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Abstract

As the data management field has diversified to consider settings in
which queries are increasingly complex, statistics are less available, or
data is stored remotely, there has been an acknowledgment that the
traditional optimize-then-execute paradigm is insufficient. This has led
to a plethora of new techniques, generally placed under the common
banner of adaptive query processing, that focus on using runtime feed-
back to modify query processing in a way that provides better response
time or more efficient CPU utilization.

In this survey paper, we identify many of the common issues, themes,
and approaches that pervade this work, and the settings in which each
piece of work is most appropriate. Our goal with this paper is to be
a “value-add” over the existing papers on the material, providing not
only a brief overview of each technique, but also a basic framework
for understanding the field of adaptive query processing in general.
We focus primarily on intra-query adaptivity of long-running, but not
full-fledged streaming, queries. We conclude with a discussion of open
research problems that are of high importance.



1
Introduction

One of the fundamental breakthroughs of Codd’s relational data
model [33] was the identification of how to take a declarative, logic-
based formulation of a query and convert it into an algebraic query
evaluation tree. As described in every database textbook, this enabled
physical data independence and promised many benefits: the database
administrator and the DBMS optimizer became free to choose among
many different storage formats and execution plans to answer a declar-
ative query. The challenge, since then, has been how to deliver on these
promises — regardless of where or how the data is laid out, how com-
plex the query is, and how unpredictable the operating environment is.

This challenge has spurred 30 years of query processing research.
Cost-based query optimization, pioneered by Selinger et al. [102] in
System R and refined by generations of database researchers and devel-
opers, has been tremendously effective in addressing the needs of rela-
tional DBMS query processing: one can get excellent performance for
queries over data with few correlations, executed in a relatively stable
environment, given sufficient statistical information.

However, when even one of these characteristics is not present, the
System R-style optimize-then-execute model begins to break down: as
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noted in [69], optimizer error begins to build up at a rate exponential
in the size of the query. As the database field has broadened to con-
sider more general data management, including querying autonomous
remote data sources, supporting continuous queries over data streams,
encoding and retrieving XML data, supporting OLAP and data mining
operations, and combining text search with structured query capabili-
ties, the weaknesses of the traditional optimization model have begun
to show themselves.

In response, there has been a surge of interest in a broad array of
techniques termed adaptive query processing (AQP). AQP addresses
the problems of missing statistics, unexpected correlations, unpre-
dictable costs, and dynamic data by using feedback to tune execution. It
is one of the cornerstones of so-called autonomic database management
systems, although it also generalizes to many other contexts, particu-
larly at the intersection of database query processing and the Web.

The spectrum of adaptive query processing techniques has been
quite broad: they may span multiple query executions or adapt within
the execution of a single query; they may affect the query plan being
executed or the scheduling of operations within the plan; they have been
developed for improving performance of local DBMS queries (e.g., [75,
87, 112]), for processing distributed and streaming data (e.g., [6, 72, 88,
92, 101]), and for performing distributed query execution (e.g., [115]).

This survey is an attempt to cover the fundamental issues, tech-
niques, costs, and benefits of adaptive query processing. We begin
with a broad overview of the field, identifying the dimensions of
adaptive techniques. Then we focus our analysis on the spectrum of
approaches available to adapt query execution at runtime — primarily
in a non-streaming context. Where possible, we focus on simplifying
and abstracting the key concepts of each technique, rather than repro-
ducing the full details available in the papers; we consider generaliza-
tions of the specific published implementations. Our goal is to identify
the strengths and limitations of the different techniques, demonstrate
when they are most useful, and suggest possible avenues of future
research.

In the rest of the section, we present a brief overview of query pro-
cessing in relational database systems (Section 1.1) and elaborate on
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the reasons behind the push toward adaptivity (Section 1.2); we then
present a road map for the rest of the survey (Section 1.3), and briefly
discuss the related surveys of interest (Section 1.4).

1.1 Query Processing in Relational Database Systems

The conventional method of processing a query in a relational DBMS
is to parse the SQL statement and produce a relational calculus-like
logical representation of the query, and then to invoke the query opti-
mizer, which generates a query plan. The query plan is fed into an
execution engine that directly executes it, typically with little or no
runtime decision-making (Figure 1.1).

The query plan can be thought of as a tree of unary and binary
relational algebra operators, where each operator is annotated with
specific details about the algorithm to use (e.g., nested loops join versus
hash join) and how to allocate resources (e.g., memory). In many cases
the query plan also includes low-level “physical” operations like sorting,
network shipping, etc. that do not affect the logical representation of
the data.

Certain query processors consider only restricted types of queries,
rather than full-blown SQL. A common example of this is select-
project-join or SPJ queries: an SPJ query essentially represents a single
SQL SELECT-FROM-WHERE block with no aggregation or subqueries.

Fig. 1.1 Query processing in database systems.
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An even further restriction is conjunctive queries, which are SPJ queries
that only have conjunctive predicates in the WHERE clause; these can be
represented as single rules in the Datalog language.

The model of query processing established with the System R
project [102], which is still followed today, is to divide query processing
into three major stages.

Statistics generation is done offline (typically using the RUNSTATS

or UPDATE STATISTICS command) on the tables in the database. The
system profiles the relation instances, collecting information about car-
dinalities and numbers of unique attribute values, and often generating
histograms over certain fields.

The second stage, which is normally done at runtime,1 is query opti-
mization. The optimization stage is very similar to traditional compi-
lation; in fact, in some systems, it generates directly executable code.
Optimization uses a combination of cost estimation, where the run-
ning times of query subexpressions are estimated (based on known
performance characteristics of algorithm implementations, calibration
parameters for hardware speed, and the statistics generated for the
relations), pruning heuristics (which are necessary to reduce the over-
all search space), and exhaustive enumeration. For relatively simple
queries with good statistics, the plans produced by a query optimizer
can be quite good, although as discussed previously, this is less true in
more complex settings.

The final stage, query execution, is handled by an engine analogous
to a virtual machine or interpreter for the compiled query plan. There
are several important aspects of query execution that are of note. The
first is that in general it is desirable to pipeline computation, such
that each operator processes a tuple at a time from its sub-operators,
and also propagates a single tuple to its parent for processing. This
leads to better response time in terms of initial answers, and often
higher throughput as delays are masked. However, not all operators
are naturally amenable to pipelining (e.g., operators like sorting and
grouping often must process entire table before they can determine

1 Except for certain embedded SQL queries, which may be pre-optimized or optimized once
for multiple possible input bindings.



6 Introduction

what tuple to output next). Also, complex query plans may require too
many resources to be fully pipelined. In these settings, the optimizer
must break the plan into multiple segments, materializing (storing)
intermediate results at the end of each stage and using that as an
input to the next stage.

Second, the issue of scheduling computation in a query plan has
many performance implications. Traditional query processing makes
the assumption that an individual operator implementation (e.g., a
nested loops join) should be able to control how CPU cycles are allo-
cated to its child operators. This is achieved through a so-called itera-
tor [53] architecture: each operator has open, close, and getNextTuple

methods. The query engine first invokes the query plan root node’s
open method, which in turn opens its children, and the process repeats
recursively down the plan. Then getNextTuple is called on the root
node. Depending on the operator implementation, it will make calls to
its children’s getNextTuple methods until it can return a tuple to its
parent. The process completes until no more tuples are available, and
then the engine closes the query plan.

An alternate approach, so called data-driven or dataflow schedul-
ing [121], is used in many parallel database systems. Here, in order to
allow for concurrent computation across many machines, the data pro-
ducers — not the consumers — control the scheduling. Each operator
takes data from an input queue, processes it, and sends it to an output
queue. Scheduling is determined by the rates at which the queues are
filled and emptied. In this survey, we will discuss a number of adaptive
techniques that in essence use a hybrid of the iterator and data-driven
approaches.

1.2 Motivations for AQP

Over the years, many refinements have been made to the basic query
processing technology discussed above. Since CPUs are more powerful
today and query workloads are much more diverse, query optimizers
perform a more comprehensive search of the space of query plans with
joins, relying less on pruning heuristics. Selectivity estimation tech-
niques have become more accurate and consider skewed distributions
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(and to a limited extent, attribute correlations). However, the System
R-style approach has begun to run into its fundamental limits in recent
years, primarily due to the emergence of new application domains in
which database query processing is being applied. In particular, triggers
for this breakdown include the following:

• Unreliable cardinality estimates: The cost estimation
process depends critically on estimates of the cardinality
of various query subexpressions. Despite significant work
on building better statistics structures and data collection
schemes, many real-world settings have either inaccurate or
missing statistics. (In some circumstances, as with remote
data sources, statistics may be difficult or impossible to
obtain.) Even when base-table statistics are perfect, cor-
relations between predicates can cause intermediate result
cardinality estimates to be off by several orders of magni-
tude [69, 112].

• Queries with parameter markers: SQL is not a pleasant
language for end users, so most database queries are issued by
a user clicking on a form. The SQL for such queries invariably
contains parameter markers (for form input), and the pre-
computed query plans for such queries can be substantially
worse than optimal for some values of the parameters.

• Dynamically changing data, runtime, and workload
characteristics: In many environments, especially data
streams [23, 88, 92], queries might be long-running, and the
data characteristics and hence the optimal query plans might
change during the execution of the query. The runtime costs
can also change dramatically, especially in wide-area envi-
ronments. Similarly, fluctuating query workloads can result
in variations in the resources available to execute a query
(e.g., memory), making it necessary to adapt.

• Complex queries involving many tables: Query opti-
mizers typically switch to a heuristic approach when queries
become too complex to be optimized using the dynamic pro-
gramming approach. Such queries are naturally more prone
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to estimation errors [69], and the use of heuristics exacerbates
the problem.

• Interactive querying: The optimize-then-execute model
does not mesh well with an interactive environment where
a user might want to cancel or refine a query after a few
seconds of execution: the metric changes too quickly for opti-
mization to pay off [61]. Also, pipelined execution and early-
result scheduling, even in the presence of slow data sources,
becomes paramount.

• Need for aggressive sharing: Though there has been
much work in multi-query optimization, so far no definitive
solutions have emerged in this area. Traditional databases
make do with almost no inter-query state sharing because
their usage pattern is made up of a small number of
queries against large databases. However, sharing the data
as well as the computation is critical in environments
such as data streams, which feature a very large num-
ber of (typically simple) queries over a small set of data
streams [28, 86].

There have been two responses to the challenges posed above. The
first, a very pragmatic response by application vendors, has been to
build domain-specific optimization capabilities outside the DBMS and
override its local optimizer. Many commercial DBMSs allow users to
specify “hints” on what access methods and join orders to use, via SQL
or catalog tables. Recently, SAP has built an application-level query
processor that runs only a very limited set of plans (essentially, only
table scans), but at very high efficiency [82]. While this achieves SAP’s
target of satisfying its users, it runs counter to the database commu-
nity’s goals of developing high-performance, general-purpose processors
for declarative queries.

Our interest in this survey is on the second development, which
has been the focus of the academic and commercial DBMS research
community: the design and construction of what have come to be known
as adaptive (or autonomic) query processing systems, that use runtime
feedback to adapt query processing.
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1.3 Road Map

We begin with a brief introduction to query optimization in relational
database systems (Section 2). We then discuss some of the foundations
of AQP, namely, three new operators, and several unifying concepts
that we use throughout the survey to illustrate the AQP techniques,
to analyze them, and to differentiate between them (Section 3).

We begin our discussion of adaptive query processing by considering
a simple class of queries called selection ordering queries (Section 4).
The discussion of adaptation techniques for join queries is divided into
three parts, roughly based on the space of the query execution plans
they explore. We begin with a discussion of techniques for adapting
pipelined query execution (Sections 6 and 7), and cover non-pipelined
query execution in Section 8. We conclude the survey with a discussion
of some of the most important research challenges in adaptive query
processing (Section 9).

1.4 Related Work

A number of surveys on query processing are related to this paper.
We assume basic familiarity with many of the ideas of Graefe’s survey
on query execution techniques [53]. Kossmann’s survey on distributed
query processing [79] also provides useful context for the discussion, as
do Ioannidis and Chaudhuri’s surveys on query optimization [24, 68].
Babu and Bizarro [8] also present a survey of AQP from a different
means of classification from our own (whether the scheme is plan-based,
routing-based, or continuous query-based).



2
Background: Conventional Optimization

Techniques

Before beginning to discuss adaptive query processing, we review some
of the key concepts in single-pass, non-adaptive query optimization in
relational databases (Section 2.1). Our goal is not to review general-
purpose query optimization of full-blown SQL queries (we refer the
reader to the surveys by Ioannidis [68] and Chaudhuri [24] for a broader
overview of the topic). Instead, we aim to lay down the foundations for
discussing AQP techniques in the later sections. We then briefly discuss
the impact of cost estimates on the optimization process, and present
strategies that have been proposed to make plan selection robust to
erroneous estimates (Section 2.2).

2.1 Query Optimization

While general query optimization may consider GROUP BY [26] and
multi-block SQL queries [58, 78, 89, 105], the heart of cost-based opti-
mization lies in selection ordering and join enumeration, upon which we
focus in this section. We begin with presenting the plan spaces that are
explored for these problems, and the static planning algorithms com-
monly used. In some specific cases, more efficient and simpler planning

10
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algorithms can be used, and we discuss these as appropriate later in
the survey.

2.1.1 Selection Ordering: Plan Space

Selection ordering refers to the problem of determining the order in
which to apply a given set of commutative selection predicates (filters)
to all the tuples of a relation, so as to find the tuples that satisfy all the
predicates. Figure 2.1 shows an example selection query over a persons
relation and several query plans for that query.

Let the query to be evaluated be a conjunction1 of n commutative
predicates, S1, . . . ,Sn, to be applied to the tuples from a relation R. We
denote the cost of Si by ci, and the probability that a tuple satisfies the
predicate Si by p(Si), or pi. Similarly, we denote the probability that a
tuple satisfies predicates Sj1 , . . . ,Sjk

by p(Sj1 ∧ ·· · ∧ Sjk
). If a tuple is

Fig. 2.1 An example query with two expensive user-defined predicates, two serial plans for
it, and one conditional plan that uses age to decide which of the two expensive predicates
to apply first.

1 Queries with disjunctions are often treated as equivalent to a union of multiple queries in
conjunctive normal form, although more efficient schemes exist for evaluating such plans
with “bypass” operators [32] or multi-query optimization strategies [86, 91]. We do not
consider such techniques in this survey and refer the reader to those works.
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known to have already satisfied a set of predicates {Sj1 , . . . ,Sjk
}, then

we denote the conditional probability that the tuple also satisfies Si by
p(Si|Sj1 , . . . ,Sjk

). Note that if the predicates are independent of each
other (an assumption typically made), then p(Si|Sj1 , . . . ,Sjk

) = p(Si).

Serial Plans: The natural class of execution plans to consider for eval-
uating such queries is the class of serial orders that specify a single order
in which the predicates should be applied to the tuples of the relation
(Figure 2.1). Given a serial order, Sπ1 , . . . ,Sπn , where π1, . . . ,πn denotes
a permutation of 1, . . . ,n, the expected cost per tuple for that order can
be written as:

cπ1 + p(Sπ1)cπ2 + · · · + p(Sπ1 · · ·Sπn−2 ∧ Sπn−1)cπn .

Or, if the predicates are independent of each other:

cπ1 + p(Sπ1)cπ2 + · · · + p(Sπ1) × ·· · × p(Sπn−1)cπn .

Conditional Plans: Conditional plans [17, 39] generalize serial plans
by allowing different predicate evaluation orders to be used for different
tuples based on the values of certain attributes. This class of plans can
be especially beneficial when the attributes are highly correlated with
each other, and when there is a large disparity in the evaluation costs
of the predicates.

Figure 2.1 shows an example conditional plan that uses an inex-
pensive predicate on age, which is strongly correlated with both the
query predicates, to decide which of the two predicates to apply first.
Specifically, for tuples with age > 25, the predicate on credit score is
likely to be more selective than the predicate on education, and hence
should be applied first, whereas the opposite would be true for tuples
with age < 25.

2.1.2 Selection Ordering: Static Planning

The static planning algorithms for selection ordering are quite simple
if the predicates are independent of one another; however, the planning
problem quickly becomes NP-Hard in presence of correlated predicates.
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Independent Predicates: If the predicates are independent of one
another, as is commonly assumed by most query optimizers, the optimal
serial order can be found in O(n log(n)) time by simply sorting the
predicates in the increasing order of ci/(1 − pi) [60, 67, 80]. Under
independence assumptions, conditional plans offer no benefit over serial
plans.

The expression ci/(1 − pi) is commonly referred to as the rank of
the predicate, and this algorithm is hence called rank ordering.

Correlated Predicates: The complexity of the planning problem, in
this case, depends on the way the correlations are represented. Babu
et al. [10] show that the problem of finding the optimal order for a
given dataset D (similarly, for a given random sample of the underly-
ing relation) is NP-Hard. However, to our knowledge, it is not known
whether the problem is tractable if the correlations are represented in
some other format, e.g., using probabilistic graphical models [38, 49].

Assuming that the conditional probabilities for the predicates can
somehow be computed using the correlation information, the following
greedy algorithm (called Greedy henceforth) can be used [10]:

Algorithm 2.1 The Greedy algorithm for correlated selection
ordering.
Input: A set of predicates, Si, i = 1, . . . ,n; a procedure to compute
conditional probabilities.
Output: A serial plan, Sπ1 , . . . ,Sπn , for applying the predicates to the
tuples.

1. Choose Sπ1 to be the predicate Si with the lowest ci/(1 − p(Si))
among all predicates.

2. Choose Sπ2 to be the predicate Sj with the lowest cj/(1−
p(Sj |Sπ1)) among remaining predicates; p(Sj |Sπ1) denotes the
conditional probability of Sj being true, given that Sπ1 is true.

3. Choose Sπ3 to be the predicate Sk with the lowest ck/(1 −
p(Sk|Sπ1 ,Sπ2)) among remaining predicates.

4. Continue until no operators left.
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For instance, if the correlation information is given in the form of
a dataset (or a random sample) D, then the conditional probabilities
can be computed by scanning D repeatedly as required. This algorithm
can be shown to approximate the optimal solution within a constant
factor of 4 [10]; for reasonable numbers of predicates, the bound is even
smaller (e.g., for n = 20, the bound is only 2.35).

Finding an optimal conditional plan for a given dataset D can be
shown to be NP-Hard as well [39] (using a straightforward reduction
from binary decision tree construction problem). Several heuristic algo-
rithms are presented in [39], but to our knowledge no approximation
algorithms are known for this problem.

2.1.3 Multi-way Join Queries: Plan Space

In picking a query plan for a multi-way select-project-join (SPJ) query,
an optimizer has to make many choices, the most important being:
access methods, join order, join algorithms, and pipelining.

Access Methods: The optimizer needs to pick an access method for
each table in the query. Typically there are many choices, including a
direct table scan, a scan over an index (also called “index-only access”
or “vertical partitioning” in the literature), an index-based lookup on
some predicate over that table, or an access from a materialized view.
Some stream or wide-area data sources may support only one access
method: a continual stream of tuples entering the query processor. Oth-
ers may allow binding parameters to be passed akin to index probes or
the two-way semijoin [36].

Join Order: The access methods provide source tuples to the query
plan. To join these tables, the optimizer then chooses a join order.

Definition 2.1. A join order is a tree, with the access methods as
leaves; each internal node represents a join operation over its inputs.

Optimizers usually avoid performing relational cross-products, so
they typically consider trees where each join (internal node) can
apply some join predicates (over the node’s descendants) specified



2.1 Query Optimization 15

in the query. Traditionally, these internal nodes have been binary
joins, but many adaptive techniques use n-ary join operators as well
(Section 3.1.3). Each join order corresponds to a way of placing paren-
thesis around tables in the query: it is equivalent to a parse tree for
an expression in which each join’s input is parenthesized. (The poor
name “join order” arose because historically DBMSs first supported
only “left-deep” query plans; we will continue to use this terminology
in this paper.) A left-deep or “left-linear” plan is one where only the left
child of a join operator may be the result of another relational algebra
operation; the right child must be a base relation. See Figure 2.2(ii).

Since the join order is a tree, it may not cover all join predicates.
In particular, if the join predicates in a query form a cycle, the join
order can only cover a spanning tree of this cycle. So, as part of join
ordering, the optimizer also picks a spanning tree over the join graph.
Join predicates on edges that are eliminated (to remove cycles) are
applied after performing the join, as “residual” predicates.

Figure 2.2 shows an example multi-way join query that we use as a
running example, and two possible join orders for it — one using a tree
of binary join operators and the other using a ternary join operator.

Join Algorithms: The next aspect of join execution is the physical
join algorithm used to implement each join in the join order — nested
loop join, merge join, hash join, etc. These decisions are typically made

Fig. 2.2 (i) A multi-way join query that we use as the running example; (ii) a left-deep join
order, in which the right child of each join must be a base relation; (iii) a join order that
uses a ternary join operator.
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during cost estimation, along with the join order selection, and are
partly constrained by the available access methods. For instance, if
the data from a relation is streaming in, pipelined join operators must
be used. Similarly, an index access method is often ideally suited for
use with an index nested-loops join or sort-merge join.

Pipelining vs. Materialization: One of the biggest differentiating
factors between query plans for join queries is whether they contain a
blocking operator or not. A blocking operator is one that needs to hold
intermediate state in order to compute its output because it requires
more than one pass over the input to create its output, e.g., a sort
(which must sort the input) or a hash join (where the “build” relation is
stored in a hash table and probed many times). In some cases, resource
constraints might force materialization of intermediate state.

Query plans for SPJ queries can be classified into two classes:

• Non-pipelined plans: These contain at least one blocking
operator that segments execution into stages: the blocking
operator materializes its sub-results to a temporary table,
which is then read by the next operator in a subsequent step.
Each materialization is performed at a materialization point,
illustrated in Figure 2.3 (i).

Fig. 2.3 (i) A non-pipelined plan; (ii) a pipelined plan.
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• Pipelined plans: These plans execute all operators in the
query plan in parallel, by sending the output tuples of
an operator directly to the next operator in the pipeline.
Figure 2.3(ii) shows an example pipelined plan that uses
hash join operators. A subtlety of this plan is that it is actu-
ally only “partly pipelined”: the traditional hash join per-
forms a build phase, reading one of the source relations into
a hash table, before it begins pipelining tuples from input to
output. Symmetric or doubly pipelined hash join operators
(Figure 2.4) are fully pipelined: when a tuple appears at
either input, it is incrementally added to the corresponding
hash table and probed against the opposite hash table. Sym-
metric operators are extensively used when quicker response
time is needed, or when the inputs are streaming in over a
wide-area network, as they can read tuples from whichever
input is available, and they incrementally produce output
based on the tuples received so far.

We will continue to refer to plans such as the one
shown in Figure 2.3(ii) as pipelined plans, as long as all
the major operations in the plan are executed in a single
pipeline.

Fig. 2.4 Symmetric hash join (doubly pipelined hash join) operator builds hash tables on
both inputs.
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These two plan classes offer very different adaptation opportuni-
ties because of the way they manipulate state. Proposed adaptation
schemes for pipelined plans usually involve changes in the tuple flow,
whereas adaptation schemes in non-pipelined plans typically involve
re-evaluating the rest of the plan at the materialization points.

2.1.3.1 A Variation: SPJ Queries over Data Streams

In recent years, a new class of queries has become popular: queries
where the data sources are (infinite) data streams. To execute join
queries over streams, sliding windows must be specified on the data
streams in the query. As an example, if the relations R and S referred
the above example query are streaming relations, then a query may be
written in the CQL language [4] as follows:

select *
from R [rows 100], S [range 60 min], T, U
where R.a = S.a and S.b = T.b and S.c = U.c

This query specifies two sliding windows. At any time, the sliding win-
dow on R (a tuple-based window) contains the last 100 tuples of R. The
window on S, a time-based window, contains all tuples that arrived dur-
ing the last 60 min.

