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Abstract

We propose a principled account on multiclass spectral
clustering. Given a discrete clustering formulation, we first
solve a relaxed continuous optimization problem by eigen-
decomposition. We clarify the role of eigenvectors as a gen-
erator of all optimal solutions through orthonormal trans-
forms. We then solve an optimal discretization problem,
which seeks a discrete solution closest to the continuous op-
tima. The discretization is efficiently computed in an itera-
tive fashion using singular value decomposition and non-
maximum suppression. The resulting discrete solutions are
nearly global-optimal. Our method is robust to random ini-
tialization and converges faster than other clustering meth-
ods. Experiments on real image segmentation are reported.

Spectral graph partitioning methods have been success-
fully applied to circuit layout [3, 1], load balancing [4] and
image segmentation [10, 6]. As a discriminative approach,
they do not make assumptions about the global structure of
data. Instead, local evidence on how likely two data points
belong to the same class is first collected and a global deci-
sion is then made to divide all data points into disjunct sets
according to some criterion. Often, such a criterion can be
interpreted in an embedding framework, where the group-
ing relationships among data points are preserved as much
as possible in a lower-dimensional representation.

What makes spectral methods appealing is that their
global-optima in the relaxed continuous domain are ob-
tained by eigendecomposition. However, to get a discrete
solution from eigenvectors often requires solving another
clustering problem, albeit in a lower-dimensional space.
That is, eigenvectors are treated as geometrical coordinates
of a point set. Various clustering heuristics such as K-
means [10, 9], transportation [2], dynamic programming
[1], greedy pruning or exhaustive search [3, 10] are subse-
quently employed on the new point set to retrieve partitions.

We show that there is a principled way to recover a dis-
crete optimum. This is based on a fact that the continuous

optima consist not only of the eigenvectors, but of a whole
family spanned by the eigenvectors through orthonormal
transforms. The goal is to find the right orthonormal trans-
form that leads to a discretization.
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Figure 1. Schematic diagram of our algorithm. (1) We
first obtain eigenvectors Z∗. Shown as the inner circle, Z∗

generates the whole family of global optima through or-
thonormal transform R. After length normalization, each
optimum corresponds to a partitioning solution in the con-
tinuous domain (the outer circle). (2) We then obtain a dis-
crete solution closest to the continuous optima in an itera-
tive fashion. Starting from discrete solution X∗(0), we find
X̃∗(0) by computing R∗ that brings X̃∗ closest to X∗(0).
Given the continuous optimum X̃∗(0), we compute its clos-
est discrete solution X̃∗(0); so on and so forth. The algo-
rithm converges at the solution pair (X∗(2), X̃∗(2)), which
are the closest to each other. The optimality of X̃∗(2) guar-
antees that X∗(2) is nearly global-optimal.

Illustrated in Fig. 1, our method has two steps. (1)
We solve a relaxed continuous optimization problem. The
global optima are given by some eigenvectors subject to ar-
bitrary orthonormal transforms. (2) We iteratively solve for
a discrete solution that is closest to the continuous optima
using an alternating optimization procedure. We alternate
the following: the continuous optimum closest to a discrete



solution is located by computing the best orthonormal trans-
form, and the discrete solution closest to a continuous one
is located by non-maximum suppression. Such iterations
monotonously decrease the distance between a discrete so-
lution and the continuous optima. After convergence, we
obtain a nearly global-optimal partitioning. We apply our
method to real image segmentation.

1 Multiclass normalized cuts

A weighted graph is specified by G = (V, E,W ), where
V is the set of all nodes; E is the set of edges connecting the
nodes; W is an affinity matrix, with weights characterizing
how likely two nodes belonging in the same group. W is
assumed nonnegative and symmetric.

Let [n] denote the set of integers between 1 and n: [n] =
{1, 2, · · · , n}. Let V = [N ] denote the set of all elements
(data points or pixels) to be grouped. To cluster N points
into K groups is to decompose V into K disjoint sets, i.e.,
V = ∪K

l=1Vl and Vk ∩ Vl = ∅, ∀k 6= l. We denote this
K-way partitioning by ΓK

V
= {V1, · · · , VK}.

