
Bidirectional Mappings for Data and Update Exchange

Grigoris Karvounarakis Zachary G. Ives
Computer and Information Science Department

University of Pennsylvania

{gkarvoun,zives}@cis.upenn.edu

ABSTRACT
A key challenge in supporting information interchange is
not only supporting queries over integrated data, but also
updates. Previous work on update exchange has enabled
update propagation over schema mappings in a unidirec-
tional way — conceptually similar to view maintenance, in
that a derived instance gets updated based on changes to a
source instance. In this paper, we consider how to support
data and update propagation across bidirectional map-
pings that enable different sites to mirror each other’s data.
We show how data and update exchange can be extended to
support bidirectional updates, implement an algorithm to
perform side-effect-free update propagation in this model,
and show preliminary results suggesting our approach is fea-
sible.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data Translation

General Terms
Algorithms, Design

Keywords
update exchange, collaborative data sharing, view update,
view maintenance, data exchange, data integration

1. INTRODUCTION
Data integration remains one of the most important prob-

lems in today’s information-rich world — not only in its tra-
ditional enterprise focus, but also among scientists, medical
institutions, and researchers. Most research on integration
has focused on querying integrated data: either by bringing
data into one common schema, such as data warehousing,
virtual data integration, or data exchange [9]; or supporting
multiple interrelated schemas, such as peer data manage-
ment systems [1, 4, 14, 19]. Such efforts typically assume
data to be stable, clean, and correct; hence the focus is on
integrating the data to support querying. However, in many
large-scale data sharing efforts, particularly in the sciences,
data is neither stable nor clean. It is being continuously an-
notated, corrected, and hand-cleaned by each user — and a
major task is not simply to integrate data for querying, but
rather to propagate updates across interrelated, indepen-
dently modified databases. However, surprisingly little work
has addressed updates in the data integration literature.

Copyright is held by the author/owner.
Proceedings of the 11th International Workshop on Web and
Databases (WebDB 2008), June 13, 2008, Vancouver, Canada

B(id,nam)G(id,can,nam)

uBioGUS BioSQL

m1 m2

P P P

U(nam,can) S(id,can)

Figure 1: Collaborative data sharing system with bidirectional
mappings among 3 peers: PuBio, PGUS , and PBioSQL.

To address this unmet need, we have been developing
an architecture and system to support update propagation
across networks of data sources interrelated by schema map-
pings. The Orchestra collaborative data sharing system [16,
21] (CDSS) builds upon the formalisms of peer data manage-
ment systems and data exchange in order to provide update
exchange [10]: the capability to map updates made over one
database instance to other, interrelated instances. Each site
sharing data within the CDSS is logically an autonomous
peer ; it has its own database instance, set of directed schema
mappings specifying how to map data from other peers into
this instance, and set of schema mappings specifying how to
map data out to “downstream” peers’ instances.

The existing CDSS model employs mappings from source
to target peers, similar to those used in data integration and
exchange. An update made to a peer’s instance is applied
to the peer’s local database instance. Upon request, the
CDSS propagates this update to all downstream instances
using update exchange. This matches situations where one
database is more authoritative than another: updates from
a curated database like SWISS-PROT should propagate to
individual biologists’ databases, but not the converse.

However, in some cases two peers, even with different
schemas, want to mirror data: either peer may update data
from itself or its neighbor, and the effects should propagate
to the other peer. We are aware of no existing solution to
this problem in a setting with schema mappings. In this pa-
per, we consider the problems of specifying bidirectional
mappings between instances, and propagating updates along
these mappings. We briefly illustrate with an example.

Example 1. Figure 1 shows an example bioinformatics
CDSS based on a real application. GUS contains gene ex-
pression, protein, and taxon (organism) information; BioSQL
contains very similar concepts; and uBio establishes syn-
onyms and canonical names for taxa. PuBio and PGUS

want to propagate updates to each other via mapping m1,
and so do PuBio and PBioSQL via m2. Note that update
propagation composes: an update to PBioSQL will result in a
update of PuBio, which in turn induces an update over PGUS.