Because of the potentially endless nature of data streams, only fully
pipelined plans can be used for executing them. In other respects, the
query execution remains essentially the same, except that the earliest
tuples may have to be deleted from the join operator data structures
when they have gone outside the range of the window (i.e., its size or
duration). For example, if the symmetric hash join operator shown in
Figure 2.4 is used to execute the join between R and S, then tuples
should be removed from the hash tables once they have been followed
by sufficient tuples to exceed the sliding window’s capacity.

2.1.4 Multi-way Join Queries: Static Planning

The wide array of choices in access methods, join orders, and join
algorithms results in an enormous space of execution plans: one that
is exponential in the number of tables and predicates in the query,
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in the number of access methods on each table, and in the number
of materialized views available. Query optimizers search in this plan
space through dynamic programming, applying a number of heuris-
tics to prune the choices and make optimization tractable. The basic
method is the one proposed in the original System R paper [102]. We
briefly summarize this here (for a more thorough survey of query opti-
mization, we refer the reader to [24, 68]).

The System R paper made a number of ground-breaking observa-
tions. First, projection, and in many cases selection, can be pushed
down as a heuristic. Hence, the key to optimizing an SQL query is
reasoning about join order and algorithm selection.

The second key observation is that it is fairly easy to develop cost
modeling equations for each join implementation: given page size, CPU
and disk characteristics, other machine-specific information, and the
cardinality information about the input relations, the cost of execut-
ing a join can be easily computed. The challenge is to estimate the
cardinality of each join’s output result — this forms one of the input
relations to a subsequent join, and hence impacts all future cost esti-
mation. System R only did limited reasoning about join selectivities,
primarily based on hard-coded heuristics.

The third key idea — perhaps the most insightful — was that in
general, the cost of joining two subexpressions is independent of how
those subexpressions were computed. The optimal way of computing
some join expression thus can be posed as the problem of consider-
ing all ways of factoring the expression into two subexpressions, opti-
mally computing those subexpressions, and joining them to get the
final expression. This naturally leads to a dynamic programming for-
mulation: the System R optimizer finds all optimal ways of retrieving
data from the source relations in the query, then all optimal ways of
joining all pairs of relations, then all optimal ways of joining pairs
with one additional relation, etc., until all combinations have been
considered.

One exception to the independence property described above is the
impact of sorting: a single sort operation can add significant one-time
overhead, but this may be amortized across multiple merge joins. Sys-
tem R separately considers each so-called interesting order (i.e., sort
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order that might be exploited when joining or grouping), as well as an
“unconstrained order” in the dynamic programming table.

Only after optimizing joins (while simultaneously maximally push-
ing down selections and projections) did System R consider correlated
subqueries and grouping — and for these, it generally did very lit-
tle reasoning, and simply added a final nested loops join or group-by
operator at the end.

System R limited its search in two ways to make the query opti-
mization problem more tractable on 1970s hardware. First, it deferred
reasoning about Cartesian products until all possible joins were evalu-
ated: the assumption was that such plans were likely to be inefficient.
Second, System R only considered left-deep or left-linear plans. (Left-
linearness is significant because the right input to a nested loops join
is conventionally the inner loop.)

Modern optimizers have extended System R’s approach to plan
enumeration in a number of key ways, in part because complex plans
and operations became more prevalent and in part because machines
became more powerful and could afford to do more optimization.

• Plan enumeration with other operators: Both Star-
burst [58] and Volcano [56] extended the cost estimation
component of query optimization to explore combinations of
operators beyond simply joins. For instance, group-by push-
down [26] and shipment of data in a distributed setting [85]
are often considered during cost estimation.

• Top-down plan enumeration: The original System R opti-
mizer enumeratedplans in truedynamicprogramming fashion,
starting with single relations and building increasingly com-
plex expressions. Some modern optimizers, following a model
established in Volcano and Cascades [54], use top-down enu-
meration of plans, i.e., recursion with memoization. The pri-
mary benefit of this approach is that it enables early pruning
of subexpressions that will never be used: branch-and-bound
pruning, in particular, can be used to “short-circuit” the com-
putation of subexpressions whose cost is higher than an exist-
ing, alternative expression that subsumes the existing one.
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• Cross-query-block optimization: In contrast to System
R’s model, which processed each block of an SQL query sep-
arately, most modern DBMSs allow for optimizations that
move predicates across blocks and in some cases even per-
form sophisticated rewritings, such as magic sets transfor-
mations [104]. Typically these rewritings are chosen using a
combination of heuristics and cost estimation.

• Broader search space: A modern query optimizer often
considers bushy plans (where two arbitrary sub-results may
be joined, as opposed to requiring one of the inputs to be a
leaf) as well as early Cartesian products. Additionally, when
the query expression becomes sufficiently large, rather than
attempting to do dynamic programming on all possible plans,
most optimizers first partition the work using heuristics, and
then run dynamic programming on each plan segment.

Of course, plan enumeration is only half of the query optimization
story. In many ways, the “magic” of query optimization lies not in the
plan enumeration step, but in the process of estimating a particular
plan’s cost.

2.2 Choosing an Effective Plan

As we previously described, the query optimizer can create a composite
estimate of overall query execution cost from its knowledge of
individual operators’ costs, system parameters, and data distribu-
tions — ultimately enabling it to choose the minimal-estimated-cost
plan from its plan enumeration space.

Naturally, one of the most essential aspects of the cost estimation
process is selectivity estimation: given a set of input relations (which
may be stored on disk or derived by the query) and an operation, the
estimator predicts the cardinality of the result. This estimated cardi-
nality then provides a prediction of the size of one of the inputs to the
next subsequent operation, and so forth, until query completion.

The original System R implementation made use of very sim-
ple selectivity estimation strategies: the DBMS maintained cardinal-
ity information for each table, and selectivity estimation made use of
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this information, as well as minimum and maximum values of indexed
attributes and several ad hoc “magic ratios” to predict cardinali-
ties [102].

All modern DBMSs employ more sophisticated techniques, relying
on histograms created offline (via RUNSTATS or UPDATE STATISTICS)
to record the distributions of selection and join key attributes. As
described in [24], these histograms are not only used to estimate the
results of selection predicates, but also joins. Unfortunately, because
attributes are often correlated and different histograms may be diffi-
cult to “align” and intersect, significant error can build up in this pro-
cess [69]. This has motivated a great deal of research into either making
query plans more robust, pre-encoding contingent or conditional plans,
or performing inter-query adaptation of the cost model. We proceed to
discuss each of these ideas in turn.

2.2.1 Robust Query Optimization

In some cases the query optimizer has a choice between a “conserva-
tive” plan that is likely to perform reasonably well in many situations,
or a more aggressive plan that works better if the cost estimate is accu-
rate, but much worse if the estimate is slightly off. Chu et al. [30, 31]
propose least expected cost optimization where the optimizer attempts
to find the plan that has the lowest expected cost over the different
values the parameters can take, instead of finding the lowest cost plan
for the expected values of the parameters. The required probability dis-
tributions over the parameters can be computed using histograms or
query workload information. This is clearly a more robust optimization
goal, assuming only one plan can be chosen and the required probability
distributions can be obtained. (The latter may be difficult if the work-
load is diverse, the data changes, or there are complex correlations.)
An approach along similar lines was proposed by Babcock and Chaud-
huri [7] recently, called robust query optimization. Here the authors
provide a knob to tune the predictability of the desired plan vs. the
performance by using such probability distributions.

Error-aware optimization (EAO) [119] makes use of intervals over
query cost estimates, rather than specifying the estimates for single
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statistical points. EAO focuses primarily on memory usage uncertainty.
A later work, Rio [9], provides several features including the use of inter-
vals. It generates linear query plans (a slight variation of the left-linear
or left-deep plan, in that one of the two inputs to every join — not
necessarily the right one — must be a base relation) and uses bound-
ing boxes over the estimated cardinalities in order to find and prefer
robust plans. (Rio’s proactive reoptimization features are discussed in
Section 8).

A different means of making plans more robust is to employ more
sophisticated operators, for instance, n-way pipelined hash joins, such
as MJoins [120] (discussed in Section 3.1.3) or eddies [6] (discussed in
Section 3.1.2). Such operators dramatically reduce the number of plans
considered by the query optimizer, although potentially at the cost of
some runtime performance.

2.2.2 Parametric Query Optimization

An alternative to finding a single robust query plan is to find a small
set of plans that are appropriate for different situations. Parametric
query optimizers [46, 52, 70] postpone certain planning decisions to
runtime, and are especially attractive in scenarios where queries are
compiled once and executed repeatedly, possibly with minor parame-
ter changes. They choose among the possible previously chosen plan
alternatives at the start of execution (i.e., before the first pipeline
begins) and in some cases at intermediate materialization points. The
simplest form uses a set of query execution plans annotated with
a set of ranges of parameters of interest; just before query execu-
tion commences, the current parameter values are used to find the
appropriate plan.

Graefe et al. [34, 52] propose dynamic query evaluation plans for this
purpose, where special choose-plan operators are used to make decisions
about the plans to use based on the runtime information. Some of the
choices may not be finalized until after the query has begun executing
(as opposed to only at the beginning of execution); this allows the
possibility of using the intermediate result sizes as parameters to make
the decisions.
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Ioannidis et al. [70] study parametric optimization for the buffer
size parameter, and propose randomized algorithms for generating the
parametric plans. More recently, several researchers have begun a sys-
tematic study of parametric query optimization by understanding the
complexity of the problem [46, 98], and by considering specific forms
of cost functions that may be easier to optimize for, generalizing from
linear to piecewise linear to convex polytopes [64, 65, 94].

Despite the obvious appeal of parametric query optimization, there
has not been much research in this area and the commercial adoption
has been nearly non-existent. The bane of this technique is determining
what plans to keep around: the space of all optimal plans is super-
exponential in the number of parameters considered. More recently,
an alternative idea was proposed in the progressive reoptimization
work [87], where validity ranges are associated with query plans: if the
values of the parameters are observed to be outside these ranges at the
time of the execution, reoptimization is invoked. This idea is largely
shared in progressive parametric query optimization (PPQO) [19],
which combines the ideas of parametric query optimization with pro-
gressive reoptimization: the reoptimizer is called when error exceeds
some bound (the Bounded implementation) or when there is no “near
match” among the set of possible plan configurations (the Ellipse
implementation).

2.2.3 Inter-Query Adaptivity: Self-tuning and Autonomic
Optimizers

Several techniques have been proposed that passively observe the query
execution and incorporate the knowledge learned from these previous
query executions to better predict the selectivity estimates in future.
Chen and Roussopoulos [27] propose adaptive selectivity estimation,
where an attribute distribution is approximated using a curve-fitting
function that is learned over time by observing the query results.
Self-tuning histograms [1, 22] are similar in spirit, but focus on gen-
eral multi-dimensional distributions that are approximated using his-
tograms instead of curve-fitting. These approaches have the additional
advantage of not having to directly access the data to build the statis-
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tical summaries: they in effect “snoop” on the intermediate results of
queries.

More recently, the LEarning Optimizer (LEO) project [112] gen-
eralizes this basic idea by monitoring arbitrary subexpressions within
queries as they execute and comparing the actual observed selectivities
with the optimizer’s selectivity estimates. This information is then used
to compute adjustments to the optimizer’s estimates that may be used
during future optimizations of similar queries. If a significant difference
is observed, reoptimization may be triggered during execution; we will
discuss this aspect of LEO in more detail in Section 8.

Similarly, Bruno and Chaudhuri [21] propose gathering statistics
on query expressions (SITS) during query execution and using those
during optimization of future queries. Their main focus is on deciding
which of the query expressions, among a very large number of possible
candidates, to maintain such statistics on.

In some sense, these techniques form a feedback loop, across the
span of different queries, in the design of an adaptive database sys-
tem. Many of them are also fairly easy to integrate into a commercial
database system, as evidenced by the development of self-tuning wiz-
ards and autonomic optimizers in leading DBMSs.

2.3 Summary

The traditional, single-pass, optimize-then-execute strategy for query
execution has served the database community quite well since the
1970s. As queries have become more complex and widespread, how-
ever, they have started to run into limitations. Schemes for robust opti-
mization, parametric optimization, and inter-query adaptivity alleviate
some of these difficulties by reducing sensitivity to errors. A significant
virtue of these methods is that they impose little runtime overhead on
query execution. Perhaps even more importantly, they serve as a simple
upgrade path for conventional single-pass query processors.

However, there are settings in which even these techniques run into
limitations: for instance, if the query workload is highly diverse, then
subsequent queries may have little overlap; if the actual costs change
frequently, as they may in highly distributed settings, then the recal-
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ibration may not be beneficial; if the data itself changes frequently,
as it may in streaming, data integration, or high-throughput settings,
then the new statistics may be out of date. In these settings, we would
like to immediately react to such changes or adapt the current query
plan. Through the remainder of this survey, we focus on such intra-
query adaptive query processing techniques that adapt the execution
of a single query, for greater throughput, improved response time or
more useful incremental results.



3
Foundations of Adaptive Query Processing

The goal of adaptive query processing is to find an execution plan and
a schedule that are well-suited to runtime conditions; it does this by
interleaving query execution with exploration or modification of the
plan or scheduling space. At a very high level, the differences between
various adaptive techniques can be explained as differences in the way
they interleave. Standard, System R-style [102] query processing does
full exploration first, followed by execution. Evolutionary techniques
like choose nodes [34] or mid-query reoptimization [75] interleave plan-
ning and execution a few times, whereas more radical techniques like
eddies [6] interleave them to the point where they are not even clearly
distinguishable.

We note that the adaptive aspect is not free: given sufficient infor-
mation, an offline optimization strategy could define a plan or a col-
lection of plans (e.g., for different partitions of relations) that always
matches or improves the execution times of the adaptive technique,
without the overhead of exploration. However, in reality such infor-
mation is seldom accurately available in advance, which is the major
motivation for studying adaptivity. Different techniques incur different

27



28 Foundations of Adaptive Query Processing

amounts of overhead in order to explore the search space and to adapt
an executing query plan.

In this section, we introduce some of the foundations of adaptive
query processing. We begin with presenting three new operators that
play a central role in several adaptive techniques that we discuss in this
survey (Section 3.1). We then present a framework called the adaptiv-
ity loop that we use for illustrating the AQP techniques throughout
this survey (Section 3.2), and discuss how the behavior of an adaptive
technique may be analyzed post-mortem using traditional query plans
(Section 3.3). We conclude with an analysis of several example systems
using these two concepts (Section 3.4).

3.1 New Operators

Traditional database engines are optimized for disk-based I/O, which
(at least on a modern storage architecture) can supply data to a DBMS
at very high rates. The goal is to have very tight control loops, carefully
scheduled to minimize the per-tuple overhead [53]. This type of execu-
tion, however, tends to severely restrict the possible adaptation oppor-
tunities, especially when wide-area data sources or data streams are
involved. In this section, we present three new operators that address
these problems by allowing for greater scheduling flexibility and more
opportunities for adaptation. Such flexibility requires greater memory
consumption and more execution overhead, but the result is still often
superior performance.

We note that our focus here is on describing the underlying mech-
anisms; we postpone the discussion of most of the policy aspects to
latter sections.

3.1.1 Symmetric Hash Join Operators

The traditional hash join operator is not very well suited for adap-
tive query processing; it must wait for the build relation to fully arrive
before it can start processing the probe relation and producing results.
This makes it unsuitable for handling wide-area data sources and data
streams, where the inputs arrive in an interleaved fashion, and continu-
ous result generation is desired. Further, this operator severely restricts
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adaptation opportunities since the build relations must be chosen in
advance of query execution and adapting these decisions can be costly.

The symmetric hash join operator [99, 121] introduced in Section
2.1.3 solves both these problems by building hash tables on both inputs
(Figure 2.4); when an input tuple is read, it is stored in the appropriate
hash table and probed against the opposite table, resulting in incremen-
tal output. Because the operator is symmetric, it can process data from
either input, depending on availability. This operator also enables addi-
tional adaptivity since it has frequent moments of symmetry [6] – points
at which the join order can be changed without compromising correct-
ness or without losing work. As a result, this operator has formed the
cornerstone of many AQP techniques.

The symmetric hash join operator does have a significant disadvan-
tage in that the memory footprint is much higher since a hash table
must be built on the larger input relation as well.

Several pieces of work build upon the original proposal for this oper-
ator that was developed for dataflow-based parallel query processing.
Both XJoin [117] and the doubly pipelined hash join [72] adapted the
operator to a multi-threaded architecture, using producer–consumer
threads instead of a dataflow model, and they also included strategies
for handling overflow to disk when memory capacity is exceeded. In
general, they only perform runtime decisions in terms of deciding what
to overflow to disk and when to process overflowed data.

Another extension, called ripple join, proposed for interactive query
processing, adapts the order in which tuples are read from the inputs
so as to rapidly improve the precision of approximated aggregates; in
addition to equality join predicates, ripple joins can also be used for
non-equijoins [59].

3.1.2 Eddy [6]

Avnur and Hellerstein [6] proposed the eddy operator for enabling fine-
grained run-time control over the query plans executed by the query
engine. The basic idea behind the approach they propose is to treat
query execution as a process of routing tuples through operators, and
to adapt by changing the order in which tuples are routed through the
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Fig. 3.1 Example of an eddy instantiated for a 4-way join query (taken from Avnur and
Hellerstein [6]). A routing table can be used to record the valid routing destinations, and
possibly current probabilities for choosing each destination, for different tuple signatures.

operators (thereby, in effect, changing the query plan being used for the
tuple). The eddy operator, which is used as the tuple router, monitors
the execution, and makes the routing decisions for the tuples.

Figure 3.1 shows how an eddy can be used to execute a 4-way join
query. Along with an eddy, three join operators and one selection oper-
ator are instantiated. The eddy executes the query by routing tuples
from the relations R, S, and T through these operators; a tuple that
has been processed by all operators is sent to the output. The eddy can
adapt to changing data or operator characteristics by simply changing
the order in which the tuples are routed through these operators. Note
that the operators themselves must be chosen in advance (this was
somewhat relaxed by a latter approach called SteMs that we discuss in
Section 6). These operator choices dictate, to a large degree, the plans
among which the eddy can adapt. Pipelined operators like symmetric
hash join offer the most freedom in adapting and typically also provide
immediate feedback to the eddy (for determining the operator selectiv-
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ities and costs). On the other hand, blocking operators like sort-merge
operators are not very suitable since they do not produce output before
consuming the input relations in their entirety.

Various auxiliary data structures are used to assist the eddy during
the execution; broadly speaking, these serve one of two purposes:

1. Determining Validity of Routing Decisions: In general, arbi-
trary routing of tuples through the operators is not always correct.
As an example, the eddy should not route R tuples to the selec-
tion operator σP (T ), since that operator expects and operates on
T tuples. In fact, R tuples should only be routed to the R � S

operator.
Typically, some form of tuple-level lineage, associated with each

tuple, is used to determine the validity of routing decisions. One option
is to use the set of base relations that a tuple contains and the operators
it has already been routed through, collectively called tuple signature, as
the lineage. However, for efficient storage and lookups, compact repre-
sentations of this information are typically used instead. For instance,
the original eddies proposal advocated attaching two bitsets to each
tuple, called done and ready, that respectively encode the information
about the operators that the tuple has already been through, and the
operators that the tuple can be validly routed to next [6]. We will see
several other approaches for handling this later.

2. Implementation of the Routing Policy: Routing policy refers
to the set of rules used by the eddy to choose a routing destination for
a tuple among the possible valid destinations. This is the most critical
component of an eddy and is directly responsible for the performance
benefits of adaptivity. To facilitate clear distinctions between differ-
ent routing policies, we will use the following unifying framework to
describe a routing policy.

The routing policy data structures are classified into two parts:

— Statistics about the query execution: To aid in making
the routing decisions, the eddy monitors certain data and
operator characteristics; the specific statistics maintained
depend on the routing policy. Since the eddy processes every
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tuple generated during query execution, it can collect such
statistics at a very fine granularity. However, the cost of
maintaining detailed statistics could be high, and must be
weighed against the expected adaptivity benefits of gather-
ing such statistics.

— Routing table: This data structure stores the valid routing
destinations for all possible tuple signatures. Figure 3.1 shows
an example of such a routing table for our example query.
As discussed above, more compact, bitmap-based representa-
tions may be used instead for efficient storage and lookups.

To allow for probabilistic choices (so that the eddy can
explore other alternatives during execution), a probability
may be associated with each destination. Deterministic poli-
cies are simulated by requiring that the routing table have
exactly one destination with non-zero (=1) probability for
each tuple signature; in that case, we further assume that
destination is the first destination listed for the tuple in the
routing table.

Given these data structures, the eddy follows a two-step process for
routing a tuple:

— Step 1: The eddy uses the statistics gathered during the
execution to construct or change the routing table. This
may be done on a per-tuple basis, or less frequently.

— Step 2: The eddy uses the routing table to find the valid
destinations for the tuple, and chooses one of them and
routes the tuple to it. If the eddy is using probabilistic rout-
ing, this step involves a random number generation and a
scan over the possible destinations (this can be reduced to
O(H(p)) using a Huffman Tree, where H(p) denotes the
entropy of the probability distribution over the destina-
tions [63]). If the eddy is using deterministic routing, this
takes O(1) time since we assume that the deterministic des-
tination is listed first in the routing table.

This framework minimizes the architectural overhead of adaptivity.
The policy overhead of using a routing policy depends largely on the
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frequency with which the eddy executes Step 1 and the statistics that
it collects; these two factors also determine how well and how quickly
the eddy can adapt. This overhead can be minimized with some careful
engineering (e.g., by amortizing the cost of Step 1 over many tuples [37],
or by using random sampling to maintain the statistics). We will revisit
this issue in more detail when we discuss specific routing policies in the
later sections.

3.1.3 n-ary Symmetric Hash Joins/MJoins

An n-ary Symmetric Hash Join (called MJoin henceforth) [95, 120]
generalizes the binary symmetric hash join operator to multiple inputs
by treating the input relations symmetrically and by allowing the tuples
from the relations to arrive in an arbitrary interleaved fashion. An
MJoin has several attractive features over the alternative option of a
tree of binary join operators, especially in data stream processing and
adaptive query processing.

Figure 3.2 shows an example MJoin operator instantiated for a
4-way join query. MJoins build a hash index on every join attribute
of every relation in the query. In the example, three hash indexes (that
share the base tuples) are built on the S relation, and one hash table
each is built on the other relations. For acyclic query graphs, the total
number of hash tables ranges from 2(n − 1) when every join is on a
different attribute to n when all joins are on the same attribute.

An MJoin uses a lightweight tuple router to route the tuples from
one hash table to another. The eddy operator can also be used for this
purpose [95].

During the query execution, when a new tuple from a relation
arrives into the system, it is first built into the hash tables on that rela-
tion, and then the hash tables corresponding to the remaining relations
are probed in some order to find the matches for the tuple. The order
in which the hash tables are probed is called the probing sequence. For
example, when a new tuple s ∈ S arrives into the system, the following
steps are taken:

— s is built into the (three) hash indexes on the relation S.
— Let the probing sequence chosen for s be T → R→ U

(Figure 3.2).
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Fig. 3.2 Executing a 4-way join query using the MJoin operator. The triangles denote the
in-memory hash indexes built on the relations.

— s is used to probe into the hash table on T to find matches.
Intermediate tuples are constructed by concatenating s and
the matches, if any.

— If any result tuples were generated during the previous step,
they are used to probe into the hash tables on R and U , all
in that order.

Similarly, when a new R tuple arrives, it is first built into the hash
table on R. It is then probed into the hash table on S on attribute S.a

first, and the resulting matches are then probed into the hash tables
on T and U . Note that the R tuple is not eligible to be probed into
the hash tables on T or U directly, since it does not contain the join
attributes corresponding to either of those two joins.