1.1 Multiclass partitioning criteria

Let A, B ⊂ V. We define links(A, B) to be the total
weighted connections from A to B:

links(A, B) =
∑

i∈A,j∈B

W (i, j). (1)

The degree of a set is simply the total links to all the nodes:

degree(A) = links(A, V). (2)

Using the degree as a normalization term, we define

linkratio(A, B) =
links(A, B)

degree(A)
, (3)

i.e., the proportion of the links with B among those A has.
Two special linkratios are of particular interest. One

is linkratio(A, A), which measures how many links
stay within A itself. The other is its complement
linkratio(A, V \ A), which measures how many links es-
cape from A. A good clustering desires both tight connec-
tions within partitions and loose connections between parti-
tions. These two goals are captured in the K-way normal-
ized associations and normalized cuts criteria:

knassoc(ΓK
V ) =

1

K

K
∑

l=1

linkratio(Vl, Vl) (4)

kncuts(ΓK
V ) =

1

K

K
∑

l=1

linkratio(Vl, V \ Vl) (5)

Since knassoc(ΓK
V

) + kncuts(ΓK
V

) = 1, maximizing the as-
sociations and minimizing the cuts are achieved simultane-
ously. Among the numerous criteria such as minimum cuts
and various definitions of average cuts, only minimum cuts
and normalized cuts have this duality property. However,
minimum cuts [5] are noise-sensitive, i.e., a few isolated
nodes could easily draw the cuts away from a global parti-
tioning, whereas normalized cuts are robust to weight per-
turbation [10]. Since knassoc and kncuts are equivalent, we
make no distinct further and denote our K-way normalized
cuts objective as:

ε(ΓK
V ) = knassoc(ΓK

V ). (6)

ε is a unit-less value between 0 and 1 regardless of K.
For any K-way partitioning criterion, we need to exam-

ine its performance over K’s. For example, how does it
change with K? Can it produce refinement of partitioning
when K increases? The definitions in Eqn. (4) and (5) do
not lend themselves an obvious answer to these questions.
However, we will show that an upperbound of ε decreases
monotonically with increasing K. While our criterion does
not take into account the requirement of hierarchical refine-
ment over the number of classes, a consistent optimal parti-
tioning can often be obtained with little extra cost.

1.2 Representation

We use N × K partition matrix X to represent ΓK
V

. Let
X = [X1, · · · , XK ], where Xl is a binary indicator for Vl:

X(i, l) = 〈i ∈ Vl〉, i ∈ V, l ∈ [K], (7)

where 〈·〉 is 1 if the argument is true and 0 otherwise. Since
a node is assigned to one and only one partition, there is an
exclusion constraint between the columns of X: X 1K =
1N , where 1d denotes the d × 1 vector of all 1’s. We define
the degree matrix for the symmetric weight matrix W to be:

D = Diag(W1N ), (8)

where Diag(·) denotes a diagonal matrix formed from its
vector argument. We can rewrite links and degree as:

links(Vl, Vl) = XT
l WXl (9)

degree(Vl) = XT
l DXl. (10)

The K-way normalized cuts criterion is expressed in an op-
timization program of variable X , called program PNCX:

maximize ε(X) =
1

K

K
∑

l=1

XT
l WXl

XT
l DXl

(11)

subject to X ∈ {0, 1}N×K (12)

X 1K = 1N . (13)

This problem is NP-complete even for K = 2 and even
when the graph is planar [10]. We will develop a fast and
principled algorithm to find its near-global optima.
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2 Solving K-way normalized cuts

We solve program PNCX in two steps. We first relax a
transformed formulation into an eigenvalue problem. We
show that its global optimum is not unique, and a special
solution is the generalized eigenvectors of the matrix pair
(W,D). Transforming the eigenvectors to the space of par-
tition matrices, we get a set of continuous global optima.
We then solve a discretization problem, where the discrete
partition matrix closest to the continuous optima is sought.
Such a discrete solution is thus near global-optimal.