Our problem generalizes two separately studied topics in
the traditional relational database realm: a materialized



view may be simultaneously maintainable (i.e., updates made
to the base instance are propagated to the view instance)
and updatable (i.e., updates made to the materialized view
are propagated to the base relations). However, a view is a
function between source instance and materialized view in-
stance; whereas a schema mapping represents a containment
constraint among instances. Moreover, we consider settings
with multiple mappings and peers, some of which can inter-
act with one another or share target relations, whereas the
view update literature typically focuses on a single view,
whose definition is a single (typically conjunctive) query.
Another important difference is that in a view definition,
one side only contains base tuples, while the other only con-
sists of data derived from those base tuples. In a CDSS
with bidirectional mappings between peers, each peer typi-
cally contributes its own data as well as imports data from
the other peers through mappings. These differences have
significant consequences, which we consider in this paper.
In particular, we make the following contributions:

• A language and semantics for bidirectional schema map-
pings in data and update exchange, useful for propagat-
ing both data and updates symmetrically among sets of
database instances. We show how update policies can be
expressed along with these mappings.

• Techniques by which updates can be made at any instance
and propagated to other instances when this does not
cause side effects (modifications not made by the user).

• Demonstration that incremental computation performs ac-
ceptably both with and without side effect testing.

Roadmap. Section 2 reviews related work. Section 3 presents
extensions to data exchange for bidirectional mappings. We
expand to update exchange in Section 4, developing tech-
niques for update propagation and update policy specifica-
tion independently of whether they produce side effects. Sec-
tion 5 develops strategies to test for and avoid side effects,
given actual data instances; this provides greater function-
ality than instance-independent view update policies. We
experimentally demonstrate the feasibility of our approach
in Section 6, and conclude and discuss our plans for future
work in Section 7.

2. RELATED WORK
Update propagation has typically been considered in the

context of relational views. Incremental view maintenance [12]
is the task of updating a derived view, given a set of inser-
tions, deletions, and possibly replacements of one or more
base relation tuples. The resulting view instance must be
identical to the one that would be computed by directly
recomputing the view after updating the base data. Con-
versely, the view update problem, in which tuples in the base
instance are to be changed in order to accomplish updates
over the view, is more subtle because each source tuple may
produce several tuples in the view. A given view update
may thus introduce side effects: in order to modify one tuple
in the view, we must modify a tuple in the base, which in
turn causes other tuples in the same view to be inadvertently
changed (a “side effect”). Dayal and Bernstein identified
constraints under which an update does not introduce side
effects within the same view [8]; other work has explored
a variety of other, generally stricter, restrictions over what

data is allowed to be affected [3, 8, 18]. Recent work [5]
has considered restricted view definition languages in which
view update is side effect-free. Generally the view update
literature considers only a single view, which is typically a
conjunctive query.

Little work has been done in the context of updates in
data integration scenarios — where schema mappings are
typically containment constraints between queries over dif-
ferent instances, expressed as tuple-generating dependen-
cies (tgds) [9] or, equivalently, global-local-as-view (GLAV)
rules [20]. Recent work on update exchange [10] showed how
the data exchange setting [9] could be generalized to sup-
port update propagation among multiple peers with their
own data instances and local contributions: updates (in-
cluding deletions) would be applied to the originating peers’
database instance, and their effects would be propagated
to all other peers who map data from that instance (but
not back to the peers from which this peer imports data,
and where the updated data may have originated). The
outcome is roughly analogous to that of view maintenance:
data derived from the mappings gets updated in response
to modifications made at a source peer. For bidirectional
mappings, deletions of data at a different peer from the
one where they were introduced need to be propagated back
to their source peer(s). This is analogous to the view up-
date problem: propagating changes made over a “target”
instance back to a source instance, thus removing the origi-
nal source tuple(s).

3. BIDIRECTIONAL DATA EXCHANGE
The foundations of the CDSS architecture, and its basic

capability of update exchange, generalize the semantics of
data exchange [9]. Hence we briefly review key results from
data exchange and extend these to include support for bidi-
rectional mappings, before considering update exchange in
the next section. A data exchange setting involves:

• A source schema S and target schema T
• An instance I of S
• A set of source-to-target tuple generating dependencies

Σst, i.e., mappings of the form:

∀x̄ȳ φ(x̄ȳ) → ∃z̄ ψ(x̄z̄)

where φ is a conjunction of atoms over S and ψ is a con-
junction of atoms over T .

