = α, 0 ≤ x ≤ 1

If c ≥ 0 and A ≥ 0, one can solve eq. (3.13) by simply sorting (AT y)j/cj in ascending

order, and choose xj = 1 until according to the order until cTx = α is satisfied. The

oracle (3.12) simply reduces to sorting whose complexity is O(n log n).
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3.2.3 Algorithm Summary

So far we have all the ingredients of primal dual combinatorial algorithms. We summarize

the primal-dual algorithm for packing as follows:

Algorithm 1 Primal Dual Algorithm
1: Initialize y0 = (1, ..., 1)T , t = 0, S = 0, ε = δ/3ρ.

2: Define fj(x) = aT
j x− cj .

3: Do

4: Call oracle (3.12) and obtain the optimum µt and optimal point xt.

5: If µt > 0 then return infeasible.

6: Compute wt = 1/ maxj |fj(xt)|.
7: Run multiplicative weight update (3.3):

yt+1
j = yt

j exp(εwtfj(xt))

8: S := S + wt.

9: t := t + 1.

10: Until S ≥ 9ρ log m/δ−2.

11: Output feasible solution x̄ =
∑

t wtxt

∑
t wt .

3.3 Complexity Analysis

Theorem 2. (Complexity of the Primal Dual Algorithm) Algorithm 1 either declare that

the fractional packing eq. (2.2) is infeasible, or output an approximate feasible solution

x̄ satisfying

aT
j x̄− cj ≤ δ (3.14)

for all j = 1, ..., m. The total number of calls to the oracle is O(ρ2δ−2 log m) with

ρ = maxj maxx∈P |fj(x)|.

Proof. We build our proof based on Corollary 1. First notice that if at some time

µt > 0, then the eq. (2.2) is indeed infeasible. Otherwise suppose there exists xt such

that fj(xt) = aT
j xt − cj ≤ 0 for all j. Because yt ≥ 0 throughout the algorithm,

µt ≤ ∑
j yt

jfj(xt) ≤ 0, a contradiction.

Suppose the algorithm runs to the end and output x̄. Let Vt
j = wtfj(xt) be the value
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incurred by the update. Notice that Vt
j ∈ [−1, 1]. By applying Corollary 1, we have

max
j

[aT
j x̄− cj ] = max

j

∑
t wt(aT

j xt − cj)∑
t wt

= max
j

∑
t Vt

j∑
t wt

≤ 1∑
t wt

[V +
log m

ε
+ εT exp(ε)]

≤ 1∑
t wt

[
log m

ε
+ εT exp(ε)]

=
1
S

[
log m

ε
+ εT exp(ε)]

≤ δ (3.15)

The first inequality uses the fact that Vt = (wt/
∑

j yt
j)

∑
j yt

jfj(xt) = wtµt/
∑

j yt
j ≤ 0

for every t since the oracle never fails. The last inequality is due to the termination

condition S ≥ 9ρ log m/δ−2, T/S = T/
∑

t wt ≤ ρ and ε = 3δ/ρ.

Therefore, x returned by the algorithm satisfies the approximate feasibility eq. (3.14).

Finally, each time the algorithm collects wt ≥ 1/ρ and it terminates when S =
∑

t wt ≥
S ≥ 9ρ log m/δ−2, the total number of iterations is at most O(ρ2δ−2 log m).

Variant 1 If A ≥ 0 and c ≥ 0, we can improve the running time of Algorithm 1

to O(ρδ−1 log m) by changing the termination condition to S ≥ ρδ−1ε−1 log m and set

fj(x) = aT
j x/cj .

Variant 2 If fj(x) ≥ 0 for x ∈ P , we can improve the running time of Algorithm 1 to

O(ρδ−1 log m) by changing the termination condition to S ≥ ρδ−1ε−1 log m.