An MJoin is significantly more attractive over a tree of binary
operators when processing queries involving sliding windows over data
streams; when a base tuple from a relation drops out of the sliding win-
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dow, only the base tuple needs to be located and removed from a hash
table, since intermediate tuples are not stored in the hash tables. Fur-
ther, MJoins are naturally very easy to adapt; the query plan being used
can be changed by simply changing the probing sequence. For these two
reasons, much work in data stream processing has focused on using an
MJoin-style execution [12, 86]. However, MJoins tend not to perform
as well as trees of binary join operators, especially for non-streaming
data. This is mainly because they do not reuse the intermediate results;
we will revisit this issue in more detail in Sections 6 and 7.

Memory Overflow: Handling memory overflow is harder with
MJoins than with symmetric hash joins, especially if the probing
sequences are changed during execution. Viglas et al. [120] study this
problem and present a technique called coordinated flushing that aims
to maximize the output rate while allowing tuples to be spilled to disk.
This technique, however, can only be applied if all joins in the query are
on the same attribute. More recently, Bizarro and DeWitt [18] general-
ize this to the non-identical join attributes case, and present a scheme
that processes an input tuple maximally given the in-memory parti-
tions of the relations; the remaining portions of the relations are joined
at the end using a clean-up phase. Exploring the interactions between
out-of-core execution, adaptivity, and cost metrics, remains a rich area
for future research (cf. Section 9).

3.2 Adaptivity Loop

In intra-query adaptivity, regular query execution is supplemented with
a control system for monitoring query processing and adapting it.
Adaptive control systems are typically componentized into a four-part
loop that the controller repeatedly executes (either in line or in parallel
with normal tuple processing, see Figure 3.3):

Measure: An adaptive system periodically or even continuously monitors
parameters that are appropriate for its goals.

Analyze: Given the measurements, an adaptive system evaluates how well
it is meeting its goals, and what (if anything) is going wrong.
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Fig. 3.3 Adaptivity loop.

Plan: Based on the analysis, an adaptive system makes certain decisions
about how the system behavior should be changed.

Actuate: After the decision is made, the adaptive system executes the
decision, by possibly doing extra work to manipulate the system state.

In the context of adaptive query processing, the Measure step
involves monitoring data characteristics like cardinalities and distribu-
tions, and system characteristics like memory utilization and network
bandwidth. Analysis is primarily done with respect to performance
goals or estimates, although there have been some recent proposals for
broader QOS-aware DBMSs that address goals like availability [14, 57,
66, 84, 106]. The Plan step can involve a traditional query optimizer
(in, e.g., mid-query reoptimization [9, 73, 75, 87]), or be a routing pol-
icy that is performed as part of execution (in eddies [6, 40, 95]). The
Actuate step corresponds to switching from one plan to another, with
careful state migration to reuse work and ensure correct answers.

These above steps are simple in concept but involve difficult engi-
neering to achieve overall efficiency and correctness. Measurement,
analysis, and planning all add overhead to normal query processing,
and it is often tricky to balance the ability to react quickly to newly
discovered information against the ability to rapidly process tuples
once a good plan has been chosen (the classic exploration–exploitation
dilemma).

Throughout this survey, we will (where appropriate) relate the vari-
ous adaptive techniques to this four-part loop, as a way of understand-
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ing the key aspects of the technique and its relative trade-offs. First,
we provide further detail on each of the stages.

3.2.1 Measurement

In general, all intra-query adaptation methods perform some form of
monitoring, such as measuring cardinalities at key points in plan execu-
tion. As we will see in Sections 6–8, mid-query reoptimization [75, 87]
does this at the end of each pipeline stage, and it may also add statis-
tics collectors (i.e., histogram construction algorithms) at points that
are judged to be key; eddies measure the selectivities and costs of the
operators; corrective query processing [73]1 maintains cardinality infor-
mation for all operators and their internal state (including aggregation).

Often it is desirable to explore the costs of options other than the
currently executing query plan. Eddies perform exploration as a part of
execution, by routing tuples through different alternative paths, serv-
ing the goals of execution and information gathering simultaneously.
Antoshenkov’s work on DEC Rdb [3] adopted a different, competitive
strategy in which multiple alternative plans were redundantly run in
parallel; once enough information was gathered to determine which
plan appeared most promising, all other plans were terminated.

Finally, at times it is more efficient to stratify the search and mea-
surement space, by executing a plan in a series of steps, and hence mea-
suring only the active portions of query execution. Choose nodes [52]
and mid-query reoptimization [75, 87] follow this strategy, interleaving
measurement-plus-execution with analysis and actuation.

3.2.2 Analysis

The analysis step focuses on determining how well execution is pro-
ceeding — relative to original estimates or to the estimated or mea-
sured costs of alternative strategies. There are two major caveats to
this phase. First, the only way to know precise costs of alternative
strategies is through competitive execution, which is generally expen-
sive. Thus most adaptive strategies employ sampling or cost modeling

1 Originally called convergent query processing.
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to evaluate the alternatives. Second, and perhaps more fundamentally,
all adaptive strategies analyze (some portion of) past performance and
use that to predict future performance. Clearly, in theory an adversarial
workload can be created that does not follow this property; however, all
evidence suggests that in practice, such a situation is highly unlikely.

Most adaptive techniques make use of some form of plan cost model-
ing in the analysis phase, comparing current execution to what was orig-
inally expected or what is estimated to be possible. Some approaches,
such as mid-query reoptimization and corrective query processing, use
the query optimizer’s cost modeler to perform analysis. Eddies and
their descendants [86, 95] generally do not perform full cost model-
ing (with the exception of [40]) — instead they rely on local routing
heuristics to achieve a similar effect.

3.2.3 Planning

Planning is often closely interlinked with analysis, since it is quite com-
mon that the same process that reveals a plan to be performing poorly
will also suggest a new plan. Mid-query reoptimization and its variants
(Section 8) compute plans in stages — using analysis from the current
stage to produce a new plan for the next stage, and supplementing
it with the appropriate measurement operators. Corrective query pro-
cessing (Section 7) incrementally collects information as it computes a
query, and it uses this information to estimate the best plan for the
remaining input data.

In some places, changing the query plan requires additional
“repairs”: Query scrambling, for instance, may change the order of exe-
cution of a query plan, and in some cases plan synthesis [118] is required
(see Section 8.3). Similarly, corrective query processing requires a com-
putation to join among intermediate results that were created in dif-
ferent plans; this is often done in a “cleanup” or “stitch-up” phase.

Eddies and their descendants do not plan in the same fashion as the
other strategies: they use queue length, cost, and selectivity estimation
to determine a “next step” in routing a tuple from one plan to another.
SteMs [95] and STAIRs [40] use different planning heuristics to manage
the intermediate state, in essence performing the same actions as the
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stitch-up phase described above, but without postponing them to the
end of query execution.

3.2.4 Actuation

Actuation, the process of changing a query plan, is a mechanism whose
cost depends on how flexible plan execution needs to be. Additionally,
when changing a plan, some previous work may be sacrificed, accumu-
lated execution state in the operators may not be reused easily and
may need to be recomputed.

In the simplest of cases, where query plans can only be changed
after a pipeline finishes (as with mid-query reoptimization [75] and
choose nodes [52]), actuation is essentially free, since it is inexpensive
to reconfigure operators that have not yet begun execution. However,
even with this restriction, it is possible that prior work might have to
be discarded: consider a scenario where sub-optimality is detected after
the build phase of a hash join, and the new plan chooses not to use the
hash table [18]. Kabra and DeWitt [75] explicitly disallowed such actu-
ations. Several other techniques, e.g., query scrambling [2], POP [87],
Rio [9], consider the availability of such state while re-planning
(Section 8).

In contrast, schemes that support the changing of query plans in
the middle of pipelined execution must be more careful. The main con-
cern here regards the state that gets accumulated inside the operators
during execution; if the query plan is changed, we must make sure that
the internal state is consistent with the new query plan. The adaptive
techniques proposed in literature have taken different approaches to
solving this problem. Some AQP techniques will only consider switch-
ing to a new query plan if it is consistent with the previously computed
internal state. For example, the original proposal for the eddies tech-
nique [6] does not allow the access methods chosen at the beginning
to be changed during execution. Although this restricts the adapta-
tion opportunities somewhat, these techniques can still adapt among
a fairly large class of query plans. Another alternative is to switch at
certain consistent points indicated by punctuation [116] markers (e.g.,
the end of a window or the change in a grouping value). Other tech-
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niques use specialized query operators to minimize such restrictions
(e.g., MJoins [120], SteMs [95]). SteMs, in fact, use sophisticated dupli-
cate elimination logic that allows them to adapt among a much larger
plan space than most other adaptive techniques.

The other approach taken by some systems is to modify the internal
state to make it consistent with the new query plan. Zhu et al. [124] call
this process dynamic plan migration and propose and evaluate several
techniques for doing this while minimizing the impact on the query
execution. Similarly the STAIR operator [40] exposes the internal state
using carefully designed APIs and allows the query executor to change
the internal state, for ensuring correctness or for improving the perfor-
mance. Corrective query processing [73] can combine state from differ-
ent operators that represent the same logical subexpression; conversely,
punctuation [42, 83] and other techniques like filter conditions [123]
can be used to perform pruning on state. Recent work [74] has even
shown that adaptive information passing can use intermediate state
from other operators in an executing query plan to prune state that
does not contribute to query answers.

We organize our discussion of multi-join query adaptation based
on how the various AQP techniques handle intra-operator state
(Sections 4.4), and we revisit this issue in more detail then.

3.3 Post-mortem Analysis of Adaptive Techniques

As opposed to traditional query processors that use a single plan to pro-
cess all tuples of the input relations, adaptive techniques may use differ-
ent plans for different input tuples. Many of the techniques, especially
routing-based techniques like eddies, do not appear to use a “plan” at
all. This makes it hard to analyze or reason about the behavior of these
systems. As an example, the commonly used “explain” feature (used
to inspect the execution plan used by the DBMS for a query) would be
nearly impossible to support in such systems.

Throughout this survey, along with the adaptivity loop, we will
also discuss how to do a retrospective analysis of an adaptive query
execution, after it has finished running. The goal of such “post-mortem”
analysis is to understand how the result tuples were generated and, if
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possible, to express the query execution in terms of traditional query
plans or relational algebra expressions.

Generally speaking, we see two types of behavior:

Single Traditional Plan: Several adaptive techniques, although they
adapt during execution, use a single traditional plan for all tuples of the
relations, with the only difference being that the plan is not chosen in
advance. The mid-query reoptimization techniques fall in this category.

Horizontal Partitioning: Many adaptive techniques can be seen as
exploiting a larger plan space than used by traditional query optimizer;
plans in this plan space exploit horizontal partitioning (also called hor-
izontal decomposition [20]) by splitting the input relations into disjoint
partitions, and executing different traditional plans for different par-
titions. For instance, given a query, R � S � T , a plan that uses hor-
izontal partitioning may partition S into S1 and S2, leaving R and T

intact. Since joins are distributive over unions, we have that:

R � S � T = (R � S1 � T ) ∪ (R � S2 � T )

If S1 and S2 exhibit different data characteristics (join selectivities),
then using different plans for the two subqueries would be beneficial
over forcing the same plan on both subqueries. Note that, in general,
sharing of data structures (e.g., hash tables) and common subexpres-
sions across different subqueries would be essential for these benefits to
start showing.

Behavior of many adaptive techniques like eddies, corrective query
processing, etc., can be captured using this plan space. Horizontal par-
titioning is also commonly used in parallel databases where the data
has to be distributed between the constituent machines, and has also
been shown to be useful in faster execution of star queries in data
warehouses [15]. The concept of horizontal partitioning is also related
to the ideas of conditional planning (Section 2.1.1), content-based
routing [17], and selectivity-based partitioning [93]; all of these tech-
niques exploit attribute correlations to horizontally partition the data
so that different partitions of a relation can be processed using different
plans.
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The behavior of many adaptive techniques that we discuss in this
survey will be reasonably straightforward to analyze, and in such cases
we will not explicitly do a post-mortem analysis. However, for more
complex schemes, such as those based on routing, such analysis will
enhance our understanding.

3.4 Adaptivity Loop and Post-mortem in Some
Example Systems

To get a feel for these two concepts in action, we now briefly analyze
some well known systems through this lens.

3.4.1 System R

As discussed in Section 2.1.4, the System R query processor proposed
the optimize-then-execute paradigm still prevalent today. The adaptiv-
ity in this system was limited to inter-query adaptation.

Measurement: System R measures the cardinalities of the relations and
some other simple statistics on a periodic basis (by offline scanning of
the database tables).

Analysis & Planning: The statistics are analyzed during planning at
“compile” time; as discussed in Section 1.1, System R uses a cost-
based optimizer to make the planning decisions.

Actuation: Finally, actuation is straightforward in this system. When the
query is to be executed, operators are instantiated according to the
plan chosen. Since System R does not perform intra-query adaptation,
once these decisions are made, they are not changed.

Post-mortem: System R uses a single plan, chosen at the beginning of
execution, for all tuples of the input relations.

3.4.2 Ingres

The query processor of Ingres, one of the earliest relational database
systems [113], is highly adaptive. It did not have the notion of a query
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execution plan; instead it chose how to process tuples on a tuple-
by-tuple basis.

More specifically, to join the data from n tables, R1, . . . ,Rn, the
query processor begins by evaluating the predicates on the relations
and materializing the results into hashed temps, i.e., temporary tables
hashed on appropriately chosen attributes of the relations. This is done
by utilizing a special one variable query processor (OVQP) that forms
the innermost component of the query processor. OVQP, as its name
suggests, optimizes and processes queries over a single relation in a cost-
based manner, taking into account the existing indexes and temporary
hash tables on the relation.

After that is done, the query processor begins by choosing a tuple
from the smallest table, say R1. The values from this tuple are sub-
stituted into the query (as constants) and the resulting (new) query is
recursively evaluated in a similar fashion. This process continues until
a query over a single relation is obtained, which is then evaluated using
OVQP. After all results for the first tuple of R1 have been generated,
the query processor repeats the process with the second tuple of R1

and so on. Since the decision at each step of recursion is made based
on the sizes of the materialized tables, different plans may be used for
different tuples, and in general, this process will not lead to a single
join order being used to execute the query.

From the adaptivity perspective, we note the following things.

Measurement: The key measurements are the sizes of the materialized
tables that get created during the execution.

Analysis & Planning: The analysis and planning are done at the begin-
ning of each recursive call (after a call to OVQP). The query processor
analyzes the query, and the sizes of the materialized tables and decides
the relation to be substituted next.

Actuation: Finally, the actuation is done by substituting the values of a
tuple as constants in the current query to construct a new (smaller)
query. (Note that this combines actuation with query execution itself.)

As we can see, the Ingres query processor interleaves the four com-
ponents of the adaptivity loop to a great extent, and is highly adaptive
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by our definition of adaptivity. Disregarding the cost of the materi-
alizations, this execution has many similarities to execution using a
left-deep pipelined query plan that uses only hash joins (Section 6.1)
and also to execution using the MJoin operator.

Doing the post-mortem analysis of a query execution in Ingres is
quite tricky, mainly because Ingres does not use traditional query oper-
ators (such as hash joins or sort-merge joins) and does not appear to
follow the steps a traditional query plan would follow. For instance,
when a tuple r ∈ R1 is chosen for substitution, in effect, a set of probes
are made into the hash tables on the rest of the relations. However,
these are made separately and not one after another as a query plan
would do. The hash tables into which the probes are made might change
from tuple to tuple as well (except for the tuples in R1).

Post-mortem: Except in some very specific cases, the steps followed dur-
ing the execution of a query in Ingres cannot be written down as tra-
ditional query plans (even if the notion of horizontal partitioning is
employed).

3.4.3 Eddies

In essence, eddies unify the four components of the adaptivity loop into
a single unit and allow arbitrarily interleaving between them, leaving
analysis and actuation to the routing policy. We briefly discuss some of
the tradeoffs in the process here, and defer a more detailed discussion
to when we present the routing policies.

Measurement: Since every tuple generated in the system passes through
the eddy, the eddy can monitor the operator and data characteristics
at a very fine granularity. Though the policies proposed in literature
differ in what is observed and what statistics are collected, most of
them monitor the characteristics continuously during the execution.

Analysis & Planning: Referring back to the routing decision process
(Section 3.1.2), analysis and planning are done in Step 1, with the
frequency decided by the routing policy. Policies like lottery schedul-
ing [6] do the planning for every tuple. Due to the high overhead of
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planning, several latter policies did this periodically [37, 40]; it could
also be done in response to certain events instead (as the A-Greedy
technique [10] does for selection ordering — see Section 4.1).

Actuation: The process of actuation and its cost depend largely on the
operators being used by the eddy, and also the plan space that the eddy
explores (Section 3.2.4). For selection-ordering queries executed using
stateless pipelined filters, the cost of actuation is negligible. For multi-
way join queries, the actuation cost can vary from negligible (if n-ary
hash join operator is used) to prohibitively high (if state manipulation
is required [40]).

Although query execution with eddies appears arbitrary and ad hoc,
depending on the nature of the operators used, the execution can usu-
ally be captured using the notion of horizontal partitioning. In essence,
the tuples of the source relations are horizontally partitioned based on
the routing decisions that were made for them.

Post-mortem: The behavior of an eddy can usually be captured using tra-
ditional query plans and horizontal partitioning, although this depends
on the rest of the operators used during execution.

We will revisit both the adaptivity loop and post-mortem analysis
for eddies when we discuss specific applications of eddies later in the
survey.

3.5 Scope of the Remainder of the Survey

In the remainder of this survey, we will discuss the details of a number
of different techniques, attempting to tie the themes and issues together
according to the dimensions outlined in this section. We have elected
to focus on depth rather than breadth in this paper. Many of the tech-
niques we discuss in the next few sections operate on a fairly restricted
class of queries: single-block select-project-join queries, with joins on
equality predicates. The techniques of Sections 7 and 8 apply more
generally. Most of these techniques also assume that query execution
is happening at a central server; however, the relations may reside on
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a local disk, may be fetched from a remote data source using a variety
of access methods, or may be streaming into the system.

We relate each technique to the measure/analyze/plan/actuate
loop, and at the end of each section we include a brief recap of how all of
the discussed techniques fit into this loop. For several of the techniques,
we also discuss how a post-mortem analysis of the query execution may
be done, to get more insights into the behavior of those techniques.



4
Adaptive Selection Ordering

We begin our discussion of adaptive query processing techniques by
considering a restricted query processing problem, namely selection
ordering for queries on a single table. As discussed in Section 2, selec-
tion ordering refers to the problem of determining the order in which
to apply a given set of commutative selection predicates (filters) to all
the tuples of a relation, so as to find the tuples that satisfy all the
predicates. Selection ordering is one of the central optimization prob-
lems encountered during query processing, and has received renewed
attention in the recent years in the context of environments like the
web [25, 35, 43, 51, 110, 111], continuous high-speed data streams [6,
10], and sensor networks [39]. These environments present significantly
different challenges and cost structures than traditional centralized
database systems. Selection ordering problems have also been stud-
ied in other areas such as fault detection and machine learning (see
e.g., Shayman et al. [108] and Kaplan et al. [76]), under names such
as learning with attribute costs [76], minimum-sum set cover [45], and
satisficing search [109].

More importantly, a large class of execution plans for multi-way
join queries have behavior that is similar to selection ordering plans

47
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(Section 6); this equivalence will not only aid us in understanding com-
plex multi-way join queries, but will also form the kernel around which
many of the adaptive techniques are designed. In fact, the Ingres system
makes little differentiation between selection ordering and join order-
ing. Through the technique of decomposition [122] (Section 3.4.2), it
maps join processing into a series of tuple lookups, variable bindings,
and selection predicates. Thus join really becomes a matter of deter-
mining an order for binding tuples and evaluating selections. Addition-
ally, the problem of selection ordering is quite well-understood, with
several analytical and theoretical results known for it. As we will see,
this is in large part due to the “stateless” nature of selection ordering
queries.

We begin this section by presenting an adaptive technique called
A-Greedy [10] that was proposed for evaluating selection ordering
queries over data streams (Section 4.1). We then consider adapting
using the eddy operator discussed in the previous section, and discuss
several routing policies proposed for adapting selection ordering queries
(Section 4.2). We conclude with a brief discussion of several extensions
of the selection ordering problem to parallel and distributed scenarios
(Section 4.3).

4.1 Adaptive Greedy

The adaptive greedy (A-Greedy) [10] algorithm is based on the Greedy
algorithm presented in Section 2.1.2 (Algorithm 2.1). It continuously
monitors the selectivities of the query predicates using a random sample
over the recent past, and ensures that the order used by the query
processor is the same as the one that would have been chosen by the
Greedy algorithm.

Let the query being evaluated be a conjunction of n commutative
predicates, S1, . . . ,Sn, over relation R, and let ci and p(Si) denote the
cost and the selectivity of Si, respectively. Figure 4.1 shows a highly
simplified overview of the A-Greedy technique for evaluating this query.
There are three main components:

Query Executor: The executor simply evaluates the query over a
newly arrived tuple of the data stream according to the current execu-
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Fig. 4.1 A highly simplified overview of the A-Greedy technique.

tion plan as chosen by the reoptimizer. Like the Greedy algorithm,
A-Greedy also uses a serial order of the predicates (Section 2.1.1)
for this purpose. We denote the current serial order being used by
Sπ1 → ·· · → Sπn , where π1, . . . ,πn denotes a permutation of 1, . . . ,n.

Profiler: This component maintains a sliding window profile over R

using a random sample of the tuples that did not satisfy at least one
predicate. The profile is typically maintained over only the tuples seen
in the recent past (using a sliding window over the data stream), and
contains the (boolean) results of the evaluations of all query predi-
cates over the selected tuples. When a new tuple arrives, the pro-
filer randomly decides whether to include the tuple into the profile;
if the tuple is chosen to be included, the profiler evaluates all query
predicates against the tuple, and adds the results to the profile. The
profiler also removes old tuples from the profile as they fall out of
the sliding window. Additionally, the profiler computes the expected
evaluation costs, ci, i = 1, . . . ,n, of the predicates using the profile
tuples.

Reoptimizer: The reoptimizer ensures that the plan currently being
executed is the one that would have been chosen by the Greedy algo-
rithm over the profile tuples. The key insight here is to observe that
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Sπ1 → ·· · → Sπn would have been the order chosen by the Greedy
algorithm if the following property holds:

Definition 4.1. Greedy Invariant: Sπ1 , . . . ,Sπn satisfies the greedy
invariant if, for all i:

cπi

1 − p(Sπi |Sπ1 , . . . ,Sπi−1)
≤ α

cπj

1 − p(Sπj |Sπ1 , . . . ,Sπi−1)
∀ j > i

where α ≤ 1 is the thrashing-avoidance parameter (discussed below).

Intuitively, if this was not true for indexes πi and πj , then the next
operator chosen after π1, . . . ,πi−1 would have been Sπj , and not Sπi (see
Algorithm 2.1). The reoptimizer continuously monitors this invariant
over the profile tuples; if it discovers that the invariant is violated at
position i, it reoptimizes the evaluation order after Sπi by invoking the
Greedy algorithm over the profile tuples.

The reoptimizer uses a data structure called matrix-view, V
(Figure 4.1), for monitoring the invariant:

Definition 4.2. The matrix-view is an upper triangular matrix such
that V [i, j], i ≤ j, contains the number of profile tuples that satisfied
Sπ1 , . . . ,Sπi−1 , but did not satisfy Sπj .

This matrix-view is updated every time the profile is updated. It is
easy to see that V [i, j] is proportional to (1 − p(Sπj |Sπ1 , . . . ,Sπi−1)).
Along with the expected average costs of executing the predicates, as
computed by the profiler, V allows the reoptimizer to quickly check if
the greedy invariant is violated.

The α parameter ensures protection against thrashing; if α = 1 and
if the equation above is almost true for a pair of selections, the reopti-
mizer may be invoked repeatedly for correcting minor violations involv-
ing those two selections. Choosing an α < 1 can help in avoiding such
behavior (at the expense of increasing the approximation ratio to 4/α).