• A set of target tuple generating dependencies1 Σt (i.e.,
where both sides of the dependencies are conjunctions of
atoms over T ).

The goal of data exchange is to compute an instance
for every target relation, such that a conjunctive query (or
union of conjunctive queries) over the target will provide all
certain answers [20] in accordance with the source tuples
and the constraints imposed by the schema mappings. This
is a property of all universal solutions: instances J ′ of T ,
such that 〈I, J ′〉 |= Σst ∪ Σt and for every other instance
J such that 〈I, J〉 |= Σst ∪ Σt, there is a homomorphism
h : J ′ → J . We compute and maintain the canonical uni-
versal solution of [15], which can be computed as a result of
a datalog program, as explained in [10] and briefly sketched

1 The work in [9] also includes equality generating depen-
dencies in Σt, which we will not consider in this paper.



below. In the rest of the paper, we use 〈I, J〉 to denote that
J is the canonical universal solution for I.

3.1 Bidirectional Mappings
We now extend the data exchange setting to support mul-

tiple peers, each with its own data instance, and bidirec-
tional schema mappings. Our setting looks like:

• Peer schemas P1, . . . , Pn.

• Instances I1, . . . , In of P1, . . . , Pn, respectively.

• A set of mappingsM among the peer relations of P1, . . . , Pn,
specified as logical expressions of the form:

(m) ∀x̄(∃ȳ φ(x̄ȳ) ↔ ∃z̄ ψ(x̄z̄))

where the formula in each side of the mappings is a con-
junction of atoms over one of the schemas (e.g., φ is a
conjunction of atoms over P1 and ψ is a conjunction of
atoms over P2).

Every bidirectional mapping m of the form shown above is
logically equivalent to a pair of tgds:

(m→) ∀x̄ȳ φ(x̄ȳ) → ∃z̄ ψ(x̄z̄)

(m←) ∀x̄z̄ ψ(x̄z̄) → ∃ȳ φ(x̄ȳ)

Example 2. The mappings for Figure 1 are:
(m1) ∀cn (∃i G(i, c, n) ↔ U(n, c))

(m2) ∀nc (∃i B(i, n) ∧ S(i, c) ↔ U(n, c))

These mappings are equivalent to the following tgds:
(m→1 ) ∀icn G(i, c, n) → U(n, c)

(m←1 ) ∀nc U(n, c) → ∃i G(i, c, n)

(m→2 ) ∀inc B(i, n) ∧ S(i, c)→U(n, c)

(m←2 ) ∀nc U(n, c)→∃i B(i, n) ∧ S(i, c)

For readability, in the rest of the paper we will omit the
universal quantifiers for variables that appear in the left-
hand side (LHS) of mappings.

3.2 Bidirectional Data Exchange Semantics
Any set of bidirectional mappings can be converted to

a standard data exchange setting (S, T ,Σst,Σt) as follows:
Let P `

1 , . . . , P
`
n be the schemas obtained by replacing each

relation R of P1, . . . , Pn, respectively, by R` (the local con-
tribution relations). In the data exchange setting, let:

• Source schema S = P `
1 ∪ · · · ∪ P `

n,

• Target schema T = P1 ∪ · · · ∪ Pn

• Source instance I = I1 ∪ · · · ∪ In

• Source-target mappings Σst = {R`(x̄R) → R(x̄R) | R ∈
P1 ∪ · · · ∪ Pn}

• Target mappings Σt = M (i.e., the set of tgds that the
bidirectional mappings are equivalent to)

We define the canonical universal solution for our bidirec-
tional data exchange setting to be the one for this translated
data exchange setting.