2.1 Finding optimal relaxed solutions

We simplify Eqn. (11) as ε(X) = 1
K

tr(ZT WZ), where
tr denotes the trace of a matrix, and Z is a scaled partition
matrix [3]:

Z = X(XT DX)−
1
2 . (14)

Since XT DX is diagonal, the columns of Z are those of X

scaled by the inverse square root of the degrees of partitions.
A natural constraint on Z is:

ZT DZ = (XT DX)−
1
2 XT DX(XT DX)−

1
2 = IK ,

where IK denotes the K × K identity matrix. Ignoring the
constraints in PNCX, we derive a new program of variable
Z and call it PNCZ:

maximize ε(Z) =
1

K
tr(ZT WZ) (15)

subject to ZT DZ = IK . (16)

Relaxing Z into the continuous domain turns the discrete
problem into a tractable continuous optimization problem.
This program has a special property stated below, which can
be proved trivially using tr(AB) = tr(BA).

Proposition 1 (Orthonormal Invariance). Let R be a K×
K matrix. If Z is a feasible solution to PNCZ, so is {ZR :
RT R = IK}. Furthermore, they have the same objective
value: ε(ZR) = ε(Z).

Therefore, a feasible solution remains equally good with
arbitrary rotation and reflection. Program PNCZ is a
Rayleigh quotient optimization problem that has been ad-
dressed in Rayleigh-Ritz theorem and its extensions. Propo-
sition 2 rephrases the theorem in our problem setting. It
can also be proved directly using Lagrangian relaxation.
The proposition shows that among all the optima are the
eigenvectors of (W,D), or equivalently those of normalized
weight matrix P :

P = D−1W. (17)

Since P is a stochastic matrix [8], it is easy to verify that 1N

is a trivial eigenvector of P and it corresponds to the largest
eigenvalue of 1.

Proposition 2 (Optimal Eigensolution). Let (V, S) be
the eigendecomposition of P : PV = V S, where V =
[V1, . . . , VN ] and S = Diag(s) with eigenvalues ordered
nonincreasingly: s1 ≥ . . . ≥ sN . (V, S) is obtained from
the orthonormal eigensolution (V̄ , S) of the symmetric ma-
trix D−

1
2 WD−

1
2 , where

V = D−
1
2 V̄ , (18)

D−
1
2 WD−

1
2 V̄ = V̄ S, V̄ T V̄ = IN . (19)

Therefore, V and S are all real and any K distinct eigen-
vectors form a local optimum candidate to PNCZ, with

ε([Vπ1
, . . . , VπK

]) =
1

K

K
∑

l=1

sπl
, (20)

where π is an index vector of K distinct integers from [N ].
The global optimum of PNCZ is thus achieved when π =
[1, . . . ,K]:

Z∗ = [V1, . . . , VK ], (21)

Λ∗ = Diag([s1, . . . , sK ]), (22)

ε(Z∗) =
1

K
tr(Λ∗) = max

ZT DZ=IK

ε(Z). (23)

To summarize, the global optimum of PNCZ is not
unique. It is a subspace spanned by the first K largest eigen-
vectors of P through orthonormal matrices:

{Z∗R : RT R = IK , PZ∗ = Z∗Λ∗}. (24)

Unless the eigenvalues are all the same, Z∗R are no longer
the eigenvectors of P . All these solutions have the opti-
mal objective value, which provides a nonincreasing upper-
bound to PNCX.

Corollary 1 (Upperbound Monotonicity). For any K,

max ε(ΓK
V ) ≤ max

ZT DZ=IK

ε(Z) =
1

K

K
∑

l=1

sl (25)

max
ZT DZ=IK+1

ε(Z) ≤ max
ZT DZ=IK

ε(Z). (26)

Next we transform Z back to the space of partition ma-
trices. If f is the mapping that scales X to Z, then f−1 is
the normalization that brings Z back to X:

Z = f(X) = X(XT DX)−
1
2 (27)

X = f−1(Z) = Diag(diag−
1
2 (ZZT ))Z, (28)

where diag returns the diagonal of its matrix argument in a
column vector. If we take the rows of Z as coordinates of
K-dimensional points, what f−1 does is to normalize their
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lengths so that they lie on the unit hypersphere centered at
the origin. With f−1, we transform the continuous optimum
Z∗R in the Z-space to the X-space: since RT R = IK ,

f−1(Z∗R) = f−1(Z∗)R. (29)

This simplification allows the continuous optima to be di-
rectly characterized by f−1(Z∗) in the X-space:

{X̃∗R : X̃∗ = f−1(Z∗), RT R = IK}. (30)

It is now clear that we need K and only K eigenvectors
to yield K (not 2K) partitions. The reason is that group
indicators are constrained to be orthogonal. They cannot
be chosen freely, as required for a hierarchical partitioning
[10]. We also gain more perspective on the first eigenvector.
Though Z∗

1 = (1T
ND1N )−

1
2 · 1N is a trivial multiple of 1N ,

X̃∗

1 is not for K > 1. The seemingly trivial first eigenvector
is as important as any others, since they collectively provide
a basis for generating the whole set of optima.