A-Greedy, like most AQP techniques, makes an implicit assumption
that the statistical properties of the data do not undergo sudden and
drastic changes. More specifically, it assumes that the data properties
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in the recent past (as defined by the length of the sliding window) are
predictive of the data properties in the near future. In a latter paper,
Munagala et al. [90] show how this assumption may be relaxed, and
present an online algorithm with a competitive ratio of O(log(n)).

We can examine A-Greedy using the adaptivity loop (Section 3.2):

Measurement: A-Greedy continuously measures the properties of the
operators by explicitly evaluating all the predicates over a random
sample of the tuples (even if the tuples do not satisfy all predi-
cates), and summarizing the results of this evaluation in the form of
the matrix-view. The cost of this includes the predicate evaluation
cost itself, as well as the cost of updating the matrix-view. A single
update to the profile could result in updates to up to n2

4 entries in the
matrix-view.

Analysis: The analysis is also done continuously by the reoptimizer, which
looks for violations of the greedy invariant using the matrix-view. This
is an O(n) operation involving up to n comparisons.

Planning: If a violation is detected in the analysis phase, the Greedy
algorithm is used to construct a new execution plan. As discussed in
Section 2.1.2, this can require scanning the profile tuples O(n) times.

Actuation: The stateless nature of selection operators makes plan switch
itself trivial. After a new serial order is chosen, the tuples arriving hence-
forth are simply processed using the new order.

Babu et al. [10] present several heuristic optimizations over this
basic scheme to reduce the overheads of this process; due to space
constraints, we omit a detailed discussion of these in this paper.

Post-mortem analysis of selection ordering queries can be done in a
fairly straightforward manner using horizontal partitioning: the tuples
are grouped into partitions based on the order in which the predicates
were applied to them.

Post-mortem: The query execution using the A-Greedy technique can be
expressed as a horizontal partitioning of the input relation by order of
arrival, with each partition being executed using a serial order.



52 Adaptive Selection Ordering

The A-Greedy technique is unique in that it explicitly takes predi-
cate correlations into account, and analytical bounds are known for its
performance. No other technique that we discuss has these properties.
A-Greedy has also been used for adapting several classes of multi-way
join queries as we will see later in the survey.

4.2 Adaptation using Eddies

The eddy operator [6], discussed in Section 3.1.2, can be used in
a fairly straightforward manner to adapt a selection ordering query
(Figure 4.2). To execute the query σS1∧···∧Sn(R), one eddy operator and
n selection operators are instantiated (one for each selection predicate).
The eddy executes the query by routing tuples through the operators.
When an operator receives a tuple from the eddy, it applies the corre-
sponding predicate to the tuple; if the predicate is satisfied, the opera-
tor returns the tuple to the eddy, otherwise it “drops” the tuple. Since
selection operators are commutative, the eddy only needs to use one
bitmap per tuple to determine the validity of routing decisions. This
bitmap, called done, encodes the information about which operators
the tuple has already been routed through. All operators which have
the done bit set to false are valid routing destinations for the tuple. If
all bits in the bitmap are set to true, the eddy outputs the tuple.

Fig. 4.2 Executing a selection query using an eddy using the Lottery Scheduling policy.
Because of back-pressure, even though S1 has a high ticket count, the next tuple in the
queue at the eddy will not be routed to it.
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Next we discuss several routing policies for adapting selection order-
ing queries.

4.2.1 Routing Policies

There is clearly a trade-off between the statistics that an eddy collects,
the extent of its exploration of the plan space, and its ability to adapt.
In this section, we will try to make this trade-off explicit by presenting
several different routing policies for selection ordering queries. We will
present these in the order of increasing complexity, rather than adhering
to a chronological order from the literature. Table 4.1 compares these
routing policies along several axes using the adaptivity loop.1

1. Deterministic Routing with Batching [37]: This deterministic
routing policy uses batching to reduce the routing overhead.

Table 4.1 Comparing the techniques and the routing policies discussed in this section using
the adaptivity loop. We omit the actuation aspect since the cost of actuation is negligible
for all of these.

Deterministic [37]

Measurement: Selectivities by observing operator behavior (tuples-
in/tuples-out); costs monitored explicitly.

Analysis and Planning: Periodically re-plan using rank ordering.

A-Greedy [10]

Measurement: Conditional selectivities by random sampling; costs
monitored explicitly.

Analysis: Detect violations of the greedy invariant.
Planning: Re-plan using the Greedy algorithm.

Lottery scheduling [6]

Measurement: Monitor ticket counts and queue lengths.
Analysis and planning: Choose the route per-tuple based on those.

Content-based routing [17]

Measurement: For each operator, monitor conditional selectivities
for the best classifier attribute.

Analysis and planning: Choose the route per-tuple based on val-
ues of classifier attributes and selectivities (exploits conditional
plans).

1 See [19] for an experimental comparison of these routing policies.
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— Statistics maintained: The eddy explicitly monitors the
selectivity of each operator by counting the number of
tuples routed toward the operator, and the number of tuples
returned by it. This is sufficient to determine the opera-
tor selectivities as long as the predicates are independent
of each other (an assumption that was made in that work).
The costs of the operators are monitored explicitly as well
using the system clock.

— Routing policy: The proposed routing policy makes deci-
sions for batches of tuples at a time to reduce the routing pol-
icy overhead. Briefly, the eddy invokes a reoptimizer every
K tuples, where K is a system parameter called the batch-
ing factor. The reoptimizer uses the statistics maintained
over the past K tuples to find the optimal ordering of the
predicates using the rank ordering algorithm (Section 2.1.2).
The resulting plan is encoded into a routing table, and
the next K tuples are routed according to that plan. This
delineation between Planning and Actuation results in neg-
ligible routing overhead for reasonable batching factors
(K = 100) [37].

2. Routing Policy based on A-Greedy: As observed by Babu
et al. [10], the A-Greedy algorithm discussed in the previous section
can be used to do the routing with a few minor changes to the basic
eddy mechanism. The eddy would maintain the profile and the view
matrix, and detect and correct the violations of the greedy invariant.
As with the above policy, the eddy would route all the tuples using a
single serial order; when a violation is detected, the eddy would invoke
the reoptimizer to change the order being used. Note that, with A-
Greedy, the tuples chosen for profiling must be routed through all the
operators, regardless of whether they satisfy all predicates. One way to
handle this would be to associate two additional bits with each tuple;
one of those would be used to flag the tuples chosen for profiling (which
should not be dropped by an operator), and the other would be used
by an operator to record whether the tuple was falsified by the corre-
sponding predicate.
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3. Lottery Scheduling: Lottery scheduling was the initial routing
policy proposed by Avnur and Hellerstein [6]. This policy was developed
in a system called River [5] that uses a different thread per operator,
and routes tuples between operators using queues. This is cleverly used
to determine the operator costs.

— Statistics maintained: The eddy assigns tickets to each
operator; an operator is credited with a ticket when the eddy
routes a tuple to the operator, and the operator is penalized
a ticket if it returns a tuple to the eddy. Assuming fair-share
CPU scheduling and predicate independence, the number of
tickets for an operator is roughly proportional to (1 − s),
where s is the selectivity of the operator.

— Routing policy: The eddy holds a lottery among the eligi-
ble operators when it has to route a tuple (either a new tuple
or a tuple sent back by an operator); the chance of an oper-
ator winning the lottery is proportional to its ticket count.
In other words, the eddy does probabilistic routing using
normalized ticket counts as weights. Along with the opera-
tors that the tuple has already been through, the operators
whose input queues are full are also considered ineligible
to receive the tuple. The latter condition, called backpres-
sure, allows the eddy to indirectly consider the operator
costs when making routing decisions; the intuition being
that operators with full input queues are likely to have high
relative per-tuple execution cost (Figure 4.2).

Though the per-tuple overhead of this policy might seem pro-
hibitive, the cost can be significantly reduced with some careful engi-
neering [37].

4. Content-based Routing: Unlike the above policies, content-based
routing (CBR) [17] explores and utilizes the space of conditional plans
(Section 2.1.1) as follows:

— Statistics maintained: For each operator, CBR identifies
the tuple attribute that is most strongly correlated with the
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selectivity of the operator. For example, consider a selection
operator over an employee table that applies the predicate
salary > $100000 to the tuples. The selectivity of this oper-
ator is likely to be strongly correlated with the attribute age
(e.g., tuples with age < 20 are unlikely to satisfy the predi-
cate). Such attributes are called classifier attributes. Using
a random sample of the tuples seen in the recent past, CBR
identifies the best classifier attribute for each operator and
also maintains the operator selectivities for different values
of that attribute.

— Routing policy: For the tuple under consideration, CBR
finds the operator selectivities for that tuple by taking into
consideration the values of the classifier attributes. It then
routes the tuple probabilistically; the probability of rout-
ing the tuple to an operator is inversely proportional to its
selectivity.

Implementing this policy requires many additional data structures
over the above policies; furthermore the increase in the number of
parameters necessitates higher sampling rates to learn the parameters.
Hence the overhead of this technique is expected to be high. However
when the operator costs are high (e.g., when using web indexes [43, 51])
and the goal is to minimize the invocations of the operators, this rout-
ing policy would prove to be beneficial.

Like the A-Greedy technique, post-mortem analysis of the exe-
cution of a selection ordering query using an eddy is fairly
straightforward.

Post-mortem: The query execution using an eddy can be expressed as a
horizontal partitioning of the input relation with each partition being
executed using a serial order (even if the CBR policy is used, each
tuple is still executed using a serial order). Depending on the routing
policy being used, the partitioning may or may not be by the order of
arrival.
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4.3 Parallel and Distributed Scenarios

In recent years, there has been a growing interest in the paral-
lel and distributed versions of adaptive selection ordering. This has
been fueled both by an increased interest in parallel databases and
Grid-like or peer-to-peer environments, as well as the advent of web-
based structured information sources such as IMDB and Amazon [50,
111]. The key difference between these environments and the cen-
tralized environments is that “response time” becomes the metric
of interest rather than “total work.” As has been noted before in
the parallel databases literature, this can change the nature of the
optimization problem drastically, making it significantly harder in
most cases [47]. So far, most of this work has addressed static ver-
sions of this problem, with the exception of the first paper discussed
below.

Tian and DeWitt [115] considered the problem of designing tuple
routing strategies for eddies in a distributed setting, where the opera-
tors reside on different nodes and the goal is to maximize the average
response time or the maximum throughput. To avoid communication
with a centralized eddy, the operators make the routing decisions in
a distributed fashion as well. Tian and DeWitt present an analyti-
cal formulation as well as several practical routing strategies based on
monitoring the selectivities and the costs of the operators, and also the
queue lengths and the ticket counts.

Condon et al. [35] studied a similar extension of the selection order-
ing problem to the parallel scenario, where selection operators are
assumed to be assigned to separate processors and the goal is to max-
imize the throughout of the system. It is easy to see that processing
all tuples of the relation using a single order does not utilize the full
processing capacity of the system, and multiple orders must simulta-
neously be used to achieve that. Condon et al. provide algorithms to
find the optimal solution in this case, under the assumption that the
predicates are independent of each other.

Srivastava et al. [111] consider this problem in the setting of web-
based information sources (web services) and show how the problem
of executing a multi-way join query over web-based sources reduces
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to a precedence-constrained version of the selection ordering problem.
In essence, each call to a web service can be thought of as exe-
cuting an (expensive) selection operation over that tuple. They pro-
vide several algorithms to find the optimal (single) order in which
to invoke the web services, even in presence of arbitrary precedence
constraints.

Etzioni et al. [43] considered a somewhat related problem of infor-
mation gathering on the Internet. The information access problem they
pose is as follows: given a collection n information sources, each of which
has a known time delay, dollar cost, and a probability of providing the
needed piece of information, find an optimal schedule for querying the
information sources. One option is to query the information sources in
sequence, stopping when one source provides the information. Though
most frugal, this option is also the most time-consuming. The other
extreme option is to send requests in parallel to all the sources. This
option has the lowest response time, but the (dollar) cost might be
prohibitive. To reduce this problem to selection ordering, the notion
of success here can be seen as equivalent to a predicate falsifying the
tuple. In other words, a source providing the information required has
same effect as a predicate not being true; both of these result in a stop
to further processing.

4.4 Summary

Selection ordering is a much simpler problem than optimizing com-
plex multi-way join queries, and this simplicity not only enables design
of efficient algorithms for solving this problem, but also makes the
problem more amenable to formal analysis. We discussed two adaptive
query processing techniques for this problem: A-Greedy and eddies.
The A-Greedy algorithm has two notable features: first, it takes into
account the correlations in the data, and second, approximation guar-
antees can be provided on its performance. The second technique we
saw, eddies, is more of an architectural mechanism enabling adap-
tivity that is not tied to any specific decision algorithm; we will
see this again when we discuss eddies for general multi-way join
queries.
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As we will see in the next two sections, several problems that arise in
adaptive execution of multi-way join queries can be reduced to selection
ordering, and the algorithms we discussed in this section can be used
unchanged in those settings. This is not particularly surprising; the
similarities between selection ordering and multi-way join queries were
noted by Ibaraki and Kameda [67] who exploited these similarities to
design an efficient query optimization heuristic.



5
Adaptive Join Processing: Overview

Adaptation schemes for join queries are significantly more complicated
to design and analyze compared to those for selection ordering for sev-
eral reasons. First, the execution plan space is much larger and more
complex than the plan space for selection ordering; this complexity
arises both from the large number of possible join orders and from the
variety of kinds of join operators themselves (binary vs. n-ary, blocking
vs. pipelined etc.).

But more importantly, most of the join operators are “stateful”:
they have internal state that depends on the tuples processed by the
operator. Hash join operators, for example, build hash tables on one
(or possibly both) of their input relations. Due to this internal state,
the execution environment itself plays a much larger role in determining
the characteristics of query execution. In particular, whether the data is
being read from a local disk, is arriving in the form of a data stream, or
is being read asynchronously over the wide area network, can drastically
change the nature and trade-offs of query execution.

To tackle this complexity, the research community has developed a
diverse set of techniques designed for specific execution environments or
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specific join operators, or in some cases, both. These adaptation tech-
niques apply in different underlying plan spaces, though the particular
subspace is rarely made explicit and is often hard to tease apart from
the adaptation technique. We present these techniques in three parts,
roughly based on the space of the execution plans they explore:

• History-Independent Pipelined Execution (Sect-
ion 6): Our first space of plans consists of pipelines of
non-blocking join and selection operators, with one further
restriction: the state built in the operators during execution
is largely independent of the adaptation choices made by the
query processor. This space includes a fairly large class of tra-
ditional pipelined query plans, as well as many data stream
query processors. The history-independence property allows
us to reduce the query execution to selection ordering (with
some caveats as discussed in Section 6.1), and the techniques
discussed in the previous section can be used for adaptation
among such plans.

• History-Dependent Pipelined Execution (Section 7):
The second space is similar to the first in using pipelined
operators only, but the operators may internalize state that
depends on the routing choices made by the query processor.
This internalized state (also called “burden of routing his-
tory” [40]) makes it hard to change from one query plan to
another: an adaptive algorithm must carefully reason about
the built-up state and ensure that while switching plans, no
output tuples will be lost and no false duplicates will be
produced.

• Non-pipelined Execution (Section 8): Finally, we cover
plans with blocking operators like sort. Blocking operators
provide natural stopping points to re-evaluate query exe-
cution decisions. Adaptation techniques proposed for non-
pipelined plans have mostly focused on switching plans at
these stopping points, and thus have a restricted set of pos-
sible adaptations. This simplifies the task of reasoning about
the execution, and the adaptation technique can often invoke
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traditional query optimizers to choose not only the initial
plan but also the subsequent plans.

Note that most database systems typically use query execution plans
with a mixture of blocking operators and pipelines; these can be
adapted independently using different AQP techniques [18].
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Adaptive Join Processing: History-Independent

Pipelined Execution

The simplest-to-understand techniques for adaptive join processing
apply to query execution where the past choices made by the query
processor have no bearing on the next choice it has to make. We begin
our discussion of such history-independent pipelined execution with the
case of left-deep pipelined plans with a single driver (Section 6.1). We
then consider query execution where multiple drivers are permitted,
and discuss adaptation when using MJoins or unary operators called
SteMs (Section 6.2).1 Finally, we present a technique called A-Caching
that uses intermediate result caches to alleviate one of the performance
concerns with history-independent execution (Section 6.3). We con-
clude with a brief discussion of the advantages and disadvantages of
history-independent schemes and a comparison of some of them using
the adaptivity loop (Section 6.4).

6.1 Pipelined Plans with a Single Driver Relation

The first class of execution plans we consider is the space of left-deep
pipelined plans where one relation is designated as the driver relation,

1 When multiple drivers are permitted, query execution using binary join operators is not
history-independent, and will be discussed in the next section.
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Fig. 6.1 Two possible orderings of the driven relations. ci and fi denote the costs and
fanouts of the join operators, respectively.

and its tuples are joined with the other (driven) relations one-by-one
(Figure 6.1). The joins are done as nested-loops joins or index joins
or hash joins, depending on the access method used for the driven
relations. If the driven relation is scanned, the join is a nested-loops
join; if it is looked up via an existing index, the join is an index join; if
it is looked up via a dynamically constructed hash index, it is a hash
join. Figure 6.1 shows two example pipelined plans for a 4-relation
query, with the driver relation S.

This type of execution is history-independent in the following sense.
For a fixed driving tuple s, the behavior of the join operators (e.g., their
join selectivities with respect to s) is independent of when s arrives,
whether it is the first tuple from S, the last tuple, or any other. In
other words, the joining with s is a side-effect free operation that does
not alter the internal state of the join operators (the only state change
is the cursor needed to generate join matches, which is transient).

We begin by discussing static optimization in this plan space and
show how the problem of join ordering can be reduced to the selection
ordering problem.

6.1.1 Static Planning

The space of pipelined left-deep plans is characterized by three dimen-
sions, along which we could optimize and adapt: the choice of the driver
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relation, the choice of the access method for performing each join, and
the ordering of the joins.

6.1.1.1 Choosing Driver Relation and Access Methods

For an n relation query, there are at most n possible choices for the
driver relation (some sources may not support scan access methods and
thus may not be usable as driver relations). n is typically small enough
that an optimizer can search exhaustively through the possible driver
relations.

For each choice of driver relation, the join order can be chosen in a
manner similar to selection ordering as we describe below. But choosing
access methods is much harder. When there are multiple access meth-
ods on each driven relation, the plan space explodes combinatorially.
The right choice of access methods depends on the selectivity (scans
are preferred over indexes at higher selectivities), clustering, memory
availability, and many other factors. Since the join costs depend on
the access methods chosen, the choice of access methods cannot be
made independently of the choice of join order. Hence static query
optimization requires an exhaustive search (Section 2.1.4) through the
combination of all access methods and join orders.

6.1.1.2 Join Ordering: Reduction to Selection Ordering

Assuming that the driver relation and access method choices have been
made, the problem of ordering the driven relations bears many simi-
larities to selection ordering. Several heuristic polynomial time query
optimizers have been proposed that exploit this resemblance [67, 80].

Continuing with our example above, let ci,fi,1 ≤ i ≤ 3 denote the
probe costs and the fanouts of the join operators (number of output
tuples per input tuple from the driving table) on R, T , and U , respec-
tively. The execution cost of the two plans shown in Figure 6.1 can
then be written as

Plan R→ T → U : Build Cost + |S| × (c1 + f1c2 + f1f2c3),

P lan T → R→ U : Build Cost + |S| × (c2 + f2c1 + f1f2c3),
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where Build Cost is the (constant) cost of building the indexes on R,
T , U (if needed). As we can see, the plan cost functions have the same
form as the plan cost functions for selection ordering, and thus we can
extend the techniques designed for solving selection ordering queries
(e.g., rank ordering [67, 80]), to solve these queries as well. There are,
however, several differences in the two problems that must be taken
into account.

• Join fanouts may be larger than 1 (as opposed to selectivities
that are always ≤ 1). However, the rank ordering algorithm
can still be used to find the optimal order.

• The resulting selection ordering problem might contain
precedence constraints. For example, if R is the driver rela-
tion, its tuples must be joined with S first before joining
with T or U . This is because R tuples do not contain the
join attributes needed to join with T or U . The algorithms
for the non-precedence constrained case can be extended in
a fairly straightforward manner to handle such cases [80].

• The join costs may not be the same for different driving
tuples. For example, if the hash join algorithm is being used,
and if the hash table does not fit into memory, then the probe
cost depends on whether the corresponding partition is in
memory or not [18, 117]. Blindly using a pipelined plan is not
a good idea in such cases, and alternatives like XJoins [117],
which employ sophisticated scheduling logic to handle large
tables, should be considered instead.

The techniques we discuss in this section largely assume
a uniform cost structure with respect to the driving tuples,
though the techniques explicitly adapt to costs changing over
time.

• Finally, depending on the execution model and implemen-
tation of operators, subtle cache effects may come into
play that cause this reduction to selection ordering to be
suboptimal.

Consider the first execution plan shown in Figure 6.1. Let
f1 be 10, and consider a tuple s1 ∈ S that produces 10 tuples
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after the join with R, s1r1, . . . ,s1r10. According to the execu-
tion plan, these tuples should next be used to find matches in
T . However, note that the matches with T depend only on the
S component of these tuples (i.e., on s1) and same matches
(or none) will be returned from the probe into T for all of
these 10 tuples. These redundant probe costs can be avoided,
either by caching probe results [95], or by probing into the
join operators independently, and doing a cross-product of
the probe results to obtain the final results [10, 11, 18].

We briefly elaborate on the second approach. In the above
example, s1 will be used to probe into R, T , and U separately
to find matching tuples; let the probes return {r1, . . . , r10},
{t1, . . . , t5}, and {u1}, respectively. The join results are then
obtained by taking a cross-product of {s1}, and these three
sets of tuples (to produce 50 result tuples). The approach
can be generalized to queries with non-star query graphs in
a fairly straightforward manner.

A simple reduction to selection ordering cannot easily
capture such cache effects, though an alternative reduction
can be used in certain special cases (e.g., star queries). We
refer the reader to [41] for a more detailed discussion of this
issue.

6.1.2 Adapting the Query Execution

In this model, we can adapt along any of the three dimensions of the
plan space.

Adapting the Choice of Driver Table or Access Methods:
Changing the driver table or the access method during the query
execution typically requires complex duplicate handling procedures
that can be computationally expensive. Switching access methods dur-
ing execution can have high initial costs and also requires extensive
changes to the query execution framework. For these reasons, there
has been little work on adapting the choice of driver table or the
access method during query execution. We discuss some techniques in
Section 6.2.
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For access method adaptation, one adaptation scheme proposed for
the DEC Rdb system [3] was competition: run multiple access methods
(AMs) in parallel for a while, monitor the selectivities and costs, and
then pick one AM on each driven table. There are two limitations to
this scheme. First, it introduces competition among AMs on each table
individually, but does not explore the AM combinations. Second, after
the competition phase completes, finalizing on an AM involves dupli-
cate elimination, which can be a significant overhead for the rest of the
query.

Adapting the Join Order: For a fixed choice of driver table and
AMs, pipelined query plans are identical to selection ordering (modulo
the cache effects). Thus the adaptive algorithms discussed in Section 4
can be used unchanged, aside from modifications for obeying the prece-
dence constraints, to adapt the join order. For instance, Babu et al. [10]
discuss how their A-Greedy algorithm (Section 4.1) can be extended to
handle this case. Eddies can also be used to adapt the join order.

The similarities to selection ordering also make it easy to analyze
the behavior of these techniques in retrospect, as long as the driver is
not changed mid-execution.

Post-mortem: Adaptive history-independent query execution for a fixed
driver can be expressed as a horizontal partitioning of the driver rela-
tion, with each partition being executed using a different left-deep
pipelined plan.

