
A Substrate for In-Network Sensor Data Integration

Svilen R. Mihaylov Marie Jacob Zachary G. Ives Sudipto Guha
University of Pennsylvania

{svilen, majacob, zives, sudipto}@cis.upenn.edu

ABSTRACT
With the ultimate goal of extending the data integration paradigm
and query processing capabilities to ad hoc wireless networks, sen-
sors, and stream systems, we consider how to support communi-
cation between sets of nodes performing distributed joins in sen-
sor networks. We develop a communication model that enables
in-network join at a variety of locations, and which facilitates co-
ordination among nodes in order to make optimization decisions.
While we defer a discussion of the optimizer to future work, we
experimentally compare a variety of strategies, including at-base
and in-network joins. Results show significant performance gains
versus prior work, as well as opportunities for optimization.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing protocols

General Terms
Sensor networks, Routing, Joins

1. INTRODUCTION
As technology continues to advance, we are nearing a point where

sensor networks will combine with intranets and the Internet to
form integrated systems: intelligent buildings with visitor guides,
surveillance and intrusion detection systems, building control sys-
tems, robot teams, etc. As this occurs, designers will need to think
not simply about building sensor network systems, but about build-
ing sophisticated applications that perform data acquisition and
integration across highly distributed networks of heterogeneous
device types: streams of data may come from distributed sensors,
network monitors and other “soft” sensors, server-based applica-
tions, mobile applications, and so on. This leads to a challenge in
providing uniform query access to highly dynamic data from re-
mote devices. The Aspen project focuses on this problem: extend-
ing the data integration paradigm and query processing capabilities
to ad hoc wireless networks, sensors, and stream systems, in order
to foster a new generation of data-intensive applications.

The primary goal of sensor network query processing is to min-
imize the number of messages transmitted (thus reducing battery
consumption and congestion). Recent work [7, 11, 12] has shown
how certain types of computation can be efficiently pushed into
a sensor network built using a tree topology. These approaches

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 978-1-60558-284-9/08/08 ...$5.00.

exploit the fact that selection, projection, and aggregation can be
translated to a tree topology in a natural fashion. However, in
contrast to standard acquisition systems, data integration queries
require distributed join computation over streams from different
groups of sensors, perhaps using time- or space-based windows.
For example, an integration query might combine smoke detector
and temperature information within the same room; or combine in-
formation from distributed weather stations in a valley, detecting
cold fronts by correlating temperatures at the perimeter.

A thorough understanding of how to set up join computation,
so as to leverage the multi-hop nature of the networks, as well as
to allow future cost-based optimization, remains an open question.
Most proposals suggest a single strategy for all queries: join at the
base [15], in a region near the base [6], or by routing through the
base [14]. At the other end of the spectrum lies geographic hash
table (GHT)-style routing [13], which can be used to support join
at randomly placed nodes. A key point is that the right strategy for
join (i) establishes short, low congestion paths that are likely to be
used over a long period of time, and (ii) sends the minimum number
of tuples in each cycle along these paths.

The establishment of join paths to minimize communication has
not been addressed by the existing work. In the routing tree model,
most data gets routed through nodes near the root of the tree, caus-
ing congestion and forcing certain nodes to expend power dispro-
portionately. Ultimately, the maximally loaded node fails earliest
(drops packets, dies, loses connectivity), fragmenting the network.
The GHT model uses hashes of key values to disperse routes over
the network, reducing hot spots but resulting in longer paths that
increase join traffic (unless the hashed keys correlate to geography,
in which case we have the same congestion issues). Establishing
effective join paths, although similar to routing, is significantly dif-
ferent in objectives — and is the foundation of any future query
optimization. The goal of this paper is to devise a substrate that al-
lows the establishment of join paths while considering congestion
(delay), power and battery life (packets forwarded). This is a key
component in the Aspen project, aiming to develop an optimized
query processing architecture supporting long-running data inte-
gration queries over heterogeneous multihop wireless networks.

To illustrate the issues, suppose that we have a join of source
expressions, possibly with selection conditions, (σθR(R)) 1θRS

(σθS (S)), in a sensor network: this is a windowed join [3], where
we take a snapshot of the tuples emitted by every R sensor satis-
fying θR in each time step, and similarly for each S sensor; then
we combine the tuples of the R sensors taken within some time-
(or space-) based window with the tuples of the S sensors taken
within a (similarly defined) window, if they mutually satisfy pred-
icate θRS . Each R and S tuple originates at a different place in
the network, so each sensor node may have a different transmis-

sion distance. Each R and S sensor may not produce a tuple in
every cycle, if θR or θS , respectively, are not satisfied. Finally,
each R tuple may join with between 0 and |S| tuples from S, in
every sampling time step. Given these properties, it is evident (by
our optimization criteria above) that the optimal join strategy is not
always simply to flood large regions of the network, forward tuples
to the root node, or even route through the root node to other desti-
nations [14]. Instead, there are a number of different strategies that
are dependent on the query and data. While we provide a formal
description in the next section, we list some “rules of thumb”:

• R and S tuples that do not join should be dropped early, reduc-
ing congestion and battery usage.

• When R and S tuples are unlikely to join, they should be joined
inside the network: there are fewer join tuples than source tuples
to route to the base.

• When the join condition is not very selective relative to R and
S tuples, the join computation should be done at the base, as this
results in fewer messages to the base.