In both cases, we can use Corollary 2 instead. Eq. (3.15) has a tighter bound

maxj [aT
j x̄−cj ] ≤ log m

εS , the rest of the analysis falls through. The two variants subsume

the results in [18].
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Chapter 4

Applications and Extensions

The computational paradigm developed in the previous chapter is very flexible. Con-

straint Set and Oracle can be tailored to specific problems. Efficient combinatorial

algorithms can be incorporated as Oracle and largely reduce the complexity of primal-

dual algorithms. Therefore, it is used in designing fast approximation algorithms for

numerous problems. We summarize several applications and extensions, and show how

they are derived from the basic primal-dual algorithm in the following sections.

4.1 Multicommodity Flow

We first illustrate the primal-dual framework on the multicommodity flow problem.

Maximum Multicommodity Flow. Given a graph G = (V, E), edge capacity ce on

every edge e ∈ E and k pairs of sources and sinks (si, ti), with each one transferring one

commodity, one would like to maximize the sum of flows allowed by the graph. Let P
be the set of all possible paths between pairs of sources and sinks. One can think of the

multicommodity flow as “packing” these paths to saturate the edge capacities. The LP

formulation can be written as

min
x

∑

p∈P
xp

s.t.
∑
p3e

xp ≤ ce ∀e, x ≥ 0

Note that we never explicitly solve this LP, because the number of variables is just huge:

there are exponentially many different paths. The dual problem is more manageable:

min
y

∑
e

yece

s.t.
∑
e∈p

ye ≥ 1 ∀p, y ≥ 0

The meaning of the dual is to minimize the cost
∑

e yece given a “distance” function y

on edges, subject to the shortest path between all pairs of terminals has length at least

1. It suggests that only the shortest paths matter in the final multicommodity flow.
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One naive idea is to apply Algorithm 1 directly by taking P = {x :
∑

p xp =

α}. Consider fe(x) =
∑∑

p3e xp/ce. The oracle minimizes
∑

e ye

∑
p3e xp/ce =∑

p xp

∑
e∈p ye/ce which amounts to find the shortest path with length ye/ce. Every

time the oracle routes the flow following the shortest path. The final flow is the average

flow over time. However, the width is as high as ρ = maxe maxx∈P |fe(x)| ≥ f∗/cmin

where f∗ is the optimal flow. This only gives a pseudo-polynomial algorithm because

the running time depends on cmin instead of log(cmin) (length of input).

The cause of the problem is that each step the oracle routes “too much” flow, without

even respecting the capacity constraint. Another way to see it is that the constraint for

P is too loose, making the width too high. Garg et al [9] fixed this problem by only

routing mine∈p∗ ce amount of flow, where p∗ is the shortest path returned by the oracle.

With this modification, we can map Algorithm 1 to the problem:

• Constraint Set. P = {x :
∑

p xp = α, xp ≤ mine∈p ce}.

• Oracle. Given dual variables y, find x ∈ P minimizing
∑

e ye

∑
p3e xp/ce by

computing the shortest path p∗.

• Multiplicative Weight Update. Route f t = mine∈p∗ ce units of flow, which

is the minimal capacity on p∗. Update y by y
(t+1)
e = y

(t+1)
e · exp(εf t/ce).

The width has been automatically upper bounded by 1 since f t ≤ ce. This generate the

following combinatorial algorithm:

Algorithm 2 Maximum Multicommodity Flow
1: Initialize y0

e = 1 for all edges e. f = 0, t = 0.

2: Do

3: Call oracle to compute the shortest path pt with length yt
e/ce.

4: Route f t = mine∈pt ce units of flow on pt: xt
e = f t if e ∈ pt, otherwise xt

e = 0.

5: Run multiplicative weight update:

yt+1
e = yt

e exp(εf t/ce)

6: f := f + f t.

7: t := t + 1.

8: Until f ≥ log m
ε2 .

9: Output feasible flow xfea = x/C and ffea = f/C with C = maxe

∑
p3e xe

ce
.

Here the value C is called the maximal congestion which measures maximal relative

load on edges.