6.2 Pipelined Plans with Multiple Drivers

The single driver table approach described above seems simple, but in
fact choosing the driver in advance of query execution imposes serious
restrictions. Perhaps most importantly, it requires all but the driver
relation to be available in entirety before the execution can begin; this
may lead to unacceptable delays in wide-area environments, and may
be impossible when processing data streams.

The driver table is also often one of the highest-impact choices
an optimizer makes. The plan execution time depends linearly on the
driver table size, whereas it usually depends only sublinearly on other
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table sizes (due to static or on-the-fly indexes). Choosing the right
driver up-front is tricky because the optimizer has to compare not just
the candidate driver table sizes but also the sizes of their join fanouts
with other tables. Additionally, having a single driver forces the join
algorithm to be a nested-loop or index join. Sort-merge and symmet-
ric hash join need multiple drivers. A Grace or hybrid hash join can
be viewed as having a single driver, but swapping the inner and outer
requires changing the driver.

In this section, we will see several adaptation techniques that alle-
viate these problems, but still result in history-independent query exe-
cution. We start with discussing how to adapt when using a n-ary
symmetric hash join operator (MJoin). We then discuss the issue of
driver choice adaptation in more detail, and present a unary operator
called SteM, which can be used along with an eddy to not only adapt
driver tables, but also other optimizer choices like access methods. We
conclude with a discussion of post-mortem analysis of these techniques,
and the performance concerns with them.

6.2.1 n-ary Symmetric Hash Joins/MJoins [120]

Recall that an n-ary symmetric hash join operator builds hash tables
on each relation in the query on each join attribute, and executes the
query by routing the input tuples appropriately through these hash
tables (Section 3.1.3). This execution is history-independent because
the internal state inside the hash tables is determined solely by the
source tuples that have arrived so far, and does not depend on the
choices made by the router. The decision logic in the operator is encap-
sulated in the probing sequences, which specify the order in which to
probe the hash tables for tuples of each driver table.

Choosing the Initial Probing Sequences: Choosing the probing
sequence for a driver relation is identical to choosing the join order
for pipelined plans with a single driver, as long as the hash tables
fit in memory (Section 6.1.1.2). Hence, the join ordering algorithms
discussed in Section 6.1 can be used unchanged for choosing the prob-
ing sequences (for each driver relation separately). Viglas et al. [120]
propose using the rank ordering algorithm (Section 2.1.2) for this
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purpose. The Greedy algorithm (Section 2.1.2) can also be used for
this purpose if the correlations across the join operators are known or
monitored.

Adapting the Probing Sequences: Similarly, we can use the
adaptive techniques presented in Section 4 for adapting the probing
sequences. Each of the probing sequences must be adapted separately,
though some statistics can be shared between these. Furthermore, as
discussed in Section 6.1.1.2, the probing sequences may have to obey
precedence constraints depending on the query. Babu et al. [10], in
the context of the STREAM project, use the A-Greedy algorithm
(Section 4.1) for this purpose.

6.2.2 Driver Choice Adaptation

MJoins as proposed in [120] deal with streaming data sources, where
the choice of driver is not under the control of the query processor. The
ability to control and adapt the driver tables being used can however
be immensely useful, and can be exploited for a variety of purposes:

• To react to stalls in asynchronous data sources by switching
to other drivers (this is similar to query scrambling, which
we discuss in Section 8).

• To react to an unexpectedly large driver table by switching
to another driver. For example, consider a join involving two
inputs R and S. If the input sizes are very different, an opti-
mizer choosing a hash join has to be careful about which
table it chooses as the build side, because that changes the
memory consumption, I/O, number of probes, and thereby
elapsed time as well. A simple adaptive strategy that avoids
this risk is to repeatedly alternate between two drivers until
one of them returns EOF, and then switch to a regular asym-
metric hash join. Observe that this strategy incurs a compet-
itive cost of at most twice the best in-hindsight join order.

• To react to changing user requirements: An important con-
trast between a symmetric hash join and an asymmetric one
(e.g., Grace hash join) is a tradeoff between interactivity and
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completion time: symmetric hash join gives pipelined results,
but consumes more memory and is less efficient. The query
processor can switch from the former to the latter as the
query progresses, by alternating drivers initially and gradu-
ally converging on one, so that users get interactive results
early but the query still completes quickly [95].

• To switch drivers based on improved selectivity estimation:
Another reason to switch driver tables from R to S is if the
query processor can use a selective predicate on S to do index
lookups into R. The selectivity of the predicate on S may not
be known up front, but can be estimated after a hash table
on S has been built. A recent system called SHARP [18]
describes such a technique to adapt choice of driver tables
(and access methods at the same time).

6.2.3 State Modules (SteMs)

Observe that the last two adaptations of the previous section change the
join algorithm during execution, from a symmetric join with multiple
drivers running concurrently to an asymmetric one. Raman et al. [95]
call this process hybridization. They go further, and propose a new
unary operator called a SteM (a State Module), to be used with an
eddy, that allows greater adaptation flexibility than an MJoin, and in
particular allows flexible adaptation of join algorithms, access methods,
and the join spanning tree. We give a brief overview of SteMs in this
section.

Recall the MJoin logic for processing a driver tuple r from table R:

— r is built into hash indexes on R

— r is probed into the hash indexes on other tables.

The essential idea of SteMs is to relax this logic threefold:

— relax the atomicity and ordering of the build-probe opera-
tions

— allow probes into not just the hash indexes (called SteMs
below) that are being built as part of this query, but also
into other pre-built indexes (called AMs below)
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— allow these lookups into pre-built indexes to supply driver
tuples, in addition to table scans or streams

To realize these relaxations, we need two new kinds of operators.
An Access Module (AM) encapsulates a single index over a data

source. An AM on table R accepts probe tuples p and outputs matches –
{r ∈ R | (r,p) satisfies query predicates}. Notice that unlike usual
indexes, AMs do not concatenate matches with probes; such concate-
nation will be performed only by SteMs. As a result, we can treat the
original table scan or stream on R as an AM that is outputting tuples in
response to an initializing probe with a virtual seed tuple that matches
all tuples in R.

A State Module (SteM) is a data structure built on-the-fly dur-
ing the query execution that contains homogeneous tuples (i.e., having
the same schema). SteMs support insert (build), search (probe), and
optionally delete (eviction) operations. A SteM accepts build tuples
and probe tuples. Build tuples are just added to the tuples in the SteM.
Upon receiving a probe tuple p, a SteM returns matches, concatenated
with p, plus the probe tuple p itself. For example, a hash table built
over a base table as part of query execution is a SteM.

6.2.3.1 Query Execution and Hybridization

To execute a query, the query “optimizer” simply instantiates an eddy,
a SteM on each base table, and an AM on every available table access
method (scan and index). The query optimizer chooses up front neither
a spanning tree over the join graph, nor a join order, nor any join
algorithm, nor access method. All of these are determined by the way
the eddy chooses to route tuples, as we describe next.

MJoins using SteMs: Observe that SteMs can be used to perform
an MJoin: we simply break the MJoin box in Figure 3.2 and expose the
hash-table boxes inside as three SteMs. Figure 6.2 illustrates the tuple
exchange that happens between the eddy and the SteM (we use a
3-table query to keep the figure concise). But SteMs can do more than
MJoins, because the tuples do not have to be routed using fixed build-
then-probe logic. Instead, [95] introduce a notion of routing constraints,
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Fig. 6.2 SteMs used to do an n-ary SHJ for R � S � T .

that specify not a particular n-ary join algorithm but rather a charac-
terization of the space of correct n-ary join algorithms. For example,
a slight variation on this dataflow results in an index join, as we see
next.

Asynchronous Index Joins using SteMs: A simple way to perform
an index join is to replace one of the scan AMs in Figure 6.2, say that
on R, with an index AM, as shown in Figure 6.3. Now, R tuples enter
the dataflow only in response to probes from S or T . Notice that the
index AMR returns non-concatenated matches (i.e., tuples with only
the R fields). These R matches will concatenate with the corresponding

Fig. 6.3 SteMs used to do an Asynchronous index join for R � S � T .
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probes by a hash-join logic: the matches will either probe SteMs on S,
T , or be built into the SteM on R and then be probed by S and T

tuples. In the literature, this is called an asynchronous index join [51],
and is especially useful on queries over asynchronous data sources such
as deep web sources.

Competitive Access Methods and Hybridization of Join Algo-
rithms: We saw a few examples of join algorithm hybridization in
the last section, where an n-ary SHJ switched from one algorithm to
another. SteMs allow further hybridization involving the access meth-
ods themselves. Observe that Figures 6.2 and 6.3 are almost identical,
except for the AM on R. Consider what happens if we add both kinds
of AMs (index and scan) on R to the same dataflow. Now, the eddy will
route some of the S and T tuples to the SteM on R, and others to the
index on R. Essentially, it is running an MJoin and an asynchronous
index join concurrently. After monitoring costs and selectivities for a
while, the eddy could choose an AM which works best, say the scan
AM. This means the eddy has picked a hash join after initially exper-
imenting with an index join. If during query execution the hash table
SteM on R runs out of memory, then the eddy can start routing S and
T tuples to the index AM on R, i.e., adapt to an index join. But the
existing tuples in the SteM on R still remain, so that work is not wasted.

Raman et al. [95] demonstrate several examples of such hybridiza-
tion and their benefits on deep Web data sources.

6.2.3.2 Routing Constraints

The flexibility that SteMs provide comes with a price. Not all routings
lead to correct results, because of two kinds of problems. First, running
multiple access methods concurrently can result in incorrect numbers
of duplicate output tuples. Second, asynchronous routing can result in
missing results. Raman et al. [95] present detailed routing constraints
that avoid these problems, and prove that any routing satisfying these
constraints results in a correct, hybridized, join algorithm.

The SteM routing constraints are too involved to explain in this
survey. But it is important to note that the routing constraints are
described in terms of the routing decisions themselves, and not in
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terms of the state built in the operators. This allows the correct-
ness of the join algorithm to be enforced by an external router like
an eddy, without breaking the encapsulation offered by the separate
operators.

6.2.4 Post-mortem Analysis

The execution of a query using MJoins or SteMs can be captured
using the notion of horizontal partitioning (Section 3.3). Both these
techniques implicitly divide the source relations into partitions, with
the number of partitions dictated by both the interleaving of tuples
from different relations and the routing decisions made for the tuples.
Roughly speaking, a contiguous block of tuples (by order of arrival)
from a source relation, with all of them routed identically through the
operators, forms a partition of that relation. Thus, if there is high inter-
leaving of tuples or if the routing decisions are changed on a per-tuple
basis, the number of partitions might be very high.

As an example, let the tuple arrival order for our example 3-relation
query, R � S � T , be r1, r2, r3,s1,s2, t1, t2, t3, r4, t4, and let us assume
that all tuples of a relation are routed identically. In that case, an
MJoin operator will implicitly partition R into 2 partitions, R1 =
{r1, r2, r3} and R2 = {r4}, T into 2 partitions T1 = {t1, t2, t3} and
T2 = {t4}, whereas S will form a single partition containing s1 and s2

(Figure 6.4).
The four resulting subqueries, R1 � S � T1, R2 � S � T1, R1 � S �

T2, and R2 � S � T2, will then be executed using left-deep pipelined
plans. The first subquery will be executed as (T1 � S) � R1, with
T serving as the driver relation (since its partition arrived last
among the partitions involved in the subquery), whereas the sec-
ond subquery will be executed as (R2 � S) � T1, with R serving as
the driver relation. The remaining two subqueries will be executed
simultaneously as (T2 � S) � (R1 ∪ R2), with T serving as the driver
relation.

Note that, the eddy also executed S � R1 (when S arrived); how-
ever, this join was wasted since the intermediate results (if any) are not
stored or reused.



76 Adaptive Join Processing: History-Independent Pipelined Execution

Fig. 6.4 (i) MJoins or SteMs implicit partition the data by order of arrival and routing
decisions; (ii) subqueries are evaluated using left-deep pipelined plans.

Post-mortem: The execution of a query using an MJoin operator or using
an eddy with SteMs, can be seen as a horizontal partitioning of the
input relations by order of arrival, with the subqueries being executed
using left-deep pipelined plans.

6.2.5 Discussion

Although these strategies are easier to reason about and to design poli-
cies for, they tend to suffer from suboptimal performance compared to
using a tree of binary joins or using an eddy with binary join operators
(Section 7.2). The main reason is that these strategies do not reuse
any intermediate tuples that may have been produced during query
execution. This leads to two problems:

• Re-computation of intermediate tuples: Since interme-
diate tuples generated during the execution are not stored
for future use, they have to be recomputed each time they
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are needed. In the above example, the first subquery pro-
duces an intermediate result (T1 � S), which could be used
for evaluating the second subquery, R2 � S � T1. However,
since that intermediate result is not materialized, the second
subquery must be computed from scratch.

• Constrained plan choices: Equally importantly, the query
plans that can be executed for any new tuple are signifi-
cantly constrained. In our example query, any new R tuple,
r, that comes in at time τ must join with Sτ (the tuples for S

that have already arrived) first, and then with Tτ . This effec-
tively restricts the query plans that the router can use for this
tuple to be (r � Sτ ) � Tτ , even if this plan is known to be
sub-optimal. Using an alternative plan, e.g., r � (Sτ � Tτ ),
requires the ability to materialize the intermediate results.

6.3 Adaptive Caching (A-Caching)

Adaptive caching [11] was proposed to solve some of the performance
problems with MJoins by enabling the router to explicitly cache inter-
mediate result tuples. It thus allows exploring and utilizing the spec-
trum between the two extreme approaches for evaluating multi-way join
queries: (a) using an MJoin operator, and (b) using a tree of binary
join operators. The trade-off between these two approaches was also
considered, in a static setting, by Viglas et al. [120].

The execution model here is not entirely history-independent since
the decisions about which intermediate results to cache affect the execu-
tion state. However these intermediate result caches can be considered
as soft state; they are used opportunistically and can be thrown away
at any point without any correctness implications. This is not true of
the techniques that we discuss in the next section.

The adaptive caching approach uses the MJoin operator as the basic
operator in the system. It, however, differs from the MJoins approach
as follows:

• A-caching uses the A-Greedy approach (Section 4.1) to adapt
the probing sequences used for execution. This is done inde-
pendently for each streaming relation.
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Fig. 6.5 Adaptive caching.

• Once the probing sequences are chosen, A-caching may
decide to add intermediate result caches in the middle of
the pipeline.

Consider the example query in Figure 6.1, and let the current
choice for the probing sequence for R tuples be S → T → U (Fig-
ure 6.5). In other words, a new R tuple, say r, is first joined with
S, and then with T and finally with U . If two consecutive (or close
by) tuples r1 and r2 have identical values of the attribute a (the join
attribute for the join with S), then the resulting S � T � U matches
for the probes will be identical. However, the MJoins approach is
unable to take advantage of such similarities, and will re-execute the
joins.

The key additional construct of the A-Caching approach is an inter-
mediate result cache. An intermediate result cache, CX

Y is defined by:
(a) X, the relation for which it is maintained, and (b) Y, the set of
operators in the probing sequence for which it stores the cached results.
For example, the cache for storing the S � T � U matches for the R

tuples will be denoted by CR
�aS,�bT,�cU . The cached entries are of the

form (u,v) where u denotes the value of the join attribute (attribute
R.a in this case), and v denotes the result tuples that would be gener-
ated by probing into the corresponding operators. A cache might not
contain results for all possible values of the join attribute, but if it does
contain at least one result for a specific value of the join attribute, it
must contain all matching results for that value. In other words, if there
is an entry (a1,(STU)1) in the cache, then (STU)1 must be equal to
σS.a=a1(S � T � U).
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Figure 6.5 shows how a cache lookup is introduced in the pipeline of
R tuples for the above query. Given such a cache, when a tuple arrives
at that point in the pipeline, the cache is consulted first to determine
if the results are already cached, and if they are, the probes into S,
T , and U can be avoided. On the other hand, if there is a miss, the
probing continues as before.

Cache Update: There are two ways a cache might be updated. First,
the results found by probing into the operators when there is a cache
miss can be inserted back into the cache. Second, when new T and U

tuples arrive (or existing T or U tuples need to be deleted because of
sliding windows on those relations), the cache needs to be updated to
satisfy the constraint described above. This latter step can be compu-
tationally expensive and hence the choice of which caches to maintain
must be made carefully.

Choosing Caches Adaptively: Babu et al. [11] advocate a three-
phase approach to the problem of adaptively executing a multi-way
join query.

• The A-Greedy algorithm for adapting the probing sequences
is at the top of the loop, and is oblivious to the existence of
caches. It makes its decisions based solely on the operator
selectivities.

• Given the probing sequence, caches are selected adaptively
to optimize the performance.

• Memory is allocated adaptively to the caches selected for
materialization.

Post-mortem: A post-mortem analysis of A-Caching is somewhat
trickier than MJoins because the caches may be created or destroyed
arbitrarily. Generally speaking, the use of caches will increase the shar-
ing between the execution of different subqueries. For instance, let S1,
T1, and U1 denote the tuples of relations S, T , and U that have already
arrived, and let r be a new tuple from relation R. Without any caches,
r will be processed using a left-deep plan (((r � S1) � T1) � U1). How-
ever, if the cache CR

�aS,�bT,�cU was being maintained (Figure 6.5), then
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this tuple would be processed as r � (S1 � T1 � U1) instead (assuming
the cache is complete).

Post-mortem: The execution of a query using A-Caching can be seen as a
horizontal partitioning of the input relations by order of arrival, with the
subqueries being executed using either simple left-deep pipelined plans
or complex bushy plans depending on the caches that are maintained.

6.4 Summary

In this section, we saw several techniques for adaptation of multi-way
join queries when the execution is pipelined and history-independent.
Table 6.1 compares two — StreaMON and SteMs, using the adaptivity
loop framework. StreaMON is a specific adaptive system that chooses
the probing sequence using the A-Greedy algorithm of Section 4.1,
while SteMs enable an adaptation framework that allow a rich space of
routing policies.

The biggest advantage of history-independent execution is that the
plan space is much easier to analyze and to design algorithms for. Con-
sider a case when a total of N tuples have been processed by the sys-
tem, and let M denote the number of choices that the executor faced.

Table 6.1 Comparing some representative history-independent adaptive query processing
schemes using the adaptivity loop.

MJoins with A-Greedy (StreaMON [13])

Measurement: Conditional selectivities using random
sampling.

Analysis and planning: Detect violations of the greedy
invariant; re-plan using the Greedy algorithm
(Section 4.1).

Actuation: By changing the probing sequences.

SteMs [95]

Measurement: Selectivities and fanouts of lookups into
AMs, SteMs.

Analysis and Planning: Can use any routing policy subject
to the routing constraints, e.g., A-Greedy to adapt
probing sequences or various heuristics described
in [95] to adapt driver.

Actuation: By routing tuples using an eddy, subject to
routing constraints.
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For adaptive techniques like eddies and other routing-based approaches,
M could grow much faster than N . If the execution state depended on
the choices made by the executor, then, even if all the choices were
binary (which is unlikely), the number of different possible execution
states could be as high as 2M . On the other hand, if the state depended
only on the tuples arrived into the system, there is only one possible
execution state that is predictable given the input tuples. This not only
insulates the future choices made by the query processor from the past
choices, but also makes it easy to design routing algorithms. We will
revisit this issue in the next section when we consider execution models
that are not history-independent.

Second, actuation, switching between plans, is easier since the exe-
cution state at any point is independent of the plan being used till that
point. Actuation is trickier for AQP techniques that do not maintain
this property (Section 7.3).

Finally the execution state, being well-defined, is easier to manip-
ulate. This is especially important in data streams environment where
tuples may have to be deleted from the execution state.

However, as discussed in Section 6.2.5, these strategies tend to suf-
fer from suboptimal performance when there are multiple drivers [40].
The primary reason behind this is that these strategies, with the excep-
tion of A-Caching, do not reuse intermediate results produced during
execution. In the next section, we present several other techniques that
materialize and reuse the intermediate tuples produced during execu-
tion, and discuss the tradeoffs between these two approaches.
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Pipelined Execution

We now turn our focus to the space of pipelined query plans where
the state built up inside the join operators during query execution
depends on the optimization or adaptation choices made by the query
processor. This includes the class of traditional query plans where a
tree of fully pipelined (symmetric) binary join operators is used to
execute a query with multiple driver relations; the state accumulated
inside the operators depends on the join order being used to execute the
query.

We begin our discussion with corrective query processing, which uses
a conventional (binary) query plan at any time, but may use multi-
ple plans over the entire execution (Section 7.1). We then revisit the
eddies architecture, and consider adaptation when binary pipelined join
operators are used with eddies (Section 7.2). In Sections 7.3 and 7.4,
we present the STAIR operator and the CAPE adaptive query pro-
cessor, respectively, both of which allow explicit state manipulation
during query processing. Finally, we compare these schemes using the
adaptivity loop, and conclude with a discussion of pros and cons of
history-dependent schemes (Section 7.5).

82
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7.1 Corrective Query Processing

The corrective query processing [73]1 approach (which we abbreviate as
CQP) exploits cost-based optimization to “steer” a query engine that
devotes the majority of its resources to efficient exploitation of data and
production of results. Most exploration of alternatives is done through
cost estimation rather than explicit execution. The basic corrective
query processing model attempts to (1) separate decisions relating to
scheduling from those regarding computation cost, and (2) support a
broader range of queries than most adaptive techniques, including those
with aggregation and nested subqueries.

CQP considers the adaptive query processing approach to be one of
horizontal partitioning. It begins with an initial query plan that looks
much like one in a conventional DBMS, except that it relies more heav-
ily on pipelined operators. Figure 7.1 shows the execution of a three
relation query, F � T � C, with a group by operator aggregating at the

Fig. 7.1 An aggregation/join query as a combination of two plans plus a final stitch-up plan
(see Section 7.1.2).

1 Originally referred to as “convergent query processing” in [71], but renamed to more
accurately convey the fact that one cannot guarantee convergence in an adaptive system,
given an arbitrary adversary.
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end. The CQP engine chooses an initial plan, and begins executing this
first plan, requesting data from remote sources in the form of (finite)
sequential streams. As execution progresses, the CQP engine monitors
cost and cardinality and performs re-estimation to determine whether
the initial plan is performing adequately. If not, the plan can be reopti-
mized based on extrapolation from the data encountered to this point.
If a more promising plan is discovered, the current plan’s input is sus-
pended and it completes processing of the partition of data it has seen
so far (represented by F 0,T 0,C0). Now, the new plan begins execu-
tion in a new phase (Plan 1 in the figure), over the remaining data
from the source streams (F 1,T 1,C1). The plan replacement process
repeats as many times as the optimizer finds more promising alter-
native plans, until all source streams have been consumed. Finally, a
stitch-up phase takes the intermediate results computed in all previous
phases and combines them to return the remaining results. (We note
that the stitch-up phase is not strictly required by the CQP approach,
as cross-phase computation could be integrated into any prior phase —
but the initial work in [73] chose this implementation.) Stitch-up plan
generation is based on the algebraic properties of the query plan and
we discuss it in more detail in Section 7.1.2.

We can examine CQP through the lens of Section 3.2 as follows.

Measurement: CQP performs measurement by having all query operators
expose their internal state, including the number of tuples processed,
number of tuples returned, and number of tuples in intermediate state.
As with mid-query reoptimization [75], it also supports specialized infor-
mation gathering operators: in addition to the histogram operators
proposed in that work, CQP considers tuple-order and unique-value
detectors [73].

Analysis: The analysis stage of corrective query processing greatly resem-
bles that of a conventional query optimizer’s cost modeler, with a few
notable exceptions. First, the cost estimate is for processing the remain-
der of source data, plus the required overhead for switching plans. This
is done by extrapolating how many tuples are remaining at each source,
and assuming that selectivities will remain constant over the remainder
of the plan. (As with any adaptive scheme, this heuristic can be mis-
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led by variations in the data. However, CQP has been experimentally
shown to be relatively insensitive even to Zipf-skewed data. The main
issue is that the arrival order must be relatively correlated with the
skew.)