Example 3. For the mappings in Example 2, assume lo-
cal contribution relations:

G`

1 a b
2 d e

B`

3 b
3 c
4 h

S`

3 a
5 k

U `

f g

The canonical universal solution (according to [15]) of the
corresponding data exchange setting is:

G
1 a b
2 d e
x5 g f
x6 a b
x7 a c
x8 d e

B
3 b
3 c
4 h
x1 b
x2 e
x3 c
x4 f

S
3 a
5 k
x1 a
x2 d
x3 a
x4 g

U
b a
e d
c a
f g

Values x1, ..., x8 are labeled nulls: placeholder values for
unknown values that are generated by mappings with existen-
tial variables in the right-hand side (RHS) (m←1 ,m

←
2 here).

Note to the reader deeply familiar with the chase
procedure: the canonical universal solution shown above has
more tuples than would be computed by [9]; we include each
tuple derived using a tgd with an existential in the RHS, re-
gardless of whether there exists another tuple in the instance
that matches on all non-existentials. This mirrors the ap-
proaches of [10, 15], and the additional labeled null tuples
make update exchange simpler, as described in [10].

Existential variables must be used with care in mappings,
since bidirectional mappings introduce cycles. The canon-
ical universal solution is guaranteed to exist, and the algo-
rithms in [9, 15] compute it, if the set of target dependen-
cies is weakly acyclic. For a single bidirectional mapping,
we can show [17] that if there are no self-joins on either
side of the mapping, the resulting pair of mappings is al-
ways weakly acyclic, even if there are existential variables
on both sides. If there are multiple mappings with the same
target, the situation is more complex and we must apply the
weak acyclicity test given in [9].

As explained in [10], one way to compute the canonical
universal solution is to translate mappings into a datalog
program, whose least fixpoint is the canonical universal so-
lution. For every atom in the RHS of the mapping, we create
a rule with that atom as its head and the LHS of the map-
ping as its body. To deal with mappings with existential
variables in the RHS, we use datalog extended with Skolem
functions, used to create unique placeholder values for each
combination of relevant values on which the mapping is ap-
plied. The mappings above are translated to the rules:

1 U(n, c) :- G(i, c, n)
2 G(f(n, c), c, n) :- U(n, c)
3 B(g(n, c), n) :- U(n, c)
4 S(g(n, c), c) :- U(n, c)

where f (see Rule 2) is the Skolem function for the existen-
tial variable i in mapping m←1 , and g is the one for variable
i in mapping m←2 . Note that the same Skolem term appears
in Rules 3 and 4, since the corresponding mapping atoms
share the same variable i.

4. BIDIRECTIONAL UPDATE EXCHANGE
We now consider updates in the form of insertions and

deletions. The previous section identified a means of gener-
ating a (recursive) datalog program for computing instances
for the peers, given instances of locally introduced data (lo-
cal contributions). Now our goal is to take as input updates
made by users over the computed instances, translate these
updates into modifications over local contribution relations



(i.e., base data) as appropriate, and then achieve the update
over a recomputed version of the canonical universal solu-
tion. In essence, this is a version of the view update problem,
over the datalog program for generating the canonical uni-
versal solution. However, in contrast to a view setting, here
tuples may be introduced locally by any peer, and deletion
of a tuple must remove data from every peer from which
that tuple can be derived.

We first consider insertions and deletions that affect only
the local contributions tables at the same peer, before con-
sidering how to propagate deletions to local contribution
relations at other peers. (Insertions will always be made
locally, in accordance with the existing CDSS model.)

4.1 Insertions and Deletions at the Same Peer
For insertions, we start with a previous instance of the

CDSS, which is a solution 〈I, J〉, and we take a set of inser-
tions ∆+ that we apply directly over the local contribution
relations at the peers that originated the updates. Then we
compute a new canonical universal solution 〈I+∆+, J+Y +〉.
We can directly recompute the instance using the datalog
program of the previous section, adding new tuples to the
peer relations until the mappings are satisfied. Even bet-
ter, since bidirectional mappings are equivalent to a pair
of unidirectional mappings, we can derive an incremental
maintenance program using the delta rules [13] extension
that was presented in [10], and perform the recomputation
more efficiently.