2.2 Finding optimal discrete solutions

The optima of PNCZ are in general not feasible to the
program PNCX. However, we can use them to find a nearby
discrete solution. This discrete solution may not be the ab-
solute maximizer of PNCX, but it is nearly global-optimal
due to the continuity of the objective function. Therefore,
our goal here is to find a discrete solution that satisfies
the binary constraints of the original program PNCX, yet
is closest to the continuous optima given in Eqn. (30).

Theorem 1 (Optimal Discretization). Let X̃∗ = f−1(Z∗).
An optimal discrete partition X∗ is considered the one sat-
isfying the following program called POD:

minimize φ(X,R) = ‖X − X̃∗R‖2 (31)

subject to X ∈ {0, 1}N×K , X 1K = 1N (32)

RT R = IK , (33)

where ‖M‖ denotes the Frobenius norm of matrix M :
‖M‖ =

√

tr(MMT ). A local optimum (X∗, R∗) of this
bilinear program can be solved iteratively.

Given R∗, POD is reduced to program PODX in X:

minimize φ(X) = ‖X − X̃∗R∗‖2 (34)

subject to X ∈ {0, 1}N×K , X 1K = 1N . (35)

Let X̃ = X̃∗R∗. The optimal solution is given by non-
maximum suppression (if there are multiple maxima, only
one of them, but any one of them, can be chosen so as to
honor the exclusion constraint on a partition matrix):

X∗(i, l) = 〈l = arg max
k∈[K]

X̃(i, k)〉, i ∈ V. (36)

Given X∗, POD is reduced to program PODR in R:

minimize φ(R) = ‖X∗ − X̃∗R‖2 (37)

subject to RT R = IK , (38)

and the solution is given through some singular vectors:

R∗ = ŨUT , (39)

X∗T X̃∗ = UΩŨT , Ω = Diag(ω), (40)

where (U,Ω, Ũ) is a singular value decomposition (SVD)
of X∗T X̃∗, with UT U = IK , ŨT Ũ = IK and ω1 ≥ . . . ≥
ωK .

Proof. First we note that: φ(X,R) = ‖X‖2 + ‖X̃∗‖2 −
tr(XRT X̃∗T + XT X̃∗R) = 2N − 2 tr(XRT X̃∗T ).
Thus minimizing φ(X,R) is equivalent to maximizing
tr(XRT X̃∗T ). For PODX, given R = R∗, as each en-
try of diag(XR∗T X̃∗T ) can be optimized independently,
Eqn. (36) results. For PODR, given X = X∗, we construct
a Lagrangian using a symmetric matrix multiplier Λ:

L(R,Λ) = tr(X∗RT X̃∗T ) −
1

2
tr(ΛT (RT R − IK)).

The optimum (R∗,Λ∗) must satisfy

LR = X̃∗T X∗ − RΛ = 0, i.e. Λ∗ = R∗T X̃∗T X∗.

(41)
Thus Λ∗T Λ∗ = UΩ2UT . Since Λ = ΛT , Λ∗ = UΩUT .
From Eqn. (41), we then have: R∗ = ŨUT and φ(R∗) =
2N − 2 tr(Ω). The larger tr(Ω) is, the closer X∗ is to
X̃∗R∗.

Due to the orthonormal invariance of the continuous op-
tima, our method is robust to arbitrary initialization, from
either X or R. A good initialization can nevertheless speed
up convergence. We find that the heuristic mentioned in [9]
is good and fast. It is simply K-means clustering with K

nearly orthogonal data points as centers. Computationally,
it is equivalent to initialize R∗ by choosing K rows of X̃∗

that are as orthogonal to each other as possible. To derive
X∗ by Eqn. (36) on this non-orthogonal R∗ is exactly K-
means clustering with the unit-length centers.