We have sketched a problem of join optimization. This is quite
different from query optimization in distributed databases: here we
are considering settings where a single join involves pairs of rela-
tions that are horizontally partitioned, with each tuple at a different
location, with a different number of hops to every other point in
the network. Moreover, selectivities may differ for different source
tuple values, and the connectivity of the network may gradually
change as nodes or links fail, sensors move, batteries deplete, etc.
Our contributions in this paper are an efficient content-addressable
routing substrate for supporting distributed join computation and
future optimization, which:

• Indexes static and slow-changing attributes (e.g. ID, posi-
tion), allowing for efficient pruning of non-viable tuples

• Supports efficient point-to-point and multicast communica-
tion based on join values with short paths, enabling communi-
cation among sets of nodes that join.

• Enables handling of link and node failures.

These capabilities enable collective cost-based decisions about
where to join: at or near one of the source nodes, or at the base.
While we defer a cost-based optimization model to future work, we
experimentally validate that different join strategies have signif-
icant performance implications, and that in-network joins are
often useful, in terms of network messages, network congestion
hot spots, and device memory usage.

Section 2 argues why a new network substrate is required and
discusses prior techniques. Section 3 presents a novel routing scheme
that enables efficient join initiation. Section 4 discusses our imple-
mentation and presents an experimental evaluation. We conclude
and discuss future work in Section 5.

2. THE CASE FOR A NEW SUBSTRATE
We assume windowed joins [3, 9], in which the join occurs be-

tween “relations” representing state at different nodes in the net-
work. Given a join of the form R 1θRS S where R and S rep-
resent two (possibly overlapping) collections of sensors and θRS
represents a predicate over attributes of the sensors, we typically
specify time windows and sampling intervals over R and S. As
time progresses, the sensors continue to sample new readings, and
they send these readings to participate in the join. In a “push”-based
manner, the join buffers new tuples arriving from R and combines
them with buffered tuples from S, and vice versa. The time win-
dow over each source relation defines when and how tuples are to

be evicted from the buffer — and also enforces mutual consistency
among the tuples in the relations. Alternatively, we also consider
space-bounded windows that evict old values as they exceed ca-
pacity and new values arrive. Following a common assumption in
stream joins, we assume that relations are partitioned into sets of
independent windows based on join attributes — each join value
forms its own separate window, and hence global coordination is
not required across all nodes keeping state. We consider join to
consist of the following steps:

• Query dissemination: propagates the query to all nodes; filters
nodes that fail selection conditions over static attributes.

• Join initiation: determines where and how to send data and
compute the join; prunes nodes that cannot join with others.

• Join computation: routes source data to join points, which com-
pute join results; relays answers to the base.

• Termination: shuts down join computation; discards join state.

Given a select-join query of the form (σθR(R)) 1θRS (σθS (S)),
our goal is to find a partition ofR and S nodes that minimizes over-
all network transmissions, such that all R and S nodes in the same
partition route to some common join point j, where they may join
and the result will be sent to the root. This cost is dependent on the
routes taken from the R and S sensors to the join points, and from
there to the base; as well as by the selectivities of the operations.
Our goal is to develop techniques to help decide which strategy to
use for a given query. We now survey join strategies.

2.1 Join Strategies and Related Work
When selection and join conditions are based purely on static

data (IDs, coordinates of immobile devices, device capabilities,
etc.), they can be evaluated once1 by each node to see if they are sat-
isfiable: if the selection fails or there are no other nodes with which
to join, then this sensor cannot participate in the query. Hence we
refine the predicates in our query expression: (σφR∧ψR(R)) 1φRS∧ψRS

(σφS∧ψS (S)) where each φ condition only considers static attributes,
and ψ represents the rest of the condition θ including at least one
dynamic attribute. We factor the predicates into CNF, then separate
based on the presence of dynamic attributes (setting φ to true if
there are no static clauses). Most queries of interest possess such
separation, and using the static selections φS , φR helps any strat-
egy (hence in this paper we assume this is always done). Pred-
icates involving non-static components, ψ, must be evaluated in
every cycle. The dynamic join condition, ψRS , must be evaluated
at some common point that receives potentially-joining R and S
data; finally, φRS may be evaluated simultaneously, or during a
pre-pruning step. Specifics depend on the strategy used.

2.1.1 Join paths along the routing tree
The vast majority of sensor network query processing research

has focused on computation with a single routing tree.
Placing computation and data: The problem of adaptively plac-
ing in-network query operators in efficient locations is considered
in [4], which assumes a directed diffusion infrastructure and pe-
riodically performs local neighbor exploration. Complementary
work [8] focuses on placement of stored data in the network, col-
lecting statistics about update frequency and query rates, then per-
forming centralized optimization. In this paper, we focus specifi-
cally on a routing substrate that could be used to help support the
above work, as well as more join-specific optimizations.

1Once per occasional network tree reconstruction.

