Tutorial Graph Based Image Segmentation

Jianbo Shi, David Martin, Charless Fowlkes, Eitan Sharon

- Computing segmentation with graph cuts
- Segmentation benchmark, evaluation criteria
- Image segmentation cues, and combination
- Muti-grid computation, and cue aggregation

$$\mathbf{G} = \{\mathbf{V}, \mathbf{E}\}$$

V: graph nodes

E: edges connection nodes

Image = { pixels }
Pixel similarity

- Computing segmentation with graph cuts
- Segmentation benchmark, evaluation criteria
- Image segmentation cues, and combination
- Muti-grid computation, and cue aggregation

- Computing segmentation with graph cuts
- Segmentation benchmark, evaluation criteria
- Image segmentation cues, and combination
- Muti-grid computation, and cue aggregation

- Computing segmentation with graph cuts
- Segmentation benchmark, evaluation criteria
- Image segmentation cues, and combination
- Muti-grid computation, and cue aggregation

Part I: Graph and Images

Jianbo Shi

Graph Based Image Segmentation

$$\mathbf{G} = \{\mathbf{V}, \mathbf{E}\}$$

V: graph nodes

E: edges connection nodes

Image = { pixels }
Pixel similarity

Segmentation = Graph partition

Right partition cost function?

Efficient optimization algorithm?

adjacency matrix, degree, volume, graph cuts

Similarity matrix S = [Sij] is generalized adjacency matrix

Degree of node:
$$d_i = \sum_j S_{ij}$$

Volume of set:

$$vol(A) = \sum_{i \in A} d_i, A \subseteq V$$

Cuts in a graph

$$cut(A, \bar{A}) = \sum_{i \in A, j \in \bar{A}} S_{i,j}$$

Similarity matrix S = [Sij]

Volume of set:

Degree of node: $d_i = \sum_i S_{ij}$

Graph Cuts

Useful Graph Algorithms

- Minimal Spanning Tree
- Shortest path
- s-t Max. graph flow, Min. cut

Minimal/Maximal Spanning Tree

Tree is a graph G without cycle

Kruskal's algorithm

- sort the edges of G in increasing order by length
- for each edge e in sorted order
 if the endpoints of e are disconnected in S
 add e to S

Randonmalized version can compute Typical cuts

Leakage problem in MST

Leakage

Graph Cut and Flow

- 1) Given a source (s) and a sink node (t)
- 2) Define Capacity on each edge, C_ij = W_ij
- 3) Find the maximum flow from s->t, satisfying the capacity constraints

Min. Cut = Max. Flow

Problem with min cuts

Min. cuts favors isolated clusters

Normalize cuts in a graph

(edge) Ncut = balanced cut

$$Ncut(A, B) = cut(A, B)(\frac{1}{vol(A)} + \frac{1}{vol(B)})$$

NP-Hard!

Representation

Partition matrix:

$$X = [X_1, ..., X_K]$$

segments

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 pixels

Pair-wise similarity matrix W

Laplacian matrix D-W

Degree matrix D:
$$D(i,i) = \sum_{j} W_{i,j}$$

Graph weight matrix W

Laplacian matrix D-W

Let x = X(I,:) be the indicator of group $I_{X=0}$

$$asso(A,A) = x^T W x$$

Laplacian matrix D-W

$$x^T D x x^T W x$$

$$Cut(A,V-A) = vol(A) - asso(A,A)$$

$$Cut(A, V - A) = x^{T}(D - W)x$$

$$Ncut(X) = \frac{1}{K} \sum_{l=1}^{K} \frac{cut(V_l, V - V_l)}{vol(V_l)}$$

$$= \frac{1}{K} \sum_{l=1}^{K} \frac{X_{l}^{T}(D-W)X_{l}}{X_{l}^{T}DX_{l}}$$

Step I: Find Continuous Global Optima

Scaled partition matrix.
$$Z = X(X^TDX)^{-\frac{1}{2}}$$

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow Z = \begin{bmatrix} \frac{1}{\sqrt{vol(A)}} & 0 & 0 \\ \frac{1}{\sqrt{vol(A)}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{vol(B)}} & 0 \\ 0 & \frac{1}{\sqrt{vol(B)}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{vol(C)}} \end{bmatrix}$$

Step I: Find Continuous Global Optima

Ncut
$$= \frac{1}{K} \sum_{l=1}^{K} \frac{X_l^T (D - W) X_l}{X_l^T D X_l}$$

becomes

$$Ncut(Z) = rac{1}{K}tr(Z^TWZ) \hspace{0.5cm} Z^TDZ = I_K$$

Eigensolutions

$$(D - W)z^* = \lambda Dz^*$$

$$Z^* = [z_1^*, z_2^*, ..., z_k^*]$$

Interpretation as a Dynamical System

Interpretation as a Dynamical System

Step I: Find Continuous Global Optima

Partition

Scaled Partition

Eigenvector solution

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$Z = \begin{bmatrix} \frac{1}{\sqrt{vol(A)}} & 0 & 0\\ \frac{1}{\sqrt{vol(A)}} & 0 & 0\\ 0 & \frac{1}{\sqrt{vol(B)}} & 0\\ 0 & \frac{1}{\sqrt{vol(B)}} & 0\\ 0 & 0 & \frac{1}{\sqrt{vol(C)}} \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \Rightarrow Z = \begin{bmatrix} \frac{1}{\sqrt{vol(A)}} & 0 & 0 \\ \frac{1}{\sqrt{vol(A)}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{vol(B)}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{vol(C)}} \end{bmatrix} \quad \Rightarrow Z^* = \begin{bmatrix} \frac{1}{\sqrt{vol(A)}} & 0 & 0 \\ \frac{1}{\sqrt{vol(A)}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{vol(B)}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{vol(B)}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{vol(B)}} & 0 \end{bmatrix} \times \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$(D - W)Z^* = \lambda DZ^*$$

If Z* is an optimal, so is $\{ZR:R^TR=I_K\}$

Step II: Discretize Continuous Optima

Target
$$X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
 partition

Eigenvector
$$Z^* = \begin{bmatrix} 1 & -1.4 \\ 1 & -1.3 \\ 1 & 0.8 \\ 1 & 0.9 \\ 1 & 0.7 \end{bmatrix}$$

Rotation R can be found exactly in 2-way partition

Brightness Image Segmentation

brightness image segmentation

Part II: Segmentation Measurement, Benchmark