Given X∗, we solve PODR to find a continuous opti-
mum X̃∗R∗ closest to it. For this continuous optimum, we
then solve PODX to find its closest discrete solution. Each
step reduces the same objective φ through coordinate de-
scent. We can only guarantee such iterations end in a local
optimum, which may vary with the initial estimation. How-
ever, since X̃∗R∗ are all global optima regardless of R∗,
whichever X̃∗R∗ the program POD converges to, its proxi-
mal discrete solution X∗ will not be too much off from the
optimality.

4



2.3 Algorithm

Given weight matrix W and number of classes K:

1. Compute the degree matrix D = Diag(W1N ).

2. Find the optimal eigensolution Z∗ by:

D−
1
2 WD−

1
2 V̄[K] = V̄[K] Diag(s[K]), V̄ T

[K]V̄[K] = IK

Z∗ = D−
1
2 V̄[K].

3. Normalize Z∗ by: X̃∗ = Diag(diag−
1
2 (Z∗Z∗T ))Z∗.

4. Initialize X∗ by computing R∗ as:

R∗

1 = [X̃∗(i, 1), . . . X̃∗(i,K)]T , random i ∈ [N ]
c = 0N×1

For k = 2, . . . ,K, do:
c = c + abs(X̃∗R∗

k−1)

R∗

k = [X̃∗(i, 1), . . . X̃∗(i,K)]T , i = arg min c

5. Initialize convergence monitoring parameter φ̄∗ = 0.

6. Find the optimal discrete solution X∗ by:

X̃ = X̃∗R∗

X∗(i, l) = 〈l = arg maxk∈[K] X̃(i, k)〉, i ∈ V, l ∈ [K].

7. Find the optimal orthonormal matrix R∗ by:

X∗T X̃∗ = UΩŨT , Ω = Diag(ω)
φ̄ = tr(Ω)
If |φ̄ − φ̄∗| < machine precision, then stop and output X∗

φ̄∗ = φ̄

R∗ = ŨUT

8. Go to Step 6.

In Step 2, we use V̄[K] as a shorthand for [V̄1, . . . , V̄K ],
and likewise for S̄[K]. In Step 4, B = abs(A) denotes the
absolute values of the elements of A. In Step 3, since X̃∗ =

Diag(diag−
1
2 (Z∗Z∗T ))Z∗ scales the lengths of each row

to 1, we can skip scaling V̄ in order to get V , i.e. Z∗ =
[V̄1, . . . , V̄K ] leads to the same X̃∗.

Step 2 solves the first K leading eigenvectors of an
N × N usually sparse matrix. It is nevertheless the most
time consuming. With sampling, our implementation for
image segmentation has a time complexity of O(N

3
2 K).

Step 4 has NK(K − 1) multiplications in choosing K

centers. Step 6 involves NK2 multiplications to compute
X̃∗R∗. Step 7 involves an SVD of a K × K matrix and
K3 multiplications for computing R∗. Since X∗ is bi-
nary, X∗T X̃∗ can be done efficiently with all additions.
Taken together, the time complexity of the algorithm is
O(N

3
2 K + NK2).

3 Experiments

We first illustrate our method on point set clustering
based on proximity. The affinity between two points is de-
fined to be the Gaussian function of their distance. We de-
rive a bipartition using the procedure shown in Fig. 2.

Z∗ = [V1, V2] X̃∗ = f−1(Z∗)
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normalize

initialize
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Figure 2. Progression of our algorithm. Each plot shows
an N × 2 matrix, with each row taken as (x, y) coordinates
of a point in the plane. Though N = 245, many of them are
mapped to the same planar points, resulting in three visible
clusters. 1)Normalize: starting with the eigenvectors Z∗,
we first map it back to the X-space by normalizing their
lengths so that all of them lie on the unit circle. 2)Initial-
ize: two points with almost orthogonal phases are selected
to form R∗(0). X̃∗R∗(0) is the projection of all the points
to the two chosen directions. An initial clustering X∗(0) is
obtained by non-maximum suppression: points are divided
according to the dashed line x = y: points below the line
assigned to (1, 0) hence V1, those above the line assigned
to (0, 1) hence V2. 3)Refine: we find the closest continu-
ous optimal to X∗(0) by adjusting the rotation matrix R∗(1).
Non-maximum suppression produces its closest discrete so-
lution X∗(1), which is exactly the same as X∗(0). The al-
gorithm converges and stops. The final clustering is shown
in the center, with ε(X∗) = 0.9997 < ε(X̃∗) = 0.9998.