Specialized joins: Several specialized join operations appear in
the literature. REED [1] assumes one of the sources is a static table
rather than a stream. The work of [6] assumes disjoint regions for
the source nodes to be joined, computes a region “on the way to
the base station” for nodes that join, then distributes a table snap-
shot among those nodes. It does not easily generalize to a setting
with intermingled nodes, as we target. [16] returns “top-k” answers
combining ranking functions over different attributes.
Naive join: Here, selection conditions are pushed to every sensor
node, so that in each epoch, only tuples satisfying ψR or ψS (for
R,S, resp.) are forwarded to the base over the routing tree. Both
join conditions φRS and ψRS are then evaluated at the base station.
Base join: This approach builds upon naive by also pushing static
condition φRS into the network, determining apriori which nodes
have the possibility of participating in the join. If a node has such
a possibility and satisfies its selection conditions, it forwards data
over the routing tree to the base station, which evaluates ψRS . The
push-down of φRS can be accomplished in at least two ways: by
propagating an approximate synopsis of eligible values through the
network [15], or by exploring the network for all satisfying join
pairs. (We shall focus on the latter version.)
Yang+07: Recent work [14] has proposed an alternative scheme
to joining at the base. The R sensors forward their data to the base,
which assembles a complete snapshot of R. The base then floods
this image down the tree to all S nodes, which perform the join and
then send their results up to the base. This scheme can be arbitrarily
more expensive than base if R has high cardinality or each R tuple
joins with many S tuples. The snapshot of relation R must be split
into many packets, and each needs to be flooded in the network.
Summary: These techniques have low overhead, but establish
long join paths (because they are limited to tree edges) and often
have high congestion and hot spots.

2.1.2 Full graph to establish paths
It is natural to consider using the full graph. However, in a fully

distributed implementation (we only focus such schemes), this im-
plies that the entire graph has to be flooded. While this achieves
short paths, the setup cost of the join in flooding from many sources
is prohibitive in terms of congestion, delays, and packet collisions.

2.1.3 Hash strategies to establish paths
The geographic hash table (GHT) [13] relies on positioning in-

formation (actual or virtual) at every sensor. As each sensor pro-
duces a tuple, it sends this to a destination coordinate, typically
computed as a hash of that tuple key, using the Greedy Perimeter
Stateless Routing protocol (GPSR). GPSR routes to the node lo-
cated closest to the destination coordinate.
In-network GPSR/GHT join: Using these approaches φRS can
be pushed into the network for equality or similar one-to-one pred-
icates, where bothR and S nodes send their data (provided ψR/ψS
is satisfied) to a common node based on the hash of the static com-
ponents to allow tuples to arrive at the same node. This node, which
may be distant from the source nodes and the base, evaluates ψRS .
(Note that for region and range predicates this common node has
to be the base station, i.e., this algorithm must degrade into base.
Otherwise, packet forwarding is done using GPSR.)
Summary: As a consequence of hashing, a GHT destination
node may be at an arbitrarily distant location in the network. In
addition, the strategy requires planar graphs for routing (and gives
a planarization strategy) but wireless multihop networks may be
deployed in a non-planar way (e.g., in a multi-story building) or
positional information may simply not be available.

3. A SUBSTRATE FOR JOIN
Join initiation is the phase where the nodes in the relationsR and

S, after passing their respective static selection conditions, learn
whether there exists at least one node with which they might join
in each sampling interval (depending on dynamic conditions ψ).
This is achieved by starting at each r ∈ σφR(R) node (the ini-
tiator node), then exploring where the φRS condition is satisfied
over static attributes (while maintaining a source vector back to r).
Nodes s satisfying φS(s) and φRS(r, s) (these are target nodes)
can communicate directly with r by retracing the steps of the vec-
tor. Together (and possibly with other nodes that mutually join),
they make an optimization decision about where to send their data
during join computation. In the current presentation we omit fur-
ther discussion of these optimization steps due to lack of space. For
concreteness’ sake, we assume that the join takes place at a mutu-
ally agreed point, say either r, s or the base station, although our
implementation extends significantly beyond this simple strategy.
The overall goals of the join initiation phase are (i) to have a fully
distributed implementation; (ii) to find short paths in hops; (iii) to
avoid hot spots; (iv) to handle node or edge failures (e.g., due to
diminishing battery power or hardware failure); and (v) to scale to
hundreds of nodes.

We observe that the benefit of using a single routing tree is that its
hierarchical nature allows for summary structures [11], and allows
“directed flooding” up the tree and down to any children whose
summary structure includes the target join value. This requires sig-
nificantly less traffic than flooding the network. But any spanning
tree over a graph results in certain nodes in close proximity being
numerous hops apart: consider a cycle, where the pairwise distance
of a many pairs of nodes increases once the cycle is broken. The
original graph has an advantage in average pairwise path length.
To gain the best features of the single tree and the graph, we em-
ploy multiple routing trees over the same set of nodes: the initial
routing tree forms the backbone of the network and is used for com-
mon tasks, whereas additional trees are formed afterward and used
for directed routing and path distribution. Given multiple trees with
well-chosen roots, the union of the trees together defines a spanner,
a representation of the graph that preserves approximate pairwise
distances. Multiple overlapping trees have previously been used in
distributed multicast [5] in high bandwidth scenarios, but our goal
and use of multiple trees is quite different here — sensors are typi-
cally constrained in bandwidth and power.