If a tuple is deleted from relation R at the peer where it
originated, we can simply remove the tuple from the local
contribution relation R`, and then propagate the effects of
the deletion “forward” in incremental fashion, quite similar
to the program described for insertions, but with a caveat.
As in decremental view maintenance [13], there are sub-
tleties in determining whether to remove a derived tuple,
since that tuple could be derived in an alternative way. Two
general schemes exist for performing decremental mainte-
nance (when recursion is present, as with our data exchange
program of the previous section). The first is the DRed
(Delete and Rederive) algorithm of [13], which removes de-
rived tuples, then tries to see if there is an alternate deriva-
tion. A more efficient alternative, presented in [10], makes
use of data provenance [6, 7, 11], encoded as edge relations
in a graph describing which tuples are directly derived from
one another, to determine when a tuple is no longer deriv-
able from local contributions.

4.2 Deleting from a Different Peer
When a tuple is deleted from a peer other than its ori-

gin, we must propagate the effects to the local contribution
relation(s) of the tuple’s originating peers, in a manner anal-
ogous to view update. More precisely, we want to derive a
set of updates over local contribution relations that perform
the update requested on the target peer:

Definition 4.1 (Performs). Let 〈I, J〉 be the canon-
ical universal solution and Y − be a set of tuples of J (i.e.,
peer relations) to be deleted. Let ∆− be a set of deletions
over I (i.e., local contribution relations) and let 〈I−∆−, J ′〉
be the canonical universal solution. We say that ∆− per-
forms Y − iff J ′ ∩ Y − = ∅.

This generalizes a definition by Dayal and Bernstein [8]
to canonical universal solutions in data exchange. As with

view update, there may be multiple ways to perform a target
deletion. For example, if the LHS of the mapping involves
a join, the desired effect may be achieved by deleting tuples
from either (or both) of the relations in the join.2 We now
discuss how an administrator may specify policies for per-
forming the updates. We assume that an administrator may
wish to manage, or even override, default behaviors. In the
next section we consider side effects and how to ensure up-
dates do not produce them. However, we note that in certain
settings with many interacting mappings, the administrator
may be willing to allow side effects.

4.2.1 Update Policies
We specify update policies as annotations on mappings: if

an atom for relation R on one side of a mapping is annotated
with ?, this means that if a tuple in the opposite side of
the mapping is deleted, then any tuples from R, as well as
its corresponding local contribution relation Rl, should be
deleted. An annotated version of m2 from Example 2 is:

(m2) ∃i B(i, n) ∧ ?S(i, c)↔?U(n, c)

If a tuple is deleted from U , we delete any tuples of S from
which it can be derived. Similarly, deleting B and/or S tu-
ples results in a deletion of U tuples, thanks to the update
policy in the opposite direction. In some cases, the compo-
sition of update policies may cause cascading deletions: e.g.,
deleting from U as above may trigger further deletions from
S. We can show [17] that any update policy of a bidirec-
tional mapping for which there is at least one atom in each
side that is annotated with ?, is guaranteed to perform any
given set of updates.

We generate delta rules for deletion propagation only for
the marked relations and their corresponding local contribu-
tion relations; the set of such rules for all mappings form the
update policy program. The rules for the m2 update policy
shown above would be:

1 S−(i, c) :- U−(n, c), B(i, n), S(i, c)
2 U−(n, c) :- B−(i, n), U(n, c)
3 U−(n, c) :- S−(i, c), U(n, c)
4 S`−(i, c) :- S−(i, c), S`(i, c)
5 U `−(n, c) :- U−(n, c), U `(n, c)
6 B`−(i, n) :- B−(i, n), B`(i, n)

Rules 1-3 (and the delta tables U−, B−, S− involved in
them) are used to propagate deletions “backwards” along
bidirectional mappings, specifying deletions over peer rela-
tions U,B, S, respectively. Rules 4-6 “collect” in the delta
tables U `−, B`−, S`− the actual local contribution tuples to
delete from U `, B`, S`, if such tuples exist.