Images are first convolved with oriented filter pairs to ex-
tract the magnitude of edge responses OE [6]. Pixel affinity
W is inversely correlated with the maximum magnitude of
edges crossing the line connecting two pixels. W (i, j) is
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low if i, j are on the two sides of a strong edge. This mea-
sure is meaningful only for nearby pixels. We hence set
W (i, j) = 0 beyond a city-block distance.

Fig. 3 shows leading eigenvectors for an image. Refin-
ing partitions with increasing K can be achieved through a
sequential initialization: we use X∗ of ΓK

V
as a starting seg-

mentation for ΓK+1
V

, with its largest region broken into 2
groups. This produces a pseudo-hierarchical segmentation
in Fig. 3: when K increases, regions tend to be successively
divided (e.g. K4, K5), yet the enclosing boundaries are
subject to fine adjustment (e.g. K5, K6).

V2 V3 V4 V5 V6 V7

K2 K3 K4 K5 K6 K7
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Figure 3. Image segmentation (row 2) based on eigenvec-
tors (row 1). Image size: 120×97, i.e. N = 11640. It takes
36 seconds to compute 20 leading eigenvectors in MAT-
LAB on a PC with 1GHz CPU and 1GB memory. The dis-
cretization process takes 0.1 up to 1.1 seconds. The above
plot is ε over K.

Fig. 3 also shows the discrepancy in the objective value
between continuous and discrete optima. The upper bound
ε(X̃∗) monotonically decreases with larger K, while ε(X∗)
gradually decreases by and large, but not monotonically.
Examining these values with the corresponding segmenta-
tions, we find that ε itself is not very indicative for selecting
the best K.

Fig. 4 shows examples of discrete optima we get af-
ter running our method with many different initializations.
There are usually only a few discrete optima and they have
comparable objective values.

0.9901 0.9899 0.9881 0.9769 0.9703

0.9832 0.9831 0.9826 0.9712 0.9689

Figure 4. Multiple near-global discrete optima. Row 1:
K = 4, 10. Row: K = 5, 11. Numbers below the images
are the ε values for the corresponding segmentations.

We run our algorithm on 450+ real images with the same
set of parameters. Fig. 5 is a sample of our results on a set of
fashion pictures and Berkeley test dataset. How to choose
K remains an open problem.

4 Relations to other works

Fig. 6 shows that K-means on X̃∗ [9] can produce simi-
lar results but it may take twice as long to converge. In [9],
a perturbation rationale is given for the need to normalize
the eigenvectors, while the use of K-means is unjustified.
K-means’ similar results are a consequence of the continu-
ous optima greatly reducing the chance for mis-clustering.
Yet we observe that a good initial estimation is crucial for
K-means, whereas our method is robust to a random initial-
ization. This is not surprising because K-means introduces
additional unwarranted assumptions, while our principled
account has a clear criterion φ to optimize, which guaran-
tees the near global optimality of discrete solutions under
the orthonormal invariance of continuous optima.

Finally, since various average cuts are variations of the
normalized cuts criterion [10], our principled account from
obtaining a relaxed solution to final discretization can be
extended trivially to those methods.
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Figure 5. Multiclass segmentation on New York Spring
2002 fashion pictures (fashionshowroom.com) and Berke-
ley test images [7] (cs.berkeley.edu). The number of classes
K is manually chosen.

−0.03 0.00 0.03
0

0.5

−1.5 0.0 1.5
0

0.1

a: difference in ε b: difference in time

Figure 6. Performance comparison to K-means clus-
tering on X̃∗. Both are estimated probability distribu-
tion of the relative difference between the two methods:
g−gKmeans

g
, where g is ε in a and running time in b. These

statistics are collected over 100 Berkeley test images. Each
image is segmented into 2 to 20 classes. Both codes are
optimized to take advantage of the unit lengths of all data
points, with the same initialization method.
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