However, as soon as we use a graph which has cycles, cycle de-
tection is essential to terminate searches. This is an advantage of
hash-based schemes like GHT. We prevent cycles in our approach
by restricting our algorithm to use the trees wisely (and not naively
flood on all sets of edges) to balance the complexity of distributed
cycle detection and the quality of the paths. More specifically, we
mark packets using a single bit to indicate if the packet is traveling
up a tree or down a tree, and do not allow repeated interleaving of
these steps. Additionally, in order to minimize redundant transmis-
sions, we develop a number of novel aspects in our algorithm. But
we first discuss how the multiple trees are created: clearly, choosing
the same edges for each tree has no benefit. The trees significantly
impact the distances between nodes, and failure recovery as well,
as we show later in our experimental evaluation.
3.1 Constructing Multiple Trees

We build over the existing TinyDB [11] routing tree construction
algorithm, which we briefly summarize. Nodes begin in a listen-
ing/broadcast mode, where they announce their presence and their
distance from the root (initially infinity, except for the root, at dis-
tance 0). Each node determines the neighbor nearest the root that it
can reliably hear from. It chooses that node to be its current parent

and broadcasts its new depth; the process repeats until the network
stabilizes. We collect additional information: Bloom filters on the
IDs and other static attributes of all of the nodes in a subtree to
facilitate equijoins; other summary structures — histograms or in-
tervals for range joins on 1D data, R-Trees and quadrants for 2D
data — as well as the depth of the subtree. The summary structures
act like a generalized index structure [2] and support directed for-
warding of messages in the tree. Depth is used in the construction
of additional routing trees and in routing.

To create an additional routing tree, we query over the last-built
tree for each node’s score: at leaf nodes this score is initialized to
be the sum of the node’s depth from the root on every existing tree;
at intermediate nodes it is recursively updated to be the maximum
score of the subtree. The node with the highest final score is chosen
as the root of the new tree. The new root node builds its own tree
using the algorithm described above, with one variation. When two
candidate parents have equal distance from the new root, we favor
the one that is not a parent in a previous tree, and in the absence of
such, we choose the parent with the fewest children (to minimize
the number of siblings for the current node). The purpose of this
step is to ensure path diversity and avoid hot spots.

3.2 Routing: Finding Paths Satisfying φRS
As discussed previously, join initiator nodes (say r) perform a

multicast based on φRS , looking for nodes satisfying the condition
with r. The request is forwarded in the network in a directed fash-
ion based on summary structures. Ultimately the request may reach
a target node. We encode the routing path taken by a message as
a vector of node IDs: destination nodes receive path vectors to r,
which can be used to send replies to r, ensuring both parties can
now communicate without subsequent exploration. Since physical
packets are small (under 30 bytes in TinyOS), we fragment logical
messages (which may contain join keys, source routes, and data)
into smaller physical packets. We implement a retry mechanism to
ensure packet delivery in the absence of node failure.

Rather than naively flooding, our BestRoute algorithm (Algo-
rithm 1) takes a number of steps to reduce redundant transmissions
and avoid cycles. The initial part of the algorithm, Lines 1 – 5,
determines when the message has a recipient known to the receiver
(the current node or, if the join is on ID, a known neighbor) satis-
fying φRS . We postpone a discussion of the middle portion of the
algorithm to the next paragraph. The packet forwarding portion of
the algorithm, Lines 25 – 40, is based on the following observation:
we prefer to route from a node down one or more subtrees if their
summaries are positive, because this allows for directed flooding.
However, there is no guarantee that every node is reachable in this
fashion. Hence, for correctness, every request must make its way
up one tree to its root (also searching downwards from each node
on the way). Yet there is no need to traverse up all of the trees
in the same flood; in fact, avoiding this reduces exploration traffic
and prevents a number of types of cycles. Following this logic, we
start from the initiating node and begin exploring downwards (the
descending stage), forwarding to any child node in any tree whose
node matches the join condition (Lines 25 – 27). We also spawn an
exploration request up the parent node on each tree: this is the as-
cending stage of Lines 28 – 30. Exploration requests are typically
relayed by broadcast (Line 35) to all neighboring nodes.

Hence, a node that hears an exploration request must ensure that
it is actually an intended recipient: the sender must be a child or
parent node (Lines 9 – 13). Additionally (Lines 14 – 22), the node
determines whether the traversal is in ascending mode (if so, we
need to continue exploring up the same tree, UpTree) or descend-
ing mode (if so, we can only search downwards, and only if some
summary is positive for the join condition).

Algorithm 1 BESTROUTE(CN,P, PathV, TopNode, φRS , TAttr,
SV al, UpTree). Input: Receiving node CN , incoming packet
P , path vector from start PathV , top of ascending part of path
vector TopNode, static join condition φRS , target attribute TAttr,
source value SV al, tree to traverse upwards UpTree
1: if φRS(SV al, CN.TAttr) then return and acknowledge: routing is

complete
2: if TAttr is ID and some neighborN ofCN has φ(SV al,N.TAttr)

then
3: Forward P to N
4: return and acknowledge: complete
5: end if
6: if sender initiated the request and is a child of CN in tree T then
7: UpTree← T
8: end if
9: Set SourceIsChild if sender is a child of CN in tree UpTree

10: Set SourceIsParent if sender is a parent in any tree
11: if not SourceIsParent and not SourceIsChild then
12: return without acknowledgment: spurious message
13: end if
14: if not SourceIsParent and TopNode is not PathV .end then
15: return without acknowledgment: spurious message
16: end if
17: if SourceIsChild and TopNode is PathV .end then
18: Set IsAscending
19: end if
20: if not IsAscending and not exists T where P is sent by par-

ent in T , and CN has a child N in T with a summary satisfying
φRS(SV al,N.TAttr) then

21: return and acknowledge: redundant search
22: end if
23: ExploreSet← ∅
24: for all trees T do
25: if not IsAscending and some child N of CN in tree T has a

summary satisfying φRS(SV al,N.TAttr) then
26: Add N to ExploreSet
27: end if
28: if IsAscending and (T = UpTree or CN is initiating the re-

quest) then
29: Add CN ’s parent N in T to ExploreSet
30: end if
31: end for
32: Append CN.ID to PathV
33: if IsAscending then TopNode← PathV .end
34: if |ExploreSet| > 1 then
35: Broadcast updated P to every node in ExploreSet
36: else if |ExploreSet| = 1 then
37: Unicast updated P to the node in ExploreSet
38: end if
39: Wait for acknowledgment by all nodes in ExploreSet
40: return and acknowledge: complete