4.2.2 Interactions among Mappings
With bidirectional mappings, a deletion over a peer rela-

tion may propagate to deletions over multiple local contri-
bution relations, from both sides of the bidirectional map-
ping. Moreover, in certain cases tuples can be transitively
derived by going back and forth through the two directions
of the bidirectional mapping more than once. For instance,
in Example 3, B(x3, c) and S(x3, a) were produced by ap-
plying m←2 to U(c, a), which in turn was derived by applying
m→2 to B(3, c), S(3, a). The situation gets even more com-
plex when there are multiple bidirectional mappings with
2We only consider options where deletions are accomplished
by removing tuples, as in [8] and unlike [18].



relations in common: their update policies can interact. In
general, computing the set of local deletions (∆−) neces-
sary to perform the deletions in Y − requires us to compute
the fixpoint of the update policy program. The computation
of the local updates using this update policy program also
deletes tuples from peer relations derived “on the path” from
the user deletions to the base data in local contribution rela-
tions. The update policy program helps us compute two sets
of updates, given a set of user updates Y −: ∆− over local
contribution relations and another set Y ′− ⊇ Y − over peer
relations. We can compute these sets using the following
algorithm:

Algorithm PropagatePeerDeletions
1. Run the update policy program (Sect. 4.2.1) on Y −

to compute R`− for each local contribution relation R`

2. For each local contribution relation R`, remove tuples
in R`− from R`

3. Run the decremental maintenance program (Sect. 4.1)
on the local deletions R`− computed in the previous
step. For each peer relation P , this computes a set of
deletions P−; the set of all P− is Y ′− above

4. For each peer relation P , remove tuples in P− from P

5. AVOIDING SIDE EFFECTS
The term side effect was invented in the view update lit-

erature to refer to a propagation of an update to a source,
which in turn causes other, undesired effects when the con-
tents of a view are recomputed (e.g., because multiple view
tuples were derived from the same source tuple). In other
words, we propagate an update backwards via a policy, and
then its forward effects (via maintenance or recomputation)
change tuples that were not part of the original modification.
(We do not consider cascading deletions caused by multiple
update policies to be side effects.)

Definition 5.1 (Side effects). Let 〈I, J〉 be the canon-
ical universal solution, where I is an instance of local contri-
bution relations and J is an instance of peer relations. Let
Y − be a set of updates over J , and ∆−, Y ′− be the output
of the update policy program on Y −. Let 〈I−∆−, J ′〉 be the
canonical universal solution, then the translation that pro-
duced ∆− is side-effect-free iff J ′ = J − Y ′−, while it has
side effects iff J ′ ⊂ J − Y ′−.

An administrator may wish to propagate updates only if
they avoid side effects on a given instance. Previous work
typically considers static checking, based on functional de-
pendencies and other constraints, on whether a view can be
updated without introducing side effects. We believe such
checking is inappropriate for large-scale data sharing: in
databases produced by non-expert users, constraints are of-
ten under-specified, making static checking overly pessimistic
and checking statically may prevent any update to a view,
even when some tuples may be updatable without causing
side effects. Thus we allow the administrator to request de-
tection and elimination of side effects at update-time, based
on the actual contents of the database instances.

The following algorithm identifies which of the local dele-
tions returned by the update policy cause side effects, and
only applies to local contribution relations those that do not,
before computing the new canonical solution.

Algorithm PropagatePeerDeletionsWithoutSideEffects
1. Run the update policy program on Y − to compute

R`− for each local contribution relation R` and P− for
each peer relation P (but do not modify R,P )

2. Run the decremental maintenance program on the
local deletions R`−, to get sets of peer deletions P d for
every peer relation P (do not apply updates to the peer
relations)

3. For each peer relation P , set P se := P d−P− and P− :=
∅. These are the side effects on P

4. For each tuple t ∈ P se, compute the set of all tuples in
local contribution relations involved in some derivation
of t. An algorithm for this was sketched in [10], as part
of decremental maintenance. The main idea is to
traverse mappings backwards, starting from each side
effecting tuple. For each local contribution relation R`,
collect all such sources of side effects in a relation R`

inv

5. For each local contribution relation R`, set R`− :=
R`− − R`

inv. These are the side effect-free source up-
dates

6. For each local contribution relation R`, remove tuples
in R`− from R`

7. Run the decremental maintenance program on the
local deletions R`− computed in the previous step. For
each peer relation P , this computes deletions P−

8. For each peer relation P , remove tuples in P− from P

The algorithm applies deletions of local tuples identified
by the update policy program, when these do not cause side
effects (tested in Line 3); it can additionally be relaxed to
consider cases where some peers tolerate side effects and oth-
ers do not. Importantly, each of the steps of the algorithm
above (as well as the one in the previous section) can be ex-
pressed as a datalog-like program, which can be translated
to SQL queries that can be evaluated over an RDBMS.