A second consideration is that in practice, different join attributes
are often correlated rather than independent: hence, the selectivity esti-
mation from the currently executing query plan (T � C, F � TC in
Figure 7.1) is not necessarily informative about the selectivities used
by other query plans (e.g., F � T ). The CQP work partly compen-
sates for this by modeling the selectivities at the logical subexpression
level, rather than at the operator level: thus, there is a single selectivity
estimate for each logical expression independent of its evaluation plan
(e.g., F � T � C rather than F � (T � C) and (F � T ) � C). CQP
adopts several heuristics, based on averaging the selectivities of known
“similar” expressions, and avoiding expressions with join predicates that
are known to have cross-product-like behavior. The general goal is to
be conservative in choosing alternative plans.

Planning: Query planning is done by a top-down dynamic programming
optimizer, which supports nested subqueries and aggregation as well
as traditional single-SQL-block queries. The optimizer remains resi-
dent even during query execution and is periodically invoked as costs
are monitored. It produces bushy plans that maximize pipelining, for
three reasons: (1) the end goal is to support interactive applications,
(2) it relies on their scheduling flexibility to adjust to delays, and (3)
pipelined plans facilitate incremental actual cost and cardinality infor-
mation gathering.

As is suggested in 7.1, a query in CQP is executed as the union
of a series of plans, one per phase. (For sorted or aggregate queries, a
final sort or aggregate operator may be performed on the output of this
union. See Section 7.1.2.) Each of the per-phase plans computes the
answers over a different horizontal partition of the data. The stitch-up
plan then performs cross-phase joins.

Actuation: Actuation for CQP is done using a query engine that includes
pipelined implementations not only of the hash join, but also win-
dowed sort and group-by operators. The windowed sort is essentially a
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fixed-length priority queue that does “best effort” reordering of tuples,
such that if there are only local permutations, these will be sorted in
mid-stream. The windowed group-by operator (called an adjustable-
window pre-aggregation in [73]) divides the input into a series of non-
overlapping windows: a local (partial) group-by operation is performed
over each window; if the group-by reduces the number of tuples, its
window size is increased (up to a maximum value specified by the opti-
mizer), otherwise it is decreased until it is shrunk to a operate on a
single tuple at a time. Both of these windowed operators are useful
in that they perform at least partial work (and gather information)
on a part of the input stream, while still preserving pipelined behavior
(and thus CQP’s ability to gather information and change the plan).
Of course, a final merge-sort or post-processing group-by will need to
be performed on the output at the end.

One other aspect worth noting is that the CQP approach scales to
workloads that are larger than memory [71]: in fact, there is a natural
parallel between the horizontal partitioning done on the data by phased
execution and the overflow resolution schemes used by hash join algo-
rithms. We now discuss some of the major design points of the CQP
approach.

7.1.1 Separating Scheduling from Cost

A key consideration emphasized in [73] is that joins, as stateful oper-
ators, may dramatically amplify the effects of “bad” scheduling deci-
sions. A collection of tuples representing an intermediate result must be
joined with every future tuple seen by a join operator, and the result
may be the creation of additional state for the parent operator, etc.
Thus, query processing has two main cost-related aspects: scheduling
tuple processing, which determines the order in which plan operators
get CPU cycles, and which can affect query response time but not over-
all plan cost; and operator ordering with respect to the computation,
which affects the size of intermediate results and thus overall plan cost.2

2 A third aspect, tuple ordering, which might prioritize some tuples over others [97], allows
for asymmetric treatment of output results, but is not considered here.
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The eddy scheduling scheme combines both of these factors in its tuple
routing; in contrast, CQP separates them under the belief that aggres-
sively scheduling a less-desirable plan ordering is generally undesirable
even in the presence of intermittent delays.

CQP relies on pipelined hash joins to perform scheduling, in a way
that masks most I/O delays. Its focus is solely on cost-based plan selec-
tion, ensuring the plan is changed at consistent points, and any neces-
sary cross-phase stitch-up computations.

7.1.2 Post-mortem Analysis

As a scheme for adaptively inserting horizontal partitioning into an
executing query plan, CQP offers a great deal of flexibility. It exploits
relational algebra properties relating to distribution of selection, pro-
jection, join, and other operators over union.

Selection and projection distribute trivially. The more interesting
algebraic equivalences are for join and aggregation.

Join: We can take any join expression over m relations, each divided
into n partitions, and write it as

R1 � · · · � Rm =
⋃

1≤c1≤n,...,1≤cm≤n

(Rc1
1 � · · · � Rcm

m ),

where R
cj

j represents some subset of relation Rj . This is equivalent
to the series of join expressions between subsets that have matching
superscripts:

Ri
1 � · · · � Ri

m, 1 ≤ i ≤ n

Plus the union of all remaining combinations:

{t|t ∈ (Rc1
1 � · · · � Rcm

m ), 1 ≤ ci ≤ n, ¬(c1 = · · · = cm)}

Note that this two-part version of the overall expression exactly
corresponds to the example of Figure 7.1. The two phases in the figure
correspond to our join expressions with matching superscripts.

The stitch-up phase performs the final union of combinations: in
general, this plan must consider all possible joins across partitions that
were not covered by the earlier phases. The work of [73] proposes a
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specialization of the join algorithm to make this more efficient: the
stitch-up join takes the intermediate state generated from each phase,
as well as a specification of which sub-results have already been gen-
erated by prior phases. The stitch-up join then joins the remaining
combinations, also annotating each tuple with which partitions were
incorporated. The process, while somewhat complex, ensures that prior
work is not repeated and that no duplicates are produced.

Aggregation: From the traditional query optimizer literature, it is
well known that sometimes it is more efficient to pre-aggregate tuples
before they are fed into a join operator, thus reducing the cost of the
join [26]. Typically a final group by operator is required at the end; this
operator performs final merging of the partially aggregated tuples.

CQP’s adjustable-window pre-aggregation operator achieves this in
a flexible way. The most common aggregate operators — sum, max,
min, and count — distribute over union. Average can also be obtained,
by performing a sum and count at each intermediate step, and then
dividing them only at the final aggregation step. The pre-aggregation
operator is free to operate over windows that perform horizontal par-
titions over its input, and to adjust the window size as conditions
necessitate.

Other Common Operators: Naturally, union distributes over an-
other union, so it is trivial to incorporate unions into CQP query
plans. Outerjoins are somewhat more complex: here, CQP must divide
between tuples that successfully join and those that do not. For non-
stitch-up phases, CQP will use a conventional join, propagating any
answers that match. Only during the stitch-up phase, when it has access
to all data in the source relations, can it actually perform the outer-
join, returning any missing join results as well as tuples that do not
successfully join. Existential quantification can also be accommodated
in the CQP model, although depending on the constraints on the data,
it may require eliminating duplicates introduced by segmenting plan
execution into phases.

Limitations: The CQP model is quite flexible in supporting a broad
range of operators. However, as discussed in [71], there are certain
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operations that do not fit very well into an adaptive, stream-based pro-
cessing model. Most non-monotonic operators (except for outerjoin and
aggregation with average, as discussed previously) offer little possibility
of incremental computation, except under query execution models that
explicitly support revocation, as with [107]. Current CQP implemen-
tations do not utilize such a model, and hence they do not consider
universal quantification, relational difference, or the NOT EXISTS
predicate.

Post-mortem: Corrective query processing internally models its behavior
as horizontal partitioning, and thus a query execution using CQP can
be viewed as a horizontal partitioning of data by order of arrival.

7.1.3 A Generalization: Complementary Joins

The work of [73] proposes an alternative use of horizontal data parti-
tioning, where the query plans are static but the data is routed to each
in a dynamic fashion. The general goal is to exploit situations in which
data is “mostly sorted” along dimensions where a merge-join would be
advantageous over a hash join.

The key idea is to separate each join into two complementary imple-
mentations, one a merge join and one a hash join, preceded by a
“router” that determines which join gets each subsequent tuple. See
Figure 7.2, the two join implementations share state, dividing into four
hash tables (two for each relation, designated h(R) and h(S) in the
figure), each with the same number of buckets. Data from input rela-
tion R is routed to one of the joins based on whether it conforms to
the ordering of the merge join. If a tuple that arrives is not in the
proper sequence with its chronological predecessor, it is joined within
the pipelined hash join in standard fashion. If it is ordered, the merge
join consumes and joins it, and then stores it in the merge join’s local
hash table for R. Data from relation S is processed similarly. Once all
data is consumed, a mini-version of stitch-up is performed: hash table
R from the pipelined hash join is combined with hash table S in the
merge join, and vice-versa.
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Fig. 7.2 Internals of pipelined hash join vs. complementary join pair; “Q”s represent queues
between threads.

7.1.4 Open Problems

The CQP work leaves open a number of avenues for future exploration.
The first question is precisely when the division of computation into
normal and stitch-up phases is preferable: the stitch-up computations
could be incorporated directly into each subsequent plan phase, rather
than a separate one. The authors’ initial experiments found that the
overhead of bookkeeping in this setting often was significant, and hence
they separated the cross-phase computation from the main path. How-
ever, there may be cases in which the added flexibility (and information
gain) is preferable. A second question is whether supplementing the
basic CQP technique with a scheme for doing exploration, in the man-
ner of eddies, might be beneficial. Finally, the existing work does not
consider how to adapt a fully distributed query plan: the assumption
was that query processing is local, although the data is not.

7.2 Eddies with Binary Join Operators

We now return to eddies and see how they can be used to adapt plans
involving pipelined binary joins. As discussed in Sections 4.2 and 6.2, an
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Fig. 7.3 An eddy instantiated for the query R �a S �b T . Valid options for routing are
labeled on the edges.

eddy is a tuple router that sits at the center of a dataflow observing the
data and operator characteristics, and affects plan changes by changing
the way tuples are routed through the operators.

Figure 7.3 shows the eddy instantiated for a three-relation join
query R �a S �b T (we will use this query as the running example for
this section). For this query, along with the eddy operator, two doubly
pipelined (symmetric) hash join operators are instantiated.

The query is executed by routing the input tuples through these two
operators. The valid routing options for various types of tuples (shown
on the data flow edges) are as follows:

— R tuples can only be routed to the R �a S operator, and T

tuples can only be routed to the S �b T .
— S tuples, on the other hand, can be routed to either of the

two join operators. In this simple example, this is the only
flexibility the eddy has in routing.

— The intermediate RS tuples, if any generated, can only be
routed to S �b T , whereas ST tuples can only be routed to
R �a S.

— Finally, any RST tuples can only be routed to the output.
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Determining Validity of Routing Decisions: As we saw above,
determining whether a tuple can be routed to an operator is trickier
when join operators are involved. Generally speaking, this is done by
maintaining some form of lineage with each tuple that contains the
information about what the tuple consists of, and which operators the
tuple has been routed through.

• Avnur et al. [6] maintain the lineage in the form of ready and
done bits (cf. Section 3.1.2) that are associated with each
tuple. The done bits indicate which operators the tuple has
already visited, whereas the ready bits indicate the valid rout-
ing destinations for the tuple. The operators are in charge of
setting these bits for a tuple before it is returned to the eddy.

• For efficiency reasons, a latter implementation of eddies in
PostgreSQL [37, 40] used a routing table for this purpose.
The lineage of the tuple was encoded as an integer that was
treated as a bitmap (similar to the done bitmap). A rout-
ing table, say r-table, initialized once at the beginning of
query execution, maintained the valid routing destinations
for tuples with lineage x at r-table[x ], thereby allowing the
eddy to efficiently find valid routing destinations for any
tuple. The size of the routing table, however, is exponen-
tial in the number of operators and hence the approach is
not suitable for queries with a large number of operators.

7.2.1 Routing Policies

There has been very little work on routing policies for eddies with
binary join operators. Since all tuples routed to a join operator are built
into one of the hash tables, the join operators accumulate state during
execution, making it hard to reason about the operator selectivities.
Moreover, this state depends on the routing choices made by the eddy.
Figure 7.4 (i) shows the join state at the end of execution for our
example query, where S1 and S2 denote the sets of tuples that got
routed toward the operators R �a S and S �b T , respectively. Since
such join state affects the output rates of the operators directly, the
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Fig. 7.4 (i) Distribution of tuples at the end of the execution for the query R � S � T ;
S1 and S2 denote the partitions of S that were routed to R � S and S � T operators,
respectively. (ii) The two query execution plans executed by the eddy.

routing decisions cannot, in general, be made without taking the state
into account. For example, the selectivity of the R �a S operator for
the R tuples depends on the partitioning of S into S1 and S2, and
not just on S. This state accumulation (also called burden of routing
history [40]) makes it a challenge to design and analyze routing policies
for eddies.

We will briefly discuss two routing policies for this case (both of
which are extensions of policies discussed in Section 4.2.1).

• Lottery scheduling: The lottery scheduling policy, as
described in Section 4.2.1, is agnostic to the nature of the
operators, and can be used unchanged for this case. However
because of the join state accumulation issues, this policy may
not perform as well as for the selection ordering case [6].

• Deterministic routing with batching [37, 40]: This
routing policy uses the routing table (discussed above) and
batching to reduce the routing overheads.

— Statistics maintained: The eddy explicitly mon-
itors (a) the selectivities of the predicates, (b) the
sizes of the relations, and (c) the domain sizes of the
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join attributes. The latter two, under assumption of
independence and uniformity, can be used to deter-
mine the join selectivities.

— Routing policy: The routing decisions are made for
batches of tuples at a time to reduce the overhead.
A reoptimizer is invoked every K tuples (where K is
called batching factor). The reoptimizer uses the join
selectivities to choose the best operator to route to
for each possible tuple signature, and encodes these
decisions in the routing table (by simply moving the
corresponding operator to the front of the list). The
next K tuples are all routed according to this plan.
Experimental results in [40] suggest a batching factor
of the order of 1000 resulted in acceptable routing
overhead, while allowing the eddy enough flexibility
in routing.

Designing effective routing policies for the case of eddies with binary
join operators remains an important open problem in this area. Next
we attempt to provide some insights into this problem by analyzing
eddies, and discussing the issue of state accumulation in more detail.
We then briefly describe an operator called STAIR that was proposed
to handle some of the state accumulation issues.

7.2.2 Post-mortem Analysis

As with MJoins, eddies with SteMs, and CQP, execution using an eddy
and binary join operators can also be captured using the notion of
horizontal partitioning, with one critical difference: the partitioning
is determined solely by the routes chosen for the tuples, and does not
depend on the order of arrival. For instance, if all tuples of each relation
are routed identically, the relations will not be partitioned and the eddy
will execute a single traditional query plan over the entire input; on the
other hand, using an MJoin or SteMs will typically result in different
query plans being executed for different tuples based on the order of
arrival (cf. Section 6.2.4).
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We will illustrate how to do the post-mortem analysis through two
examples.

Example 7.1. Figure 7.4 shows an example execution of our run-
ning example query (R �a S �b T ). In this case, S tuples are the only
ones for which the eddy has a choice. Let S1 denote the tuples that
were routed to R �a S operator, and let S2 denote the tuples routed
to S �b T , operator. From the data distribution in the hash tables,
we can infer the plans that were used to execute the two subqueries
(Figure 7.4 (ii)):

— R � S1 � T : was executed as (R � S1) � T (We use this
notation to mean that the R tuples were first joined with S1

tuples and the resulting RS1 tuples were then joined with
T tuples).

— R � S2 � T : was executed as R � (S2 � T ).

Example 7.2. Next we will consider a more complex example that
reveals certain other interesting phenomena. Consider the query R �a

S �b T �c U (Figure 7.5). Let S1 and S2 denote the S tuples routed
to R � S and S � T , respectively. Similarly, let T1 and T2 be the T

tuples routed to S � T and T � U operators. Also let the ST tuples
generated during the execution (if any) be routed to the R � S operator
first.

Figure 7.5 shows the distribution of the tuples in the join operators
after execution of the query. As we can see from this figure, the four
subqueries and the corresponding execution plans in this case are:

— R � S1 � T1 � U : Executed using ((R � S1) � T1) � U .
— R � S1 � T2 � U : Executed using (R � S1) � (T2 � U).
— R � S2 � T1 � U : Executed using (R � (S2 � T1)) � U .
— R � S2 � T2 � U : Executed using R � (S2 � (T2 � U)).

Note that if the ST tuples were themselves split among the two
possible destinations (R � S and T � U), S and T must be further
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Fig. 7.5 An example distribution of tuples for query R �a S �b T �c U at the end of query
execution.

partitioned to capture that execution. In the worst case, each S tuple
and each T tuple may form a partition by itself.

As we can see, the routing destinations for tuples alone determine
the plans executed by the eddy, and the order of arrival is not directly
relevant. However, the routing destinations themselves would typically
depend on the order of arrival of tuples.

Note that the eddy cannot simulate an arbitrary partitioning of the
relations. For example, for the query R �a S �b T (Figure 7.3), consider
a partitioning where R is split into R1 and R2 and the two partitions are
processed using plans (R1 �a S) �b T and R2 �a (S �b T ), respectively.
This cannot be simulated by an eddy. If S is routed toward the R �a S

operator, it must join with all of R; there is no way for S to join with
just a subset of the R tuples. The STAIR operator that we discuss in
the next section can be used to achieve such plans.

Post-mortem: Execution of a query using an eddy and binary join oper-
ators can be viewed as a horizontal partitioning of the data (with par-



7.2 Eddies with Binary Join Operators 97

titions consisting of tuples that were routed identically). The use of
binary joins establishes a number of constraints on the ways these par-
titions can be created and combined.

7.2.3 Burden of Routing History

The most attractive feature of the eddies framework is that the routing
choices can be made on a per-tuple basis. However the above analysis
shows that an eddy may only have a limited ability to choose the plans
that any given tuple may participate in. Furthermore, given the com-
plex interactions between the routing choices made for different tuples,
it may not be possible to predict how the decision made by the eddy
will affect the execution of subsequent tuples. This is a direct artifact
of the state that gets accumulated inside the join operators, which we
call the burden of routing history.

Perhaps the most serious problem with this state accumulation is
that the adaptation opportunities an eddy may have in future may
be significantly constrained because of its routing history. To illustrate
this point, we review an example from the original eddies paper [6]:

Example 7.3. Consider the query R �a S �b T , using two doubly
pipelined hash join operators (Figure 7.3). At the beginning of query
processing, the data source for R is stalled, and no R tuples arrive.
Hence the R �a S operator never produces a match, which makes it
an attractive destination for routing S tuples: it efficiently eliminates
tuples from processing, reducing work for the query engine. The result
is that the eddy emulates a static query plan of the form (R � S) � T .
Some time later, R tuples arrive in great quantity and it becomes
apparent that the best plan would have been (S � T ) � R. The eddy
can switch the routing policy so that subsequent S tuples are routed
to S �b T first. Unfortunately, this change is “too little too late”: all
the previously seen S tuples are still stored in the internal state of
the R �a S operator. As R tuples arrive, they must join with these
S tuples before the S tuples are joined with T tuples. As a result, the
eddy effectively continues to emulate the suboptimal plan (R � S) � T ,
even after its routing decision for S has changed.
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The burden of routing history severely impacts an eddy’s ability to
adapt in several other ways as well [40].

• Cyclic queries — inability to adapt spanning trees:
Cyclic queries, where the join graphs have cycles, are quite
common in many environments. For example, in a stream-
ing environment, many relations may be joined on the same
attribute resulting in cyclic query graphs [120]. When exe-
cuting a query using binary join operators, the eddy must
choose a spanning tree of the join graph a priori and then
use it throughout the execution.

• Handling sliding window queries: Executing sliding win-
dow queries in data streams requires the ability to delete
tuples from the execution state. Because of the intermediate
tuples that get stored inside the join operators, this is harder
to do in this case than the alternative approaches.

• Restricted Pre-computation in Presence of Delays:
If the data from a remote data source is delayed, it might
be attractive to perform other useful work while waiting for
that data to arrive. For instance, partial results might be of
interest in interactive environments [96]. Another option is to
aggressively join all the data that has already arrived, even
if that requires use of a suboptimal plans (query scrambling
[2, 118]). The eddy may be unable to do this because the state
is captured inside the join operators. In fact, the inability
to produce partial results aggressively was one of the main
reasons the SteM operator was proposed (Section 6.2.3).

7.3 Eddies with STAIRs

The STAIR operator [40] removes the limitations discussed in the
previous section by exposing the state stored inside the operators
to the eddy and by providing the eddy with primitives to manipu-
late this state. In this section, we will briefly discuss this operator
and how it can be used to lift the burden of history through state
manipulation.
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7.3.1 STAIR Operator

A STAIR operator encapsulates the state typically stored inside the join
operators. For simplicity, we will assume that an intermediate tuple,
t, generated during query processing is stored as a list of pointers to
the source tuples that were joined together to generate it. We will
use schema(t) to denote the set of relations whose tuples t contains.
Formally, a STAIR on relation R and attribute a, denoted by R.a, con-
tains either tuples from relation R or intermediate tuples that contain
a tuple from R (R ∈ schema(t)). R.a supports the following two basic
operations:

(i) insert(R.a, t), R ∈ schema(t): Given a tuple t that contains a
tuple from relation R, store the tuple inside the STAIR.

(ii) probe(R.a, val): Given a value val from the domain of the
attribute R.a, return all tuples r stored inside R.a such that r.a = val.

Figure 7.6(i) shows the STAIRs that would be instantiated for exe-
cuting our example 3-relation query. In essence, each join operator is
replaced with two STAIRs that interact with the eddy directly. These
two STAIRs are called duals of each other. Note that even if both
joins were on the same attribute, we would have two STAIRs on rela-
tion S and attribute a (= b). These two STAIRs are treated as separate
operators since they participate in different joins.

The query execution using STAIRs is similar to query execution
using join operators. Instead of routing a tuple to a join operator,
the eddy itself performs an insert on one STAIR, and a probe into its
dual. In fact, the following property is always obeyed during query
execution:

Definition 7.1. Dual Routing Property: Whenever a tuple is
routed to a STAIR for probing into it, it must be simultaneously inserted
into the dual STAIR.

This property is obeyed implicitly by the symmetric hash join and
MJoin operators as well, and can be relaxed by associating timestamps
with the tuples in a fashion similar as described in [95].
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Fig. 7.6 (i) Query execution state at time τ when using an eddy and STAIRs — Rτ denotes
the tuples of relation R that have been processed by time τ ; (ii) The execution state after
Demote(Rτ � SR

τ ∈ S.b,SR
τ ); (iii) The execution state after Promote(SR

τ ∈ S.a,S.b,T .b).

7.3.2 State Management Primitives

Other than the two basic operations described above, STAIRs also sup-
port two state management primitives that allow the eddy to manipu-
late the join state inside the STAIRs.

(i) Demote(t ∈ R.a, t′ = πY (t)), R ∈ Y ⊂ schema(t): Intuitively, the
demotion operation involves reducing an intermediate tuple stored in
a STAIR to a sub-tuple of that tuple, by removing some of the source
tuples it contains. This operation can be thought of as undoing some
work that was done earlier during execution. Given that the pre-
conditions are satisfied, the operation simply replaces t by t′ in R.a.

(ii) Promote(t ∈ R.a, S.b, T .b), S ∈ schema(t),T /∈ schema(t): The
promotion operation replaces a tuple t in a STAIR R.a, with super-
tuples of that tuple that are generated using another join in the query,
in this case, S �b T . The operation removes t from R.a and replaces
it with the set of tuples {t} �b T .b, which are found by probing into
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T .b using t (the pre-conditions ensure that this is a valid operation).
During the process t is also inserted into S.b. Note that the join result
may be empty, in which case no tuples are inserted back into R.a.