As a node is found to satisfy the join condition, it can use vector
PathV and use it to establish a path back to the sender. At this
stage, we actually do not limit our traversal to the multiple routing
trees, but exploit the full graph. We employ an optimization called
shortcutting, which helps “shorten” the routes established by the
BestRoute algorithm. Whenever a node can directly communicate
(in symmetric fashion, with high stability) with another node whose
ID is more than one step “ahead” on the path vector, it immediately
short-circuits to that neighbor and removes the intervening node(s)
from the path vector in the packet header.

4. IMPLEMENTATION AND EVALUATION
We implement and experimentally compare the most promis-

ing strategies from above, showing their performance differences.
These include the naive strategy, an exact (as opposed to approxi-
mate) version of base, a version of GPSR/GHT, and a version of
In-net over our multiple-tree routing substrate. We consider equal-
ity and range predicates, and both static and dynamic attributes.

We implemented our algorithms in 10,600 lines of nesC and
compiled them using the toolkit for TinyOS 2.0. Our current imple-
mentation generates 71KB of code (including packet queuing, frag-
menting, and reassembly) and uses a minimum of 3.5KB of mem-
ory to maintain 3 summary structures for each routing tree, state
for up to 20 neighbors (including summary structures for each child
subtree), and buffers for 30 simultaneous route requests. This fits
easily within the 8KB RAM and 128KB program memory of the
IRIS series motes. Experiments on motes are conducted using the
TOSSIM [10] simulator, specifically to have results that incorpo-
rate errors and retransmissions due to the standard radio model.
TOSSIM is perhaps the most realistic simulator of the Crossbow
MICAz and IRIS hardware platforms. Experiments were run on
Xeon X3220 workstations with 4GB of RAM and Fedora 7.
Methodology. To understand our algorithms under different con-
ditions, we generated 9 runs each of synthetic network configura-
tions with 100 nodes in the following topologies: random with an
average of 6 neighbors per node (“sparse random”); random with
7, 8, and 13 average neighbors (“moderate,” “medium,” and “dense
random”); and grid with an average of 7 neighbors (“grid”). Un-
less otherwise specified, experiments were conducted on 3 different
sensor layouts for each topology. We also constructed 50- and 200-
node networks, both having 8 neighbors on average per node. We
also validated our algorithms on real sensor data and a real topol-
ogy, using the Intel Berkeley Research Lab dataset 2.
Metrics. Our algorithms and measurements focus on packet
transmissions, rather than actual energy, because in some settings
sending packets is the predominant consumer of energy, packets
are approximately the same length making the conversion simple,
and we aim to generalize to a variety of sensor types with differ-
ent energy consumption profiles. Given that, we are evaluating the
initiation phase to be compatible with arbitrary join queries we are
interested in (1) path profiles, for example, length, maximum num-
ber of paths per node (2) total and maximum routing traffic per
node, when a random pair of nodes is chosen for a join.

4.1 Path Profiles and Traffic
The first task of any in-network join algorithm is to discover

which pairs of nodes must join. Note that both sources and targets
can detect if they are potential participants, but they must discover
that there is a matching target or source, respectively.

For BestRoute we study 1, 2 and 3 trees and consider the shortest
discovered path. For GPSR, we implemented the strategy outlined
in Section 2.1, using a routing destination selected by a hash of
the join key. Figures 1a and b show the average join path length
and maximum node load, respectively, for routes connecting all
pairs of nodes (100 nodes and 9900 pairs) 10 pairs at a time, across
different topologies. Further experiments (not plotted due to space
constraints) confirmed that the load on roughly the top 15 most
traversed nodes followed a similar pattern to Figure 1b, in that
we saw benefits in BestRoute from going from 1 to 2 to 3 trees,
and that GPSR performed worse than BestRoute with 2 and 3 trees.
Overall, our observations are that (a) using 3 trees provides near-
optimal paths on average; (b) GPSR does not give near-optimal
paths; (c) GPSR has significantly worse load distribution for the top
15 nodes. We conclude that given reasonably long-running joins,
join initiation using BestRoute with 3 trees is the best strategy.
Initiation Traffic. Another critical factor is how much traffic is
created during exploration related to join initiation. Figure 2 con-
firms that the amount of traffic generated by BestRoute is signifi-
cantly lower than flooding.