Analysis. We will show that the final flow returned by the algorithm is feasible and

close to the optimum.

Proposition 1. The final flow xfea in Algorithm 2 is feasible and ffea ≥ (1 − 2ε)f∗

where f∗ is the optimal flow.
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Proof. Set Vt
e = f t/ce as the value in Theorem 1. Since it is always positive, the loss

can be ignored: L = 0.

max
e

∑
t

Vt
e ≤ exp(ε)

∑
t

Vt +
log m

ε
(4.1)

Note that xt
e = f t if and only if e on path pt selected by the oracle. Hence we have

max
e

∑
t

Vt
e = max

e

∑
t xt

e

ce

The left hand side of eq. (4.1) is the maximal congestion C.

Next we bound the value of
∑

t Vt:

∑
t

Vt =
∑

t

∑
e∈pt yt

e · (f t/ce)∑
e yt

e

=
∑

t

f t ·
∑

e∈pt yt
e/ce∑

e yt
e

We will prove that the factor (
∑

e∈pt yt
e/ce)/(

∑
e yt

e) ≤ 1/f∗ where f∗ =
∑

p′ f
∗
p′ is the

optimal flow. In fact
∑

e∈pt yt
e/ce∑

e yt
e

≤
∑

e∈pt yt
e/ce∑

e yt
e ·

∑
p′3e f∗p′/ce

=

∑
e∈pt yt

e/ce∑
p′ f

∗
p′ ·

∑
e∈p′ y

t
e/ce

≤
∑

e∈pt yt
e/ce∑

p′ f
∗
p′ ·

∑
e∈pt yt

e/ce

=
1∑

p′ f
∗
p′

=
1
f∗

(4.2)

The first inequality is due to the fact that the optimal flow must satisfy the capacity

constraint
∑

p′3e f∗p′ ≤ ce. The second inequality uses the property that pt is the shortest

path by length yt
e/ce, and

∑
e∈pt yt

e/ce ≤
∑

e∈p′ y
t
e/ce for any path p′.

Combining eq. (4.1), (4.2), we have

C ≤ exp(ε)
f

f∗
+

log m

ε

When the algorithm returns, Since the termination condition is C ≥ log m
ε2 , the final

flow is close to the optimum:

f

f∗
≥ exp(−ε)(C − log m

ε
) ≥ (1− 2ε)C (4.3)

ffea = f/C ≥ (1− 2ε)f∗ is therefore a (1− 2ε) approximation.

Running Time. In each step t, pt creates a congestion of 1 on the edge e ∈ pt with

minimal capacity. The final congestion on any edge is at most d log m
ε e. Therefore, an
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edge can be the minimal edge of capacity on shortest path at most O( log m
ε ) times. The

graph has m edges and each time we call shortest path k times for all terminal pairs.

The total running time is O(m log m
ε · Tsp) = O(km(m + n log n) log m

ε ) using Fibonacci

heap implementation for shortest path.

4.2 Semidefinite Programming (SDP)

Semidefinite programming (SDP) has been applied for designing approximation algo-

rithms for a wide range of combinatorial problems. The notable SDP relaxation for

Max Cut [10] provides a 0.878-approximation, outperforming LP based relaxation al-

gorithms which only give approximation around 0.5. The method is extended to solve

Max2Sat and other satisfiability problems. Arora et al [4] utilizes SDP to generate

an O(
√

log n)-approximation Sparsest Cut. The procedures of these algorithms are

very similar: one solves the SDP relaxation to produce a good geometric embedding of

the nodes, and then some rounding scheme is applied to generate tight approximation

solutions.

SDP also satisfies duality defined on the cone of semidefinite matrices. The general

primal and dual SDP can be written as:

(Primal SDP)

min
X

tr(CX) (4.4)

s.t. tr(AjX) ≤ bj , j = 1, ..., m

X º 0

(Dual SDP)

max
y

bT y (4.5)

s.t.
m∑

j=1

Ajyj º C

y ≥ 0

Notice that the primal SDP has the same form as packing and the dual SDP has the

same form as covering, except that positivity is replaced by semidefiniteness and vector-

vector product is replaced by matrix-vector product. In fact, LP is a special case of

SDP by restricting X to be diagonal.