To amortize the costs of these operations, STAIRs also support
extensions where the operations are performed on a batch of tuples at a
time, instead of a single tuple at a time. Figure 7.6(ii) shows an example
of a Demote operation where RτS

R
τ in STAIR S.b is demoted to SR

τ .
Similarly, Figure 7.6(iii) shows an example of a Promote operation
where SR

τ (∈ S.a) is promoted using S �b T ; as a result SR
τ is replaced

by SR
τ Tτ in S.a.

Theorem 7.1. [40] An eddy with STAIRs always produces correct
query results in spite of arbitrary applications of the promotion and
demotion operations.

Both these state management operations, as described above, can
result in a state configuration that allows spurious duplicate results to
be generated in future. Such duplicates may be acceptable in some sce-
narios, but can also optionally be removed. We refer the reader to [40]
for details on how to prevent the duplicates from being generated.

7.3.3 Lifting the Burden of History using STAIRs

The STAIR state management primitives provide the eddy with the
ability to manipulate state, and in effect, reverse any bad decisions
that it might have made in past. We will illustrate this through an
example.

Figure 7.6(i) shows the state maintained inside the join operators at
time τ for our example query. Let us say that, at this time, we have bet-
ter knowledge of the future and we know that routing SR

τ toward R � S

was a mistake, and will lead to sub-optimal query execution in future
(because R � SR

τ has high selectivity). This prior routing decision can
be reversed as follows (Figure 7.6):

— Demote the SR
τ � Rτ tuples in S.b to SR

τ .
— Promote the SR

τ tuples from S.a to SR
τ � Tτ using the

STAIRs S.b and T .b.
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Figure 7.6 (iii) shows the result of these operations. As we can see,
the state now reflects what it would have been if SR

τ had previously been
routed to the S.b and T .b STAIRs, instead of R.a and S.a STAIRs. As
a result, future R tuples will not be forced to join with SR

τ .
The process of moving state from one STAIR to another is referred

to as state migration.

7.3.4 State Migration Policies

While providing the eddy with more flexibility, STAIRs introduce yet
another set of policy issues for eddies, namely, when to perform state
migration. Deshpande and Hellerstein [40] propose a greedy policy that
“follows” the routing policy by keeping the state inside the opera-
tors consistent with the “current” plan being used by the eddy. In
other words, when the eddy changes the execution plan being used,
the internal join state is migrated to make it appear as if the eddy
had been using the new plan from the beginning of execution. To avoid
thrashing and also unnecessary migrations at the end of the query,
the state is migrated in stages over a period of time instead of all
at once.

7.3.5 Post-mortem Analysis

Execution using STAIRs can be analyzed using horizontal partitioning
in a fashion similar to using only binary join operators as we saw in the
previous section. We will illustrate this through an example. Consider
the example shown above where at time τ : (1) the routing policy was
changed so that the eddy starts routing all new S tuples to S � T , and
(2) a state migration was performed as shown in Figure 7.6. Further, let
this be the only adaptation that was done. Denoting by R∞ all tuples
of R that arrived by the end of the execution, the “plans” executed by
the eddy can be written down as:

• (Rτ � SR
τ ) � Tτ

• Rτ � (ST
τ � Tτ )

• SR
τ � Tτ

• R∞ � (S∞ � T∞) − Rτ � Sτ � Tτ
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The first two rows are the plans executed till time τ , and the third
row shows the work done during the state migration step; the last row
specifies the work done after time τ (we abuse the notation somewhat
to indicate that the results already produced by time τ are not regen-
erated).

Post-mortem: As with an eddy with binary joins, an eddy with STAIRs
can be viewed as working on horizontal partitions of the data, where
the data items are partitioned based on how they are routed. A state
migration (using STAIR primitives) can be seen as a redundant join of
some of the partitions using an alternate join order.

7.4 Dynamic Plan Migration in CAPE

The CAPE stream system [124], which permits plan changes during
execution, also supports mechanisms for migrating state to make it
consistent with the new query plan to be used. The CAPE query pro-
cessor is not routing-based, and instead executes queries using a tree
of binary join operators. Because of this, it requires that the execution
state be consistent with the query plan being used in a much stricter
sense. To be more precise, when executing a query using an eddy and
STAIRs (or symmetric hash join operators), the hash tables may con-
tain tuples of different types (cf. STAIR S.a in Figure 7.6(i)). This is
not permitted in the CAPE system, and hence when the query plan
is changed mid-execution, state migration must be done to ensure cor-
rectness.

Zhu et al. [124] propose and evaluate several different policies for
state migration in CAPE. The moving state strategy is somewhat simi-
lar to the policy described above: it pauses the execution, migrates state
from the old operators to the new operators, and then resumes execu-
tion using the new query plan. The parallel tracks strategy is specific to
queries over data streams; it runs both the new and the old plans simul-
taneously for a while, and throws away the old plan when the tuples
inside the operators of the old plan are not required for executing the
rest of the query (e.g., when they fall out of the sliding windows). Note
that the state migration primitives supported by STAIRs can be used
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to simulate either of these strategies, and hence these policies could
also be used when executing a query using STAIRs.

Post-mortem: As with STAIRS, CAPE can be viewed as executing differ-
ent query plans over horizontal partitions of data (with partitions based
on order of arrival). The moving state strategy is similar to STAIRs —
it may combine some partitions twice using different plans; the parallel
tracks strategy may process some new input tuples using two plans in
parallel, but does not do redundant query processing.

7.5 Summary

In this section, we discussed a variety of schemes for adaptive query
processing that use trees of binary join operators for query execu-
tion. Table 7.1 recaps some of these techniques from the perspective
of the adaptivity loop. The main challenge with using binary joins
for execution is dealing with and reasoning about the state that gets

Table 7.1 Comparing some of the techniques discussed in this section using the adaptivity
loop.

CQP [73]

Measurement: Operator cardinalities (hence join selectivities);
sort orders; incremental histograms.

Analysis and planning: Periodic or trigger-based re-planning
using an integrated query reoptimizer.

Actuation: By replacing the query plan operators other than
the root and leaves. Requires a stitch-up plan at the end.

Eddies with binary join operators/STAIRs [40]

Measurement: Join selectivities monitored explicitly.
Analysis and planning: Periodic re-planning using a query

optimizer.
Actuation: By changing the routing tables used by the eddy.

State migration (if required) using the STAIR primitives.

CAPE [124]

Measurement: System parameters (selectivities, stream rates
etc).

Analysis and planning: Reoptimization when the parameters
change.

Actuation: Explicit migration of state from old to new oper-
ators.
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accumulated inside the join data structures. CQP, which is a general
architecture for adapting full query plans, reuses state across query
plans in an opportunistic manner but does not explicitly “migrate”
state across dissimilar query plans. CAPE performs explicit state
migration when switching plans, whereas the STAIR operator, pro-
posed for use with an eddy, provides state management primitives that
permit the eddy to handle the state more flexibly.

The complexity of reasoning about the join state raises serious
concerns about using binary join operators for query evaluation. The
MJoin and SteM operators that we saw in the previous section do
not suffer from these issues. However, in spite of these problems, the
approaches discussed in this section typically outperform the history-
independent approaches, except possibly in streaming environments.
This is because the history-independent approaches throw away the
intermediate results computed during execution and may have to
recompute those repeatedly. Experimental results in the PostgreSQL
implementation of eddies confirm this behavior [40]. Latter work in
the StreaMON project also considered adaptive caching of intermedi-
ate tuples for the same reason [11] (Section 6.3). In streaming envi-
ronments, this cost may be offset partly by the significantly lower cost
of tuple deletions, and also by the lower reuse of intermediate tuples
(because of sliding windows).

Two systems use hybrid schemes that combine these approaches.
Viglas et al. [120] present techniques for choosing plans that simul-
taneously use binary join and MJoin operators. Second, the adaptive
caching work (Section 6.3) explicitly caches intermediate results to solve
this problem. In our opinion, exploring the tradeoffs between these two
approaches remains one of the most important open research challenges
in adaptive query processing.



8
Adaptive Join Processing: Non-pipelined

Execution

We have seen several adaptation techniques for pipelined plans that
operate by changing the order in which tuples are pipelined (routed)
through plan operators. We now turn to plans with non-pipelined
(blocking) operators, the dominant style of plan considered by most
DBMSs today. The techniques we describe adapt by changing the query
plan at the materialization points caused by such blocking operators.
They treat the plan as being partitioned into multiple pieces, and opti-
mize and execute each piece separately.

We discuss three techniques. Plan staging (Section 8.1) is a method
widely used by DBMS applications to get more predictable query per-
formance. Mid-query reoptimization (Section 8.2) is an adaptation
method that has become quite popular in recent years and been used
in several query processing systems, including systems not originally
designed with a focus on adaptation. These two methods form the
principal response of the commercial DBMS community to the problem
of poorly chosen query plans. The third technique, query scrambling
(Section 8.3), is an adaptation method used in query processing over
wide-area data sources to deal with bursty data arrival rates. We con-
clude with a discussion of post-mortem analysis and adaptivity loop
for these techniques (Section 8.4).

106
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8.1 Plan Staging

Materialization points are points in a plan where an intermediate result
relation is created in entirety before proceeding with further opera-
tors of the plan. Materialization is common in query plans, and arises
in several places, such as the sort operator (used for sort-merge join
or group-by, or for clustering the outer of lookups into a clustered
index), the build side of the hash join operator, and explicit mate-
rialization operators (used, for example, to cache results of common
subqueries).

A key property of materialization points is that they split the
plan tree into independent subgraphs, whose outputs are expressible
as relational-algebraic expressions of their inputs. Figure 8.1 illustrates
a plan with several materialization points for an example query.

Executing such a plan is equivalent to submitting separate SQL
queries one after another:

P1 ← sort (Sales � σcomment not like “%delayed%”(Shipping))
P2 ← sort(Store)
P3 ← sort(Region)
P4 ← P2 � P3
P5 ← P1 � Parts � P4

We call this explicit use of separate queries plan staging. This
staged execution provides a simple measure of resiliency to poor opti-
mizer estimates: by materializing the intermediate results as separate

Fig. 8.1 A plan with several materialization points.
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tables, the optimizer has an opportunity to compute their true car-
dinalities and use these to choose the plans for subsequent stages.
This method is used by many application programs.1 It results in an
interleaving of optimization and execution: first optimize and run one
stage to completion, and then, using its result as input, optimize and
run the next stage, and so on. Since the optimization and execution
steps are interleaved, the optimization of each stage can use statistics
(cardinality, histograms, etc.) computed on the outputs of the previ-
ous stages. In some cases, the query optimizer will in fact add spe-
cial information gathering operators in order to have more detailed
statistics.

It is instructive to compare this staged execution with parametric
optimization and choose-plan operators of Section 2.2.2. In parametric
optimization, the optimizer picks a number of candidate plans, and the
query processor waits until it reaches a choose-plan operator to decide
which plan to run. By this time, values of run-time parameters and
possibly some intermediate result sizes are known, so the choose-plan
operator can make a more informed choice than the query optimizer
could have. In contrast, plan staging does not require candidate plans to
be chosen up-front; instead the optimizer is re-invoked at each stage.
Recent work on switchable plans bridges the gap between these two
styles (Section 8.2.5).

8.2 Mid-Query Reoptimization

In 1998, Kabra and DeWitt [75] introduced a generalization of such
staged execution called mid-query reoptimization, where the applica-
tion program does not have to get involved. This work has since been
adopted and generalized in several other systems, in the forms of pro-
gressive optimization [87] and proactive reoptimization [9]. Mid-query
reoptimization is best understood in terms of the following loop:

• As part of optimization, instrument the query plan with
checkpoints;

1 This does put the application program in the business of guiding query plans, which goes
against the relational philosophy.
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• During execution, if the actual cardinality2 of tuples flowing
through a checkpoint is very different from estimated: reop-
timize the remainder of the query to switch to a new plan

• Repeat

A checkpoint is a unary plan operator that monitors statistics (typ-
ically cardinality) of tuples flowing through it. If the monitored value
is close to the optimizer’s estimate, the checkpoint acts like a no-op.
If not, the checkpoint terminates the current query execution and trig-
gers another round of optimization and execution, commonly called
reoptimization.

Figure 8.2 illustrates the mid-query reoptimization analogue of the
staged plan of Figure 8.1. The initial query plan was to join with Parts
using an (index) nested-loop join (NLJN). This choice depends heav-
ily on the cardinality estimate for the sort result. In this query, this
depends on the not-like predicate, for which it is notoriously hard to
estimate cardinalities. If the cardinality is small, NLJN is good, but
it rapidly loses to hash or merge join as the cardinality increases. To
guard against this risk, the plan has a checkpoint just before the join
with Parts, which checks the output cardinality of the SORT. If the

Fig. 8.2 Reoptimizing a plan at a lazy checkpoint.

2 Any other statistic over these tuples, such as a frequency distribution, can be substituted
for cardinality.
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checkpoint succeeds, the query continues with the NLJN; if it is vio-
lated, reoptimization is triggered and causes a new plan with a hash
join to be picked (with inner and outer reversed).

There are three main challenges in doing such a scheme:

— where should we place checkpoints
— what is the best way to switch to a new plan
— how far off should the actual cardinality be from the esti-

mated cardinality for reoptimization to be triggered

We discuss these in turn.

8.2.1 Flavors of Checkpoints

Markl et al. [87] study different kinds of checkpoint operators that vary
in where they are placed in the query plan. The simplest kind of check-
points, like those of Figure 8.2, are positioned above materialization
points. They are called lazy checkpoints. In the usual iterator formu-
lation, the open() of a lazy checkpoint first calls open() on its input,
thereby fully evaluating it and materializing the results. Then it checks
the input cardinalities. Unless reoptimization is needed, the next() of
a lazy checkpoint simply calls next() on its input. Reoptimization can
be done with no wasted work in most cases, because it is just like plan
staging. (Work is, of course, wasted if the optimizer chooses not to
reuse the evaluated inputs, as we explain later.)

The drawback with lazy checkpoints is that they occur too infre-
quently: some plans may be mostly or fully pipelined and even when
checkpoints exist, they may occur too late in query execution. Turning
to the example of Figure 8.2 again, if the optimizer has underestimated
|P1| significantly, the query processor could waste huge amounts of
CPU and memory in scanning and sorting P1 before the checkpoint is
even reached.

Eager checkpoints are an alternative that avoid some of these draw-
backs. In these checkpoints, the cardinalities are monitored by a counter
during the calls to next(), thus the checking is done in a pipelined
fashion. So they can be placed anywhere in the query plan, as in the
lower left of Figure 8.3. The advantage of the eager checkpoint in this
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Fig. 8.3 Reoptimizing a plan at an eager checkpoint.

example is that it is triggered even while P2 is being computed and
sorted. When the checkpoint is triggered, the query stops the expen-
sive scan and sort of Sales, and instead switches to a plan that uses an
index on Sales. The cardinality of tuples flowing through E increases
over time, and it must extrapolate to estimate the final “actual”
cardinality.

Eager checkpoints always result in wasted work upon reoptimization
because the tuples that were processed through the checkpoint until
reoptimization do not constitute a well-defined relational expression,
and have to be thrown away. In Figure 8.3, the reoptimized execution
cannot express precisely which subset of P1 has been sorted, and so
cannot use the subset. This waste of any intermediate result that is not
fully computed is an essential characteristic of mid-query reoptimiza-
tion, and distinguishes it from the horizontal partitioning discussed in
the previous two sections. Nevertheless, eager checkpoints are useful as
“insurance” in places where optimizer estimates have very high degree
of uncertainty, e.g., after several possibly correlated predicates.

There are two other proposals that complement checkpoints.

Forced Materialization: Markl et al. [87] introduce extra material-
ization points into query plans in order to enable lazy checkpoints.
These extra materializations are useful in locations like the outer
relation in a nested-loops join, where the optimizer estimates the
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cardinality to be very low; if the optimizer proves to be right, the extra
materialization was cheap, while if it is wrong, the extra materialization
was pricey but paid for itself in avoiding the bad plan (nested-loops join
instead of hash join). For example, if there had not been a sort below
P1 in the original plan in Figure 8.3, it might be a good idea to intro-
duce one anyway, guarding it with eager and lazy checkpoints, because
“like” predicates are hard to estimate.

Operator Rescheduling: Many federated query processing sys-
tems [44, 114] reschedule the order of evaluation of plan operators
so that subplans over remote data sources are fully evaluated first,
before reoptimizing and running the portion of plan that runs at the
federator node. This is because cardinalities of operations over feder-
ated data sources are especially hard to estimate, and the optimizer’s
initial estimates are often wild guesses. Such rescheduling is also appli-
cable in non-federated plans. For example, if there was uncertainty
in the estimates of |Store| and |Region|, the query processor could
evaluate the sorts on them first before proceeding with the rest of
the plan.

8.2.2 Switching to a New Plan

When a checkpoint is triggered, it is an indication to the query proces-
sor to switch to a new query plan by re-invoking the optimizer. There
are many tricky issues in actuating this switch efficiently:

Reusing Intermediate Results: To avoid wasted work, the opti-
mizer must try to reuse intermediate results computed during the query
execution up to the checkpoint. Returning to the lazy checkpoint of
Figure 8.2, suppose that the top-most join was a hash join and that
the build side was Store-Region. When the checkpoint is triggered,
there are four intermediate results available, on Sales-Shipping, Store,
Region, and Store-Region, with the last three overlapping each other.
So the simple staged execution model of Section 8.1 does not apply.
A more general solution is to cast these intermediate results as mate-
rialized views and let the optimizer decide how best to use (or ignore)
them during reoptimization [87].
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Getting a Better Plan: The purpose of checkpoints is to switch
to a better plan after considering the difference between optimizer
estimated cardinalities and the actual cardinalities. But reoptimization
almost always presents the optimizer with cardinality estimates over
overlapping relational expressions. For example, an optimizer might
have cardinality estimates over three base-tables |σa(R)|, |σb(S)|, and
|σc(T )| from its catalog. Reoptimization might produce actual values
for |σa∧b(R � S)| and |σa∧b∧c(R � S � T )|, which are different from
what is predicted by independence assumptions. Now, if the opti-
mizer estimates |σb∧c(S � T )| using the base table selectivities and
plugs in |σa∧b(R � S)| from the actual value, these two estimates are
inconsistent. Most current query optimizers use such inconsistent cardi-
nality estimation, and this can even lead to plan regression upon reop-
timization (i.e., reoptimization results in a slower plan), as pointed out
in [44, 81]. Instead, the optimizer needs to use the maximum entropy
principle to consistently estimate cardinalities based on all available
information [81].

Side-effects: Query execution can at times have side-effects. Pipelined
results can be returned to the user. Query results can also be used to
perform updates (for example, in queries used to maintain materialized
views). It is important when reoptimizing to ensure that side-effects
are applied exactly once. Side-effects from pipelined results are one of
the major difficulties in doing reoptimization in pipelined plans. Markl
et al. [87] suggest doing an anti-join to eliminate false duplicates, but
this can be prohibitively expensive. If a query plan contains update
operations, only lazy checkpoints can be placed above it, and upon
reoptimization the optimizer must reuse the results up to these check-
points as-is, to avoid applying the update twice.

8.2.3 Threshold to Invoke Reoptimization

Reoptimization always has a price. At a minimum, there is the cost of
re-running the optimizer and of restarting the query execution. Often,
intermediate results are not reused perfectly after reoptimization. So it
is important to reoptimize only if we are reasonably sure that a much
faster plan will result. This relates to the difference between estimated
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and actual cardinalities at the checkpoint — if the difference is large,
it is more likely that current plan is substantially worse than another,
and reoptimization has a high payoff. But how should the threshold be
set. One way to make a precise decision of when to reoptimize is the
notion of validity ranges:

Definition 8.1. The validity range of an edge in a query plan is a
range of cardinalities for tuples flowing along that edge within which
the current query plan is optimal, or near-optimal.

Validity ranges can be used in many ways:

— To decide when to reoptimize: if the cardinality of tuples
flowing through a checkpoint falls outside the validity range
of its input edge, the checkpoint triggers reoptimization.

— To guide where to place checkpoints: if the validity range on
an edge is very small (or has high risk of not being satisfied,
in an optimizer that considers probabilities such as [7, 9]),
that range is likely to be violated, and an eager check point
or a lazy checkpoint via forced materialization may be called
for.

— To identify risky plans: the presence of many narrow validity
ranges suggest that the chosen plan has high risk and might
be worth avoiding.

In [9], validity ranges are generalized to be the range of acceptable
cardinalities for not just a single plan, but a set of plans among which
the optimizer can easily switch at runtime without wasting work. They
call such ranges bounding boxes.

8.2.4 Computation of Validity Ranges

Validity ranges are computed during query optimization, when the ini-
tial plan is chosen. But they are not a characteristic of this initial
plan, but rather of the entire space of possible plans. For example, the
validity range on a scan over a base table depends not just on the oper-
ator immediately above that scan, but on all the possible plans for the
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query — a change in selectivity on one edge can have repercussions on
the join order several operators above it. So computing them exactly
might lead to an exponential blow-up in the optimization cost.

Instead Markl et al. [87] describe a method to compute approximate
validity ranges such that the chosen plan is optimal with respect to
other plans that share the same join tree.

By default, the optimizer sets all validity ranges to be (−∞,∞).
Later, say that the optimizer is comparing the two plans in Figure 8.4,
during its dynamic programming phase. The plans differ only in the
join operator used, and the cost of both operators is a function of
the same input cardinalities: cost(P1) = f1(|P |, |Q|) and cost(P2) =
f2(|P |, |Q|). At the current estimates pe, qe for |P |, |Q|, say that P1
is cheaper and the optimizer is pruning away P2. Then the optimizer
computes a bounding rectangle (pmin,pmax) and (qmin, qmax), within
which cost(P1) − cost(P2) < 0.3 Accordingly, the optimizer updates
the validity ranges on the inner and outer edges: V R(p)← V R(p) ∩
(pmin,pmax) and V R(q)← V R(q) ∩ (qmin, qmax). This intersection pro-
cess may be repeated multiple times if multiple operators are compared
to operator P1 — the final validity range is the one in which P1 beats
all of these operators.

Fig. 8.4 Computation of validity ranges.

3 Generalizing this for near-optimal plans is straightforward: the optimizer computes the
rectangle corresponding to cost(P1) − αcost(P2) < β for suitable constants α and β.
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This bounding rectangle is computed either through simple linear
search or through standard numerical root finding techniques.

The advantage of this method is that it only adds a constant factor
overhead to the optimization process: each time the optimizer prunes
one plan in favor of another, it needs to calculate the cost difference
at a few points around estimated cardinality, in order to compute the
bounding rectangle.

But the disadvantage is that it only computes validity ranges with
respect to plans that share the same join tree as the finally chosen plan
(changes of join operator, and inner-outer reversals for a single join
operator, are supported). As a result, validity ranges are conservative in
the following sense. Even within the validity range, a plan may become
suboptimal with respect to alternative plans that use different join
orders. That is, validity ranges err on the side of fewer reoptimizations.

8.2.5 Bounding Boxes and Switchable Plans

A recent paper proposes an alternative to validity ranges called bound-
ing boxes [9]. The idea is to proactively expect and plan for reopti-
mization during the initial optimization itself. Rather than choosing
a single initial plan with validity ranges on its edges, they modify the
optimizer to choose, for each uncertain cardinality estimate, a bounding
box which is likely to straddle the actual cardinality. Corresponding to
each bounding box, they choose a set of “switchable” plans up front —
ones among which it is easy to switch without wasting work, such as
P1 and P2 in Figure 8.4.

One challenge with this scheme is the computation of bounding
boxes. To ensure that the bounding box will straddle actual cardinal-
ity, the optimizer needs good estimates of the probability distribution
of cardinalities. Some papers have suggested that histogram quantile
widths can be used to infer the error possibility, but this only applies
to cardinalities of base tables. Cardinality mis-estimation arises more
frequently and severely from missing statistics, correlations, like predi-
cates, and so on, and there has been little work on studying the distri-
bution of errors in these situations. The work of Babu et al. [9] seeks
to limit the impact of cardinality mis-estimates by focusing on lin-
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ear query plans, where at least one input to every join has a known
cardinality.