2db.csail.mit.edu/labdata/labdata.html

Node Scale-up and Number of Trees. Figure 3 shows that as we
scale the number of nodes from 50 to 200, for our algorithm, per-
path load on individual nodes (Figure 3b) remains quite consistent,
with a slightly more significant benefit to 3 trees when we get to
200 nodes. As expected, average path length (Figure 3a) increases
as the network diameter grows; again, with 200 nodes there is a
noticeable benefit in using 3 trees. We conclude here that three trees
is the optimal choice, because it provides short paths and reduced
hot spots while only slightly increasing the state required at each
node. Further increasing the number of trees leads to diminishing
returns and progressively larger memory requirements.
Joining Real Data. Next, we used the Intel Research-Berkeley
real-life dataset, focusing on position data (over which we con-
structed an R-tree summary structure) and humidity. Our query was
R 1dist(R,S)<5m∧R.id<S.id∧abs(R.hum−S.hum)>1000 S, which forms
join pairs of nodes at most 5 meters apart, and reports results when-
ever they encounter a humidity difference greater than 1000. For
this experiment, we performed an in-network join at the endpoint
closer to the base station (breaking ties arbitrarily). Figure 7 re-
ports the experiment in log scale. Total traffic was over 100MB, but
the congestion as well as total traffic was halved by in-network ex-
ecution. GHT performed worse than Naive/Base, and the Yang+07
algorithm [14] generated the most traffic.
Radio-on Time. A natural question is whether a scheme like
ours, which supports point-to-point and multicast communication
across the entire network and does not require (hence, cannot ex-
ploit) global time synchronization, inherently requires nodes to keep
their radios listening for longer periods of time in each sampling
epoch. We are addressing this with ongoing work. However, pre-
liminary experiments suggest that only 5% of messages sent by our
substrate would require sensor radios to be on longer than in the
single-tree case. We are investigating strategies for allowing those
messages to cross into the next sampling epoch, so our scheme has
identical or even lower listening overhead.

4.2 Path Distribution
We next consider the load with respect to spatial distribution of

sensors, showing 3D plots where the plane represents the coordi-
nates of each sensor node and the height of each bar represents the
number of paths through that node (bars are projected against the
axes). We show results for 3 queries over the synthetically gener-
ated topologies. We assigned simulated static sensor values for a
static attribute x to every node in the network, sampled from an ex-
ponential spatial distribution with range [7, 60], with nodes towards
the center of the network biased towards higher values. Static at-
tribute y is sampled from [0, 10) random uniform distribution.

Query 1, σ40<R.x<100R 1R.x=S.x σ40<S.x<100S, imposes heavy
communication at the core of the network. Figure 4 shows the re-
sults on the grid network topologies; other topologies behave sim-
ilarly. After adding a second tree, we see a major reduction in
the load placed on the interior nodes, with an evenly distributed
path load in the middle of the network. Intuitively, by switching
trees, our algorithm “short-circuits” across the middle of the net-
work without traversing nodes at or near the root. (We omit the
3-tree case, which provided minor benefits beyond the second tree
in this query.)

Query 2 considers joins at the fringes: σ0<R.x<12R 1R.x=S.x

σ0<S.x<12S. Figure 5, generated with the random dense topology
(but representative of the others), shows that for the 1-tree case, this
workload places high load at and near the root. In contrast, 3 trees
produces significantly fewer and lower hot spots. We omit the runs
using 2 trees, which fell in the middle, due to lack of space.

For Query 3, the endpoints in the join are evenly distributed

0

2

4

6

8

10

12

Dense
Random

Medium
Random

Moderate
Random

Sparse
Random

Grid

A
ve

ra
ge

 p
at

h
le

ng
th

 (h
op

s)

1 Tree
2 Trees
3 Trees
GPSR
Full graph

(a) Average path lengths

0

1

2

3

4

5

6

7

8

9

Dense
Random

Medium
Random

Moderate
Random

Sparse
Random

Grid

M
ax

im
um

 n
od

e
lo

ad
 (t

ho
us

an
ds

 o
f p

at
hs

)

1 Tree
2 Trees
3 Trees
GPSR

(b) Max node load
Figure 1: Path quality & congestion

0

20

40

60

80

Dense
Random

Medium
Random

Moderate
Random

Sparse
Random

Grid

N
um

be
r o

f E
xp

lo
ra

tio
n

P
ac

ke
ts

 (
pe

r r
eq

ue
st

)

3 Trees / Flood
3 Trees / Best Route
2 Trees / Best Route
GPSR

Figure 2: Traffic per exploration request

0

1

2

3

4

5

6

7

8

50-Node
Medium

100-Node
Medium

200-
Node

Medium

A
ve

ra
ge

 p
at

h
le

ng
th

1 Tree
2 Trees
3 Trees

(a) Path length

0.0

0.1

0.2

0.3

0.4

0.5

50-Node
Medium

100-
Node

Medium

200-
Node

Medium

M
ax

im
um

 n
od

e
lo

ad
 (n

or
m

al
iz

ed
 p

er
 p

at
h) 1 Tree

2 Trees
3 Trees

(b) Node load
Figure 3: Scaleup

0

10

20

P
at

hs
 th

ro
ug

h
no

de

Student Version of MATLAB

0

10

20

Student Version of MATLAB

Figure 4: Query 1: 1 vs. 2 trees

0

10

20

P
at

hs
 th

ro
ug

h
no

de

Student Version of MATLAB

0

10

20

Student Version of MATLAB

Figure 5: Query 2: 1 vs. 3 trees

0

10

20

P
at

hs
 th

ro
ug

h
no

de

Student Version of MATLAB

0

10

20

Student Version of MATLAB

Figure 6: Query 3: 1 vs. 3 trees

1

10

100

1000

Traffic at
Base

Max traffic
by any node

Tr
af

fic
 (M

B
)

Yang+07
GHT/GPSR
Naive/Base
In-net

10

100

1000

10000

Total traffic

Tr
af

fic
 (M

B
)

Yang+07
GHT/GPSR
Naive/Base
In-net

Figure 7: Intel dataset: traffic at the root
node, max traffic at any node, total traffic

1

10

100

1000

0.00 0.01 0.10 1.00
Sampling frequency (values/cycle)

D
e

la
y

(c
yc

le
s)