There are two alternative paths extending the primal-dual algorithm to SDP: one on

the primal problem eq. (4.4) [14, 2] and the other on the dual eq. (4.5) [3].

Extension to Primal

We consider MaxCut for illustration purpose:

min
X∈Rn×n

tr(CX) (4.6)

s.t. diag(X) ≤ 1

X º 0

For simplicity, the optimization problem is reduced to feasibility as in Chapter 3. First

we bound the trace of the matrix X by
∑

i Xii ≤ R. For MaxCut, R is equal to n. We

map Algorithm 1 to primal SDP as follows.
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• Constraint Set. P = {X : X º 0, tr(X) ≤ R} is the set of all semidefinite

matrices whose trace is bounded by R = n.

• Oracle. Optimize minX∈P y0(tr(CX)/α−1)+
∑

j ym
j=1[tr(AjX)−bj ] given dual

variables y0, y1, ..., ym corresponding to the (m+1) constraints. Here the feasibility

tr(CX) ≤ α is treated as a constraint. Solving the oracle amounts to computing

the smallest eigenvector of matrix y0 ·C +
∑

j yjAj .

• Multiplicative Weight Update. yt+1
j = yt+1

j exp(εVt
j), (j = 0, ..., m) similar

to line 7 in Algorithm 1.

The oracle can be implemented efficiently for large sparse matrices using Lanczos method

[11]. The algorithm [2] uses the above reduction run in Õ(n1.5 · min(N, n1.5)), where

Õ(f(n)) = O(f(n) logc f(n)) for some c and N is the number of non-zero entries in A.

Extension to Dual

The application of Algorithm 1 to the dual problem is even more powerful. Con-

straint Set and Oracle become similar to packing and covering in the LP formu-

lation, hence with much lower complexity. The difference is that Multiplicative

Weight Update needs to be generalize to matrix.

• Constraint Set. P = {y : bTy ≤ α, y ≥ 0}.

• Oracle. Optimize maxy∈P

∑
j tr(AjX)yj − tr(CX) given X. This amounts to

sorting analogous to eq. (3.12).

• Multiplicative Weight Update. Compute Xt+1 = Xt exp[ε
∑

j(Ajy
t
j−C)/ρ].

Now the complexity transfers to the step of multiplicative weight update on matrices.

Exponential of a matrix X can be computed by

exp(X) =
∞∑

k=0

Xk

k!

where one can compute the series up to only a few term given the norm ‖X‖ is bounded.

[3] utilizes random projection which enables computing exp(X) in O∗(N). This also

gives O∗(N) for the overall algorithm, which is O∗(n1.5) speedup compared to solving

the primal problem for sparse matrices.

4.3 Boosting

Boosting, particularly AdaBoost [6, 7] has been a powerful learning technique in both

theory and application. Given training examples, it trains a strong classifier by combin-

ing a set of weak classifiers in a weighted majority way [15]. To describe the setting, we

first briefly review the PAC learning model [12].
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PAC Learning. Let X be a set called the domain. A concept is a Boolean function

c : X → {0, 1}. A learner have a sequence of training examples (x, c(x)) drawn from an

arbitrary but unknown distribution D on X. The learner is asked to output a hypothesis

h : X → {0, 1}, whose error is measured by ExD(|h(x)− c(x)|). A strong PAC learning

algorithm is one that given α, γ > 0 and access to random examples, outputs with

probability (1−γ) a hypothesis whose error is at most α. A weak PAC learning algorithm

is one that given β, γ > 0 outputs with probability (1− γ) a hypothesis whose error is

at most 1/2− β.