6. EXPERIMENTAL EVALUATION
We now investigate the performance of bidirectional up-

date exchange in a CDSS. First, we compare bidirectional
and unidirectional update exchange properties, for the same
number of peers. Then we compare preliminary implementa-
tions of our deletion propagation algorithms, with and with-
out detection of side effects.

We implemented the bidirectional mapping algorithms of
the previous sections in the Orchestra system, which is
a Java 6 (JDK 1.6.02) layer that runs over a relational
DBMS. We used IBM DB2 UDB 9.1 on Windows 2003 as
our database engine, running on a dual Xeon 5150 server
with 8GB of RAM, and allocated 2GB to DB2 and 768MB
for JVM heap space.

We used the synthetic workload generator of [10], which
creates different configurations of peer schemas, mappings,
and updates. The workload generator takes as input a single
universal relation based on the SWISS-PROT protein data-
base [2], which has 25 attributes. It then creates peers with
different partitions of the attributes from SWISS-PROT’s
schema. Next, mappings are created among the relations via
their shared attributes. Finally, we generate fresh insertions
by sampling from the SWISS-PROT database and generat-
ing a new key by which the partitions may be rejoined. We
generate deletions by sampling among our insertions.

For all experiments, each peer is initialized with 2,000
tuples — different for each peer — in its local contributions



0

50

100

150

200

2 3 4 5 6 7 8 9 10
Number of peers

Ti
m

e 
(s

ec
)

0

250

500

750

1000

N
um

be
r o

f t
up

le
s 

(K
)

Computation time - bidirectional
Computation time - unidirectional
Tuples - bidirectional
Tuples - unidirectional

(a)

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10
Number of peers

Ti
m

e 
(s

ec
)

Side effect free: total time
Side effect free: propagate backwards
Side effect free: propagate forwards
Side effecting: total time
Side effecting: propagate backwards
Side effecting: propagate forwards

(b)
Figure 2: (a) Solution size and computation time, and (b) dele-
tion propagation time

tables. We randomly generate mappings among the peers;
for a CDSS of 2 peers there is 1 mapping; for 5 peers, 4
of the peers are connected in a “square” and the 5th peer
is mapped to one “corner”; for 10 peers, there is a “grid”
of 9 peers, with one additional peer connected to a single
neighbor, and one extra mapping that forms a diagonal in
the grid. We used “full” mappings, i.e., mappings with no
existential variables in either side.

6.1 Unidirectional vs. Bidirectional Mappings
We first consider the effects of unidirectional mappings vs.

bidirectional ones: in general, bidirectional mappings should
result in larger data instances (since all data will propagate
to all peers) and longer computation times. We see in Fig-
ure 2(a) the size of the canonical universal solutions, mea-
sured in number of tuples (scale on the left y-axis) and the
total running time (scale on the right y-axis). As we scale
the CDSS to increasingly larger sizes, we see that for uni-
directional mappings, the total instance sizes and running
times grow at an approximately linear rate; whereas for bidi-
rectional mappings, the number of tuples and the computa-
tion time grow quadratically. This mirrors our expectations,
given the topologies and the amount of data exchanged. We
note that running times of 200 seconds are tolerable for of-
fline batch operations, which are the emphasis in the CDSS.
However, we also observe that these running times suggest
opportunities for optimization and indexing.