Through root
GHT/GPSR
Naive/Base
In-net

(a) Result delay

0
2
4
6
8
10
12
14
16
18

0.01 0.10 1.00

Thousands

Sampling frequency (values/cycle) D
ro

pp
ed

 m
es

sa
ge

s
(t

ho
us

an
ds

)

Through root
GHT/GPSR
Naive/Base
In-net

(b) Result quality

Figure 8: Increasing sampling rate

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16
% nodes failed

%
 c

or
re

ct
ly

 e
st

. p
ai

rs

Single tree
RepairRoute L1
RepairRoute L2

(a) Established join pairs

2
2.5

3
3.5

4
4.5

5
5.5

6

1 4 7 10 13 16

Thousands

% nodes failed

Tr
af

fic
 p

er
 c

or
re

ct
 p

ai
r (

KB
) Single tree

RepairRoute L1
RepairRoute L2

(b) Total traffic

Figure 9: Node failures

throughout the network: σR.id<25R 1R.x=S.y+5 σS.id>50S. Fig-
ure 6 shows this for the random medium topology (similar effect is
observed on all the other three topologies). Here, two trees provide
some benefit but three trees provide the most gain — not only to
the maximum load of the top nodes, but also the overall number of
heavily loaded nodes is significantly reduced.

4.3 Congestion (Stress)
We apply several techniques to improve the performance of our

system under high data rates. First, each node tracks free buffer
memory; if it is running low on space, it notifies its neighbors
through a congestion bit carried by data messages. Neighbors at-
tempt to route around the node. For traffic sent through a congested
node n towards the base station, the sender picks an alternative
node to n at the same level in the first routing tree (so long as it is
not also congested). For traffic sent through n towards some other
destination node nd, the node preceding n on the path replaces n
with an alternative neighbor that can reach the n’s successor on the
path. This scheme does not lengthen the paths traversed by any
message. Of course, in some cases congestion avoidance might be
impossible: in the extreme case the removal of the congested node
n might disconnect the network. In this case, n will stop acknowl-
edging received packets and discard them until it manages to send
its outgoing messages. Other nodes needing to traverse n will at-
tempt to resend their packets later.

Multipath routing has been proposed to better reduce maximum
load on nodes and congestion, before they occur. A similar strategy
to the above can be used here: when a packet may be routed through
several alternate nodes at any step in the path, the routing algorithm
can randomly choose among these nodes.

In order to evaluate our system under congested settings, we
took the query used for real life data and varied the sampling fre-
quency from 0.003 values/cycle to 1 value/cycle, while executing
for a fixed number of sampling cycles. We measured the freshness
(propagation delays of the data values), and the number of packets

dropped. In Figure 8a, for Naive (same as Base in this case), GHT,
and Yang+07, the delay between the production of data values and
their reception at the base station begins to grow for frequencies
above 0.05 values/cycle, exceeding 100 cycles. In other words, re-
sult freshness for Naive, GHT, and Yang+07 worsens significantly
under high sampling frequencies. Moreover, all methods except In-
net begin to drop data values in this range, as they cannot keep up
with the increased sampling frequency (Figure 8b). At very high
frequencies Yang+07 has fewer drops than GHT: sending data on a
single tree allows for opportunistic combining of physical packets
more efficiently than GHT. To summarize, In-net incurs delays at
least 4 times lower than GHT, 7 times lower than Naive, and 12
times lower than Yang+07 — with better overall result quality.

4.4 Failure Handling during Join Initiation
Failed links and nodes are a frequent occurrences in sensor net-

works, especially due to limited battery life. There are two failure
cases in join initiation: (1) during exploration, which we do not
focus on since BestRoute explores redundant paths and trees at
this stage; and (2) after exploration, when path vectors between
join pairs have been established, and the nodes need to coordi-
nate. Suppose node n1 is sending to node nd along path vec-
tor [n1, . . . , nf , . . . , nd], and nf is unreachable from its prede-
cessor nf−1. We initiate RepairRoute (Algorithm 2) which un-
like BestRoute explores paths sequentially rather than in parallel,
while tolerating link failures rather than node failures. RepairRoute
searches for any node ng along the vector [nf+1, . . . , nd], and if
successful the new path to ng is merged with the original path vec-
tor. During this time nf−1 queues up messages in a repair buffer;
and on success immediately forwards all of these messages along
the new path. A special case is when nd is the base station. If nf−1

can communicate with another node n1 at the same level as nf in
the main tree, then we forward the request to n1. This single tree
repair strategy in isolation requires only one routing tree, and we
use it as a baseline in our comparison with RepairRoute.

Algorithm 2 REPAIRROUTE(CN,P, PathV, TopNode,DestNode,
PathV R, State. Input: Receiving node CN , incoming packet
P , path vector from start PathV , top of ascending part of path vec-
tor TopNode, DestNode destination of the failed routing, path
from the failed node to DestNode PathV R, acknowledgement
ACK or NACK in State
1: if CN appears on PathV R then return: ACK, routing complete
2: if for some neighbor N of CN : N appears on PathV R then
3: Forward P to N
4: return ACK, routing complete
5: end if
6: if CN is the initiator and State=NACK then
7: return NACK: repair is unsuccessful
8: end if
9: if sender is a child of CN in tree UpTree then Set IsAscending

10: else Set IsDescending
11: end if
12: if State=NACK and (IsAscending or (IsDescending and P

was previously seen as descending)) then return NACK
13: if IsDescending and not exists T whereP is sent by parent in T , and