8.3 Query Scrambling

An alternative form of plan staging has been developed in the context
of query processing over wide-area data sources. Besides cardinalities,
a major runtime variable in such queries is delays and burstiness in
data arrival. For example, the plan of Figure 8.5 may be perfect when
the base tables can supply data as soon as query execution begins. But
if some table, say Sales, were on a remote data source, its tuples might
arrive in a delayed or bursty fashion. Assuming a standard iterator-style
query execution, a delay in Sales will stall the whole plan.

Query scrambling [118] is a method which reacts to such delays
by rescheduling the order of evaluation of query plan operators, and
occasionally changing the query plan by introducing new operators.
Whenever a plan is stalled due to a delayed source, query scrambling
considers two alternatives for continuing progress on the query:

• Rescheduling of existing operators: The simplest solution is
to retain the current plan and react to a delay in one part
of the plan by scheduling other, non-delayed sub-trees for
execution. For example, Store and Region could be joined

Fig. 8.5 Query scrambling example. When a delay in arrival of sales causes plan portion
(1) to stall, we can run plan portion (2) until the delay is resolved.
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while Sales is delayed, as indicated in Figure 8.5. The result
(e.g, Store � Region) has to be materialized until the delayed
sources becomes available and the original plan can resume.
This materialization can have a significant cost, so query
scrambling invokes a query optimizer to choose sub-trees to
schedule that have (relatively) high savings in response time
for low materialization overheads.

• Synthesis of new operators: In some cases, none of the oper-
ators in the current plan can be scheduled, because of delays
or dependencies. In such situations, query scrambling intro-
duces and executes new operators, which join tables that are
not directly joined in the original plan (these tables could
be intermediate results from previous joins). This process
results in the query being evaluated in a piecemeal fashion,
as in plan staging.

Urhan et al. [118] study several strategies for synthesizing new
plan operators during query scrambling. The straightforward approach,
called Pair, synthesizes and runs the join that will finish fastest. This
process is repeated as long as the delayed data has not arrived. When
the data arrives, Pair invokes the optimizer to construct a single query
plan that best uses all the synthesized joins.

The other approach is to use a response-time based optimizer, to
generate a complete alternative plan that will finish the query fastest,
given that some source is currently delayed. The challenge with this
approach is that the duration of the delay is hard to predict. Urhan
et al. [118] analyze two policies for estimating this delay: one which
chooses a very large delay, and one which chooses a small initial delay
and repeatedly increases it if the data does not arrive in time. Experi-
mentally, [118] observe that scrambling using a response time optimizer
can hide delays quite well, for delays that are smaller than the normal
query response time.

8.4 Summary and Post-mortem Analysis

Plan staging and its variants are possibly the most widely used adapta-
tion techniques along with selection ordering. They have been used in
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several independent systems and are generally believed to require less
“surgery” to a conventional DBMS than other techniques. Table 8.1
compares some of these techniques using the adaptivity loop.

In a post-mortem analysis, the runtime behavior of these techniques
is almost identical to a traditional optimize-then-execute query proces-
sor: they also execute a single query plan over the entire input relations.
The only difference is that this query plan is not fixed in advance but
can change at pre-defined materialization points (for plan staging), at
checkpoints (for mid-query reoptimization), or when there are delays
(for query scrambling). Additionally, in some cases, these techniques
might do some extra work in generating an intermediate result that is
thrown away when the query is reoptimized.

Post-mortem: Plan staging, mid-query reoptimization, and query scram-
bling use a single plan for processing all tuples of the input relations.
This plan is chosen dynamically at query run-time in response to events
such as unexpected cardinalities or source delays.

Table 8.1 Comparing some of the techniques discussed in this section using the adaptivity
loop.

Plan staging

Measurement: Sizes of intermediate results.
Analysis and planning: None.
Actuation: Resubmit next stage of query to the DBMS.

Mid-query reoptimization [9, 75, 87]

Measurement: Cardinalities or other table statistics computed at
checkpoints.

Analysis: Detect violations of validity ranges.
Planning: Resubmit a changed query [75], or re-invoke optimizer

on original query, exposing intermediate results as materialized
views [87], or switch to a pre-chosen alternative plan [9].

Actuation: Instantiate operators according to the new plan and start
executing them.

Query scrambling [118]

Measurement: Delays in data arrival.
Analysis and planning: Choose a join that can be run during the

delay, or re-invoke the optimizer to synthesize new operators.
Actuation: Schedule an operator that can be executed given the

availability of data sources.
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A significant appeal of these techniques is that they impose almost
no overhead for monitoring or analysis during the main-line query exe-
cution. Unless reoptimization is triggered, each checkpoint functions
as a single counter, whereas most of the previous techniques monitor
multiple selectivities and costs.

However, the applicability of plan staging is primarily to plans with
materialization points. Pipelined plans could also be reoptimized, but
almost all reoptimization will involve wasted work. Another open issue
is reoptimization in parallel (shared nothing) query plans, where a
checkpoint triggering reoptimization needs to achieve global consen-
sus that the reoptimization is worthwhile and intermediate result reuse
is hard because not all nodes may have progressed to the same point.



9
Summary and Open Questions

Declarative query processing is a fundamental value proposition of a
DBMS. Traditionally query processors provided this feature by first
optimizing a query and then executing it. Over the years, this model
has broken down due to serious problems in estimating cardinalities,
increasing query complexity, and new DBMS environments. In this sur-
vey, we have seen a variety of techniques that attempt to alleviate these
problems. In this section, we briefly recap the major trade-offs and con-
straints, identify the common mechanisms and methodologies, and pose
a number of challenge problems.

9.1 Trade-Offs and Constraints

As we have seen throughout this survey, adaptive query processing can
take many forms. In general, a particular adaptive solution must find
a particular point among the spectrum of trade-offs among a variety of
different dimensions. We briefly review some of the major issues and
the approaches taken.

121
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9.1.1 Precomputation vs. Robustness vs. Runtime
Feedback

As we have seen in Section 2, commercial DBMSs employ the model
of cost-based optimization developed for System R, which relies on
collection of information prior to processing a query in order to choose
a good plan. As the limitations of this model have become evident, one
approach has been to choose robust plans, which may not be optimal
according to the cost model but may be more resilient to unantici-
pated variations in the data, or to provide several parametric or con-
tingent plans that are appropriate for different settings. Alternatively,
one can re-calibrate the cost model (e.g., capturing correlations) based
on the results of each query. All of these models assume that some cost
information is available, and that it is useful in making some rough
predictions about actual performance.

Intra-query adaptivity, upon which we focused in this survey, is
at the opposite extreme, and adapts query plans being used mid-
execution. Section 4 describes in detail a number of techniques
for reordering (possibly expensive) selection operations. Sections 6–8
examine techniques that additionally consider the presence of joins
and other operators, which are state-preserving and much more dif-
ficult to reason about. Some of these strategies focus on adapting
plans in the middle of pipelined execution, whereas others focus on
changing the plan at the end of a blocking operation. Each has certain
benefits: the former are more responsive, whereas the latter have less
potential overhead. In general, the blocking-based strategies have seen
more adoption in commercial systems, whereas the pipelined strategies
have been widely adopted in distributed and stream query processing
settings.

9.1.2 Data Access Restrictions

Some of the techniques designed for recalibrating cost estimates
(Section 2) can employ sampling and other techniques that exploit
random access to data. Likewise, parametric query optimization and
some of its variants assume that certain information about the source
data (e.g., its actual cardinalities) is known.
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In contrast, many other intra-query adaptive query processing tech-
niques (particularly those of Sections 6 and 7) assume that access to
the data is restricted to single-pass sequential access, in some arbitrary
order, potentially with only a rough estimate of cardinality. Many of
these techniques are specifically directed at distributed remote data
sources with limited capabilities, where random access is unavailable
and subsequent requests may result in data inconsistency.

9.1.3 Exploration vs. Exploitation

Adaptive query processing obtains feedback about real operating con-
ditions and costs; however, it simultaneously has a goal of producing
answers to the query. It is important to note that devoting resources
to exploration — obtaining information about thus-unknown costs —
may help in finding a better query processing strategy, but in the short
term it detracts from exploitation — producing answers with the best
current plan. These two aspects must be carefully balanced, depend-
ing on the information available at the time and the variability in the
environment. These two factors also interact with the plan search space
and any restrictions on when a plan may be changed (both discussed
below).

In general, with the prominent exceptions of competitive execution
and eddies (Section 3) and their descendants, which invest resources on
exploration, most adaptive query processing strategies conservatively
focus on exploitation unless they detect a better alternative. Little work
has been done on considering when to actively probe or how to do better
modeling.

9.1.4 Optimizer Search Space

The next major question is the space of alternative plans that is to be
explored: how many options must the adaptive strategy consider? In
the simplest cases (Section 8), the search space closely parallels that
of traditional optimization; in other cases (e.g., eddies), each incoming
tuple may be processed in what is essentially a unique query plan, due
to horizontal partitioning. See the post-mortems in Sections 6–8 for
more detail.



124 Summary and Open Questions

Of course, a greater search space provides more possible means of
improving performance, but potentially at the cost of greater search
overhead. One of the least-understood aspects of the adaptive query
processing problem is the topology of the search space (particularly
with respect to changing pipelined plans, as in Sections 4–7) and how
it might be most effectively exploited.

9.1.5 Plan Flexibility vs. Runtime Overhead

Related to the above issue, there is also a question of the space of
possible actions that can be taken to adapt execution: in other words,
what restrictions have been placed on changing a plan.

In modern query engines, pipelined query execution is heavily opti-
mized, minimizing the amount of copying and computation done at
each step. Modifying the engine to support dynamic changes to the
plan is not free: it often requires additional copying or buffering, and
perhaps the creation of additional state. We have seen a number of
techniques that are highly restricted in when they can change a plan
(Section 8) as well as ones that are extraordinarily flexible (Sections 6
and 7). The ultimate conclusion is that there is no single ideal adap-
tive set of techniques; performance will vary depending on how much
flexibility is required in a given application.

9.1.6 State Management and Reuse

The final trade-off that we wish to discuss lies in the management of
state (intermediate results) in multi-pass (e.g., join and aggregation)
operators. The minimum amount of state that must be maintained
includes those source tuples that ultimately contribute to the answers.

However, nearly every query processing strategy (adaptive or not)
maintains more state than this, for a number of reasons: (1) some-
times we cannot determine whether a source tuple will contribute to an
answer until the query completes; (2) retention of intermediate results
may speed up performance (e.g., it is often faster to compute A � B,
save the sub-result, and then join that with C, rather than to do a
ternary join among A � B � C). On the other hand, a “bad” query
plan may produce intermediate results that increase the cost of com-
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putation, e.g., because A � B is very large, even though (A � C) � B

is not.
Thus a challenge is to determine whether to compute intermediate

results, when to reuse them, and when to discard them. A major differ-
ence between mid-query reoptimization [75] and progressive optimiza-
tion [87] (Section 8) is the constraints they put on state reuse. Likewise,
the new operators that have been proposed for use with eddies — SteMs
(Section 6.2.3) and STAIRs (Section 7.3) — adopt different strategies
for state management; whereas SteMs only maintain state for base
inputs, STAIRs can also maintain (and even migrate) state for par-
tial results. Another scheme that focuses heavily on intermediate state
management is corrective query processing (Section 7.1).

It is worth remarking that the state problem is often dramatically
reduced in the emerging realm of data stream management systems,
where relations within a join are often windowed, bounding their size
in ways that enable them to be treated as filters [10]. Additionally, in
many settings “punctuation” markers can be used to indicate when
data may be flushed from the buffer [116].

9.2 Adaptive Mechanisms

As we have seen, the complete space of adaptive query processing tech-
niques is quite broad and varied. However, there are a number of fun-
damental techniques that emerge in a number of cases.

Horizontal partitioning, running different plans on different portions
of the data, is used in n-way symmetric hash joins, corrective query
processing, eddies, content-based routing, and conditional planning. In
some cases the partitioning is explicit (most notably in corrective query
processing, content-based routing, and conditional planning); in other
cases it is implicit in the functioning of the operator.

Query execution by tuple routing is a highly flexible mechanism for
adaptation, used in selection ordering, eddies, MJoins, SteMs, STAIRs,
and a variety of other techniques.

Plan partitioning, where the optimization and execution steps are inter-
leaved many times and execution progresses in stages, allows the plan-
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ning to be done by a traditional query optimizer. The principal limita-
tion of this approach is that it is applicable only at some well-defined
points during query execution. The principal benefit is that there is lit-
tle query execution overhead to adaptivity. The methods of Section 8
all use plan partitioning in some way.

Runtime binding decisions, where certain plan choices are deferred until
runtime, allow the execution engine to choose among several alterna-
tive plans (including potentially re-invoking the optimizer). Examples
include choose nodes, proactive reoptimization, SHARP, and to some
extent the techniques of Section 8.

In-operator adaptive logic puts scheduling and other decisions into indi-
vidual query operators, rather than relying on the optimizer to make
decisions. This reduces the overall optimizer search space, and it also
allows the query engine to rapidly respond to delays, varying selectiv-
ities, and so on. Examples include symmetric hash joins, eddies, and
MJoins.

9.3 Conclusions and Challenge Problems

In many ways, adaptive query processing is still in its early stages: the
focus has largely been on engineering adaptive techniques for specific
contexts, rather than on developing a formal model of adaptivity. In
this survey, we attempted to provide an overview of the current state of
adaptive query processing, to help identify some of the key features and
trade-offs involved in the field, and, we hope, to lay out the problem
space in a way that will aid others in truly understanding it. We are
convinced that adaptivity is “the way to go” in terms of query process-
ing, especially as the database query paradigm continues to expand to
new domains. We end with a series of “challenge problems” that we
feel are especially fascinating.

9.3.1 Understanding the Adaptive Plan Space

Many of the adaptive techniques we have seen, particularly those that
do tuple routing (e.g., eddies, MJoins) completely change the plan space
of query processing: instead of a single plan for the lifetime of the query,
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we instead see a sequence of different plans over different tuples, and
sometimes the operators are n-ary joins or hybridized join algorithms.
To this point, our understanding of the “topology” of the traditional
query plan space is fairly limited, and it seems vital to understand how
adaptivity and hybrid operators change the problem. Moreover, only a
limited amount of work (e.g., corrective query processing) has focused
on how to perform adaptive execution of complex nested SQL and other
queries, so we do not have a full understanding of how these complex
operators affect the adaptive plan space.

9.3.2 Developing Optimal Policies

Most of the techniques we have discussed are new mechanisms for adap-
tation — they address the “actuate” step. Their focus is on changing
aspects of a query plan during execution without wasting much work.
However, there has been considerably less progress on adaptation poli-
cies — the “monitor,” “plan,” and “analyze” steps. Most existing work
either follows the tuple routing strategy or attempts to calibrate a tra-
ditional cost model. Replanning generally occurs when costs exceed
some sort of validity range. None of these strategies fully considers
optimal or near-optimal strategies for combining existing knowledge,
selective probes, and runtime feedback. One field that could possibly
provide useful in this regard is machine learning, in particular the lit-
erature on multi-armed bandit problems [16] and on optimal online
learning [62, 77]. The competitive analysis framework and analytical
tools common in that community might provide useful input on how
to route tuples, how often to monitor, and so forth.

9.3.3 Effective Handling of Correlation

Correlation is a major source of cardinality estimation errors and poor
plans, but is not easily solved by adaptation. Consider a query with
n predicates where there is endemic positive correlation (i.e., com-
pound selectivities larger than product of individual selectivities). An
optimizer might choose an initial join order ((R � S) � T ) � U . After
finding that R � S is much larger than expected and realizing the
correlation between R and S, the query processor might switch to a
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plan than joins S and T , only to learn that they are also correlated.
This process can continue as it slowly learns about all the correlation
present in the system — each time, the query processor will switch to
plan that joins tables not joined until then. This phenomenon is easily
observed during mid-query reoptimization and is described as “fleeing
from knowledge to ignorance” in [44]. In some cases that can be a very
good strategy, as it focuses on exploring the unknown; however, in other
cases it simply results in a continuous succession of bad plans. Again, we
are hopeful that techniques from machine learning might be helpful in
this area.

9.3.4 Managing Resource Sharing

Traditional query optimization is done under the assumption that a
query has full use of the machine (or a slice of the machine). Of course,
from the early days of DBMSs, the buffer pool has been a mechanism
for supporting sharing (as discussed in, e.g., [29]), and there do exist
a number of runtime techniques for sharing among filescans and even
simultaneously running pipelines [48]. However, we believe that there is
significant opportunity to use adaptive techniques to adjust to resource
contention (e.g., between operators or between plans) and to perform
an adaptive version of multi-query optimization [100, 103]. A significant
challenge will be managing the interaction between adaptivity within
a plan and the fact that certain subexpressions will be shared across
plans.

9.3.5 Scaling to Out-of-core Execution

Most adaptive query processing techniques — at least those that focus
on adapting in mid-pipeline — assume that the majority of process-
ing will be done in memory. Some strategies (e.g., the variants on the
symmetric hash join, and corrective query processing) do indeed work
with larger-than-memory workloads, but they do not fully consider the
impact of disk overflow on performance. For instance, the query pro-
cessor might adapt several operators in a query plan once one operator
overflows, in the manner of hash teams [55]. We believe there is signif-
icant exploration to be done in this space.
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9.3.6 Developing Adaptation Metrics

For a long time, the metric for a DBMS was simple: run transactions
at high throughput and run queries fast. Today, query execution is not
an isolated activity but rather part of a larger business process. As a
result, predictable behavior is vital: e.g., if a new feature speeds up
99% of queries by a factor of two and slows down 1% by a factor of
two, that can be a disastrous outcome. Even robust query plans do
not precisely capture this notion: they optimize for a plan that are
likely to perform similarly over a range of queries — but they do not
consider how to make the optimizer produce more consistent plans.
A second issue is interactivity. User interaction has traditionally been
ignored by DBMSs, but analysts doing ad hoc queries may wish to
work directly on the data rather than on a cached copy. Should the
goal for an adaptive query processor be that it dynamically respond to
user needs, and support tasks like query refinement and approximate
results directly in the query processor? There has been little progress
in this area besides some work on online aggregation [61]. In general,
it seems that we need new measures for query processing performance
that take into account new aspects such as robustness and consistency,
rapid refinement, reaction to new conditions, and so forth.

As we have seen from this list of open challenges, the adaptive query
processing space still has a wide-open frontier. We look forward to
upcoming developments with great anticipation, particularly the devel-
opment of formal models and theoretical foundations.
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[57] H. Guo, P.-Å. Larson, R. Ramakrishnan, and J. Goldstein, “Relaxed currency
and consistency: how to say ”good enough” in SQL,” in SIGMOD ’04: Pro-
ceedings of the 2004 ACM SIGMOD international conference on Management
of data, (New York, NY, USA), pp. 815–826, ACM Press, 2004.

[58] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh, “Extensible
query processing in starburst,” in SIGMOD ’89: Proceedings of the 1989 ACM
SIGMOD international conference on Management of data, (New York, NY,
USA), pp. 377–388, ACM Press, 1989.



136 References

[59] P. J. Haas and J. M. Hellerstein, “Ripple joins for online aggregation,” in SIG-
MOD ’99: Proceedings of the 1999 ACM SIGMOD international conference
on Management of data, (New York, NY, USA), pp. 287–298, ACM Press,
1999.

[60] J. M. Hellerstein, “Optimization techniques for queries with expensive meth-
ods,” ACM Transactions on Database Systems, vol. 23, no. 2, pp. 113–157,
1998.

[61] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman,
T. Roth, and P. J. Haas, “Interactive data analysis: The Control project,”
Computer, vol. 32, no. 8, pp. 51–59, 1999.

[62] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Machine Learn-
ing, vol. 32, pp. 151–178, August 1998.

[63] D. A. Huffman, “A method for the construction of minimum redundancy
codes,” in Proc. Inst. Radio Eng., pp. 1098–1101, 1952.

[64] A. Hulgeri and S. Sudarshan, “Parametric query optimization for linear and
piecewise linear cost functions.,” in VLDB ’02: Proceedings of 28th Interna-
tional Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong,
China, pp. 167–178, 2002.

[65] A. Hulgeri and S. Sudarshan, “AniPQO: Almost non-intrusive parametric
query optimization for nonlinear cost functions.,” in VLDB ’03: Proceedings
of 29th International Conference on Very Large Data Bases, September 9-12,
2003, Berlin, Germany, pp. 766–777, 2003.

[66] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and
S. Zdonik, “High-availability algorithms for distributed stream processing,”
in ICDE ’05: Proceedings of the 21st International Conference on Data Engi-
neering (ICDE’05), (Washington, DC, USA), pp. 779–790, IEEE Computer
Society, 2005.

[67] T. Ibaraki and T. Kameda, “On the optimal nesting order for computing
N-relational joins,” ACM Transactions on Database Systems, vol. 9, no. 3,
pp. 482–502, 1984.

[68] Y. E. Ioannidis, “Query optimization,” ACM Computing Surveys, vol. 28,
no. 1, pp. 121–123, 1996.

[69] Y. E. Ioannidis and S. Christodoulakis, “On the propagation of errors in the
size of join results,” in SIGMOD ’91: Proceedings of the 1991 ACM SIGMOD
international conference on Management of data, (New York, NY, USA),
pp. 268–277, ACM Press, 1991.

[70] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis, “Parametric query
optimization,” The VLDB Journal, vol. 6, no. 2, pp. 132–151, 1997.

[71] Z. G. Ives, Efficient Query Processing for Data Integration. PhD thesis, Uni-
versity of Washington, August 2002.

[72] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld, “An adaptive
query execution system for data integration,” in SIGMOD ’99: Proceedings
of the 1999 ACM SIGMOD international conference on Management of data,
(New York, NY, USA), pp. 299–310, ACM Press, 1999.

[73] Z. G. Ives, A. Y. Halevy, and D. S. Weld, “Adapting to source properties in
processing data integration queries,” in SIGMOD ’04: Proceedings of the 2004



References 137

ACM SIGMOD international conference on Management of data, (New York,
NY, USA), pp. 395–406, ACM Press, 2004.

[74] Z. G. Ives and N. E. Taylor, “Sideways information passing for push-style
query processing,” Tech. Rep. MS-CIS-07-14, University of Pennsylvania,
2007.

[75] N. Kabra and D. J. DeWitt, “Efficient mid-query re-optimization of sub-
optimal query execution plans,” in SIGMOD ’98: Proceedings of the 1998
ACM SIGMOD international conference on Management of data, (New York,
NY, USA), pp. 106–117, ACM Press, 1998.

[76] H. Kaplan, E. Kushilevitz, and Y. Mansour, “Learning with attribute costs,”
in STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, (New York, NY, USA), pp. 356–365, ACM Press, 2005.

[77] M. Kearns and S. Singh, “Near-optimal reinforcement learning in polynomial
time,” Machine Learning, vol. 49, pp. 260–268, November 2002.

[78] W. Kim, “On optimizing an SQL-like nested query,” ACM Transactions on
Database Systems, vol. 7, no. 3, pp. 443–469, 1982.

[79] D. Kossmann, “The state of the art in distributed query processing,” ACM
Comput. Surv., vol. 32, no. 4, pp. 422–469, 2000.

[80] R. Krishnamurthy, H. Boral, and C. Zaniolo, “Optimization of nonrecursive
queries,” in VLDB ’86: Proceedings of the 12th International Conference on
Very Large Data Bases, (San Francisco, CA, USA), pp. 128–137, Morgan Kauf-
mann Publishers Inc., 1986.

[81] M. Kutsch, P. J. Haas, V. Markl, N. Megiddo, and T. M. Tran, “Integrat-
ing a maximum-entropy cardinality estimator into DB2 UDB,” in EDBT ’06:
Proceedings of the