6.2 Deletion Policies
We separately study deletion, for side effect-free as well as

side effecting propagation. We consider total running time,
as well as backwards (by update policy) and forwards (by in-
cremental maintenance) computation. For this experiment
we start by deleting 10% of the SWISS-PROT entries at ev-
ery peer (i.e., 200 entries per peer). For 2 and 5 peers, these
costs are quite acceptable, especially compared to recompu-
tation, which we can estimate from the previous figure. We
observe that backwards propagation is the major factor in
side effect-free updates, whereas forwards propagation rep-
resents almost the entire cost in the side effecting mode. At
10 peers, the amount of data and the mapping complexity
results in a very expensive operation. Again, we believe this
suggests opportunities for future research on optimization.

7. CONCLUSIONS AND FUTURE WORK
We presented a framework for exchange of data and up-

dates between peers connected through bidirectional map-
pings. Such mappings are important for CDSS settings
where peers want to mirror each other’s data up to trans-
lation between different schemas. To this end, we showed

how to extend techniques from view maintenance and view
update to compute instances of such peers incrementally,
by propagating updates along such mappings. The algo-
rithms presented here are either guaranteed to perform the
required updates — ignoring possible side effects — or make
an effort to perform them while ensuring that no side effects
exist. While our framework in this paper only supports bidi-
rectional mappings, we plan to combine them with related
techniques from [10], to develop a framework that supports
both unidirectional and bidirectional mappings. We also
plan to investigate indexing and optimization techniques to
improve performance.

8. REFERENCES
[1] K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. The

chatty web: Emergent semantics through gossiping. In 12th
World Wide Web Conference, 2003.

[2] A. Bairoch and R. Apweiler. The SWISS-PROT protein
sequence database and its supplement TrEMBL. Nucleic
Acids Research, 28, 2000.

[3] F. Bancilhon and N. Spyratos. Update semantics of
relational views. TODS, 6(4), 1981.

[4] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data
management for peer-to-peer computing: A vision. In
WebDB ’02, June 2002.

[5] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational
lenses: a language for updatable views. In PODS, 2006.

[6] P. Buneman, S. Khanna, and W. C. Tan. Why and where:
A characterization of data provenance. In ICDT, 2001.

[7] Y. Cui. Lineage Tracing in Data Warehouses. PhD thesis,
Stanford University, 2001.

[8] U. Dayal and P. A. Bernstein. On the correct translation of
update operations on relational views. TODS, 7(3), 1982.

[9] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. Theoretical
Computer Science, 336:89–124, 2005.

[10] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.
Update exchange with mappings and provenance. In
VLDB, 2007. Revised version available as University of
Pennsylvania technical report MS-CIS-07-26.

[11] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, 2007.

[12] A. Gupta and I. S. Mumick. Maintenance of materialized
views: Problems, techniques, and applications. Data
Engineering Bulletin, 18(2), 1995.

[13] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In SIGMOD, 1993.

[14] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems. In
ICDE, March 2003.

[15] A. Hernich and N. Schweikardt. CWA-solutions for data
exchange settings with target dependencies. In PODS, 2007.

[16] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir.
Orchestra: Rapid, collaborative sharing of dynamic data.
In CIDR, January 2005.

[17] G. Karvounarakis and Z. G. Ives. Bidirectional mappings
for data and update exchange. University of Pennsylvania
technical report MS-CIS-08-17, 2008.

[18] A. M. Keller. Algorithms for translating view updates to
database updates for views involving selections, projections,
and joins. In PODS, 1985.

[19] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping
data in peer-to-peer systems: Semantics and algorithmic
issues. In SIGMOD, June 2003.

[20] M. Lenzerini. Tutorial - data integration: A theoretical
perspective. In PODS, 2002.

[21] N. E. Taylor and Z. G. Ives. Reconciling while tolerating
disagreement in collaborative data sharing. In SIGMOD,
2006.


	Introduction
	Related Work
	Bidirectional Data Exchange
	Bidirectional Mappings
	Bidirectional Data Exchange Semantics

	Bidirectional Update Exchange
	Insertions and Deletions at the Same Peer
	Deleting from a Different Peer
	Update Policies
	Interactions among Mappings


	Avoiding Side Effects
	Experimental Evaluation
	Unidirectional vs. Bidirectional Mappings
	Deletion Policies

	Conclusions and Future Work
	References