CN has a childN in T with a summary on ID positive forDestNode
then return NACK

14: end if
15: ExploreList← []
16: for all trees T do
17: if IsDescending and some child N of CN in tree T has a sum-

mary on ID positive for DestNode then
18: Add N to ExploreList
19: end if
20: if IsAscending and (T = UpTree or CN is the initiator) then
21: Add CN ’s parent N in T to ExploreList
22: end if
23: end for
24: Append CN.ID to PathV
25: if IsAscending then TopNode← PathV .end
26: if |ExploreList| > 0 then
27: if State=ACK then
28: Unicast to first node N in ExploreList
29: return same result returned by N
30: else if P ’s sender exists in ExploreList at position i and i <

|ExploreList| then
31: unicast P to the node N at position i+ 1
32: return same result returned by N
33: end if
34: end if
35: return NACK

Our evaluation consists of failing up to 16 out of 100 nodes while
executing σid<25∧h(u,σr)R 1R.x=S.y+5∧R.u=S.u σid>50∧h(u,σs)S,
where h(u, σp) = (hash(u)%d1/σpe = 0) on the medium random
topology. This query expands Query 3 with dynamic predicates: at-
tribute u is dynamic and it is generated to conform to selectivity es-
timates σr or σs. As in Query 3, multiple attributes are joined, and
we expect the endpoints in the join to be fairly evenly distributed
throughout the network, because of the uniform y predicate, and
also because by construction there is no spatial correlation between
node IDs. Thus endpoints are separated by long paths, which makes
failure recovery non-trivial.

We evaluate RepairRoute and single tree repair for this query.
For a given number of nodes set to fail, their times of failure are
scattered across the initiation run. We study the increase in the
overall traffic and percentage of successfully established source-
target join pairs. A given join pair is considered successfully estab-
lished if both source r and target s are aware that they are joining,
and both agree on a join node j, which also knows to join them.
RepairRouteL1 and L2 differ in the summary structure used for
routing. While L1 utilizes a Bloom filter of the IDs of children
in a particular subtree, L2’s Bloom filter also holds the children’s
immediate neighbors, thus increasing the likelihood of success at

the expense of some added exploration. As indicated by Figure 9a,
by using RepairRoute we can recover completely from up to 3%
node failures. We achieve up to 20% increase in the number of suc-
cessfully established pairs over single tree repair. In Figure 9b we
observe that for node failures up to 12% we maintain comparable
traffic per successfully established pair with single tree repair.

5. CONCLUSIONS AND FUTURE WORK
This paper proposes a substrate for supporting join initiation:

discovery of short paths among sets of nodes that mutually satisfy
some join condition, and thus are eligible to join in each cycle. This
is the basis of in-network join computation, which we have shown
to perform better than alternative strategies in a number of cases.
Our methods scale to hundreds of nodes.

We are currently focusing on further mote-specific energy-reducing
techniques. Then, the next phase of our research agenda is to build
upon this substrate and address the issues of query optimization.
The first step is to choose a cost model appropriate for sensor net-
works, which considers overall message transmissions, but also hot
spots. The subtlety here is that the cost model needs to take into
account opportunities for shared computation: we could share a
single join point across multiple source nodes, or alternatively we
could keep them separate — a problem we refer to as multi-pair op-
timization. We hope to choose an initial join strategy and join point
based on predicted selectivities, then monitor and react to actual
selectivities and move the join point as appropriate.

6. REFERENCES
[1] D. J. Abadi, S. Madden, and W. Lindner. Reed: Robust, efficient

filtering and event detection in sensor networks. In VLDB, 2005.
[2] P. M. Aoki. Generalizing “search” in generalized search trees. In

ICDE, 1998.
[3] A. Arasu, S. Babu, and J. Widom. The CQL continuous query

language: semantic foundations and query execution. VLDB J.,
15(2), 2006.

[4] B. Bonfils and P. Bonnet. Adaptive and decentralized operator
placement for in-network query processing. In IPSN, 2003.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. SplitStream: High-bandwidth multicast in cooperative
environments. In SOSP, 2003.

[6] V. Chowdhary and H. Gupta. Communication-efficient
implementation of join in sensor networks. In DASFAA, 2005.

[7] A. J. Demers, J. Gehrke, R. Rajaraman, A. Trigoni, and Y. Yao. The
Cougar project: a work-in-progress report. SIGMOD Record, 32(3),
2003.

[8] T. M. Gil and S. Madden. Scoop: An adaptive indexing scheme for
stored data in sensor networks. In ICDE, pages 1345–1349, 2007.

[9] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid. Stream window
join: tracking moving objects in sensor-network databases. In
SSDBM, 2003.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
scalable simulation of entire TinyOS applications. In SenSys, 2003.

[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Design of
an acquisitional query processor for sensor networks. In SIGMOD,
2003.

[12] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis
diffusion for robust aggregation in sensor networks. In SenSys, 2004.

[13] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin,
and F. Yu. Data-centric storage in sensornets with GHT, a geographic
hash table. Mob. Netw. Appl., 8(4), 2003.

[14] X. Yang, H.-B. Lim, M. T. Özsu, and K.-L. Tan. In-network
execution of monitoring queries in sensor networks. In SIGMOD,
2007.

[15] H. Yu, E.-P. Lim, and J. Zhang. On in-network synopsis join
processing for sensor networks. In MDM, 2006.

[16] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, and
V. Tsotras. The threshold join algorithm for top-k queries in
distributed sensor networks. In DMSN, 2005.