Boosting. If there exists weak learning algorithm for a collection of concepts, there

exists a strong learning algorithm. Suppose there are m training examples (xj , yj) with

labels yi ∈ {0, 1}. Boosting maintains weights w on x. At each round t, it calls the weak

learning algorithm on the distribution wt of the training examples, and outputs a weak

hypothesis ht(x) and error et
j on xj . Weights are then increased when the examples are

labeled incorrectly i.e. et = 1. The strong hypothesis equal to the majority voting from

h1(x), ..., hT (x). It resembles to online prediction (3.3) with the following ingredients:

• Oracle A weak learning algorithm.

• Multiplicative Weight Update. wt+1
j = wt

j exp(ε · et
j).

Note that each example corresponds to “experts” in online prediction and the “events”

are the weak hypotheses generated at each round.

We present a simple version of Boosting as follows.

Algorithm 3 Boosting
1: Initialize w0

j = 1 for samples j = 1, ..., m, t = 0.

2: Do

3: Set pt
j = wt

j/
∑

j wt
j for j = 1, ..., m.

4: Call oracle Weak Learning on the distribution pt. Output a hypothesis ht(x).

5: Run multiplicative weight update wt+1
j = wt

j exp[ε · et
j ] with et

j = |ht(xj)− yj |.
6: t := t + 1.

7: Until t > T .

8: Output final hypothesis hfinal(xj) =

{
1,

∑
t ht(xj) ≥ T/2;

0, otherwise.

Proposition 2. Algorithm 3 returns a final hypothesis hfinal whose error is no greater

than α with ε = β, T = 4
β2 log 1

α .

Proof. Let Vt
j = et

j . By modifying the proof of Theorem 1, we derive the following

inequality from eq. (3.7):

ΦT ≤ m · exp[ε exp(ε)
∑

t

et] ≤ m · exp[ε(1 + 2ε)T (
1
2
− β)] (4.7)
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because in each round the error et of the weak learning algorithm is at most 1/2 − β.

Note that exp(ε) ≤ 1 + ε exp ε ≤ 1 + 2ε for ε ≤ 1/ log 2.

Let E be the set of examples that hfinal misclassifies.
∑

t et
j ≥ T/2 for j ∈ E due to

majority voting. From eq. (3.5), we have:

ΦT ≥
∑

j

exp(ε
∑

t

et
j) ≥

∑

j∈E

exp(ε
∑

t

et
j) ≥ |E| exp(εT/2) (4.8)

Combining eq. (4.7) and (4.8) we obtain

|E| exp(εT/2) ≤ m · exp[ε(1 + 2ε)T (
1
2
− β)]

This means the error is no greater than α as desired:

|E|
m

≤ exp[ε2T − ε(1 + 2ε)Tβ] ≤ exp(−β2

4
T ) = α

Algorithm 3 is called hedge in [6]. AdaBoost is an adaptive version where the step

size ε in each round are adjusted according to the error of the weak hypothesis et (this is

why it is called Adaptive Boosting). The underlying principle stays the same the proof

here adapts to AdaBoost as well.

4.4 Zero-Sum Two Player Game

The online prediction strategy described in Theorem 1 as well as the min-max formula-

tion eq. (2.6) has a very close connection to zero-sum two player matrix game.

Matrix Game. Consider a game defined by a playoff matrix M ∈ Rn×m. A row

player R and a column player C are competing in the game. The row player has n

strategies represented by the rows of the matrix M. Accordingly, the column player has

m strategies from M’s columns. When R chooses strategy i and C chooses strategy j

to play the game, R obtains a playoff Mij and C suffers a loss Mij . The game is zero

sum because the playoff of R exactly equals to the loss of C. Moreover, R can construct

a mixed strategy specified by a distribution x ∈ Rn×1 on the rows (
∑

i xi = 1, x ≥ 0).

Similarly the mixed strategy of C is denoted as a distribution y. When R and C play

using the mixed strategies, the playoff is xTMy. The goal of the row player R is to

find the best x, such that no matter how good the C’s strategy is, R always obtain the

biggest playoff. This worst case optimal playoff is computed by maxx miny xTMy. The

column player C wants to optimize miny maxx xTMy, which is the minimum of the

worst loss.

The min-max theorem [17] proves that these two optima are identical and the com-

mon value is call the value of the game:

v = max
x

min
y

xTMy = min
y

max
x

xTMy (4.9)
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We derive a procedure from Algorithm 1 to compute the value of a matrix game. Without

loss of generality, we assume Mij ∈ [0, 1]. Let strategies of R be experts and C be the

adversarial world.

• Constraint Set. P = {y :
∑

j yj = 1}.

• Oracle. Given row strategy xt, find a column strategy yt = miny∈P (xt)TMy.

This is simply the column ct = arg minj(MTxt)j with the minimal loss.

• Multiplicative Weight Update. R update the row strategies by xt+1 = xt •
exp(ε ·MyT) (• is element-wise multiplication).

The game is played T rounds using the above procedure. We show that the average

strategies x̄ =
∑

t xt

T and ȳ =
∑

t yt

T are near optimum.

Proposition 3. The value of the game satisfies eq. (4.9). Following the above procedure,

one can compute v within (1 + β)-approximation where β = ε exp(ε) + log m
εT .

Proof. For clarity we define vcol = miny maxx xTMy and vrow = maxx miny xTMy and

prove that vrow = vcol. From Corollary 2,

vcol = min
y

max
x

xTMy

≤ max
i

(Mȳ)i

≤ exp(ε) · 1
T
·
∑

t

min
y

(xt)TMy +
log m

εT

≤ exp(ε) · 1
T
·min

y

∑
t

(xt)TMy +
log m

εT

= exp(ε) ·min
y

x̄TMy +
log m

εT

≤ exp(ε) ·max
x

min
y

xTMy +
log m

εT

≤ exp(ε) · vrow +
log m

εT

The first inequality comes from the fact that given y, the best playoff for the row strategy

is maxx xTMȳ = maxi(Mȳ)i. The second inequality is exactly Theorem ??. The third

inequality says the sum of minimum is not greater than the minimum of the sum. The

fourth inequality is due to x̄ might not be optimal.

Similarly, we have

vrow ≤ exp(ε) · vcol +
log n

εT

By taking the limit ε → 0 and εT →∞, we conclude that vrow = vcol.

Finally, the procedure computes the game value with error not greater than

exp(ε) · v +
log m

εT
− v ≤ exp(ε)− 1 +

log m

εT
≤ ε exp(ε) +

log m

εT
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Running Time. To achieve (1+β)-approximation, we set ε = β/3 and T = log m/(3β2).

The complexity of each iteration is dominated by matrix multiplication MTx in the or-

acle denoted as Tmult. For a full playoff matrix M, Tmult = O(mn). The total running

time is O(mnT ) = O(mn log m/β2). In [17], John Von Neumann gave a similar algo-

rithm with complexity O(m2n log(mn)/β2).
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Chapter 5

Conclusion

We have surveyed several primal-dual combinatorial algorithms in a unified framework.

The common characteristic of this class is that the primal and dual problems are tracked

simultaneously, and one is used to bound and improve the other. The primal is improved

by an oracle which enables fast approximate combinatorial subroutines. The dual evolves

using multiplicative update from the feedback of the oracle. The overall complexity

is very low in terms of problem size, and mostly dominated by the width and the

approximation factor.

Originally designed for packing and covering, with simple elements or structured ele-

ments such as paths, primal-dual combinatorial algorithms have been applied extensively

in many more problems beyond packing and covering. We show several representative

examples in this paper and demonstrate how fast algorithms can be derived from the ba-

sic primal-dual framework. In many of the problems, the primal-dual algorithms achieve

significant speedup in large-scale problems. We believe that the primal-dual framework

is very promising as a general computational paradigm for many other problems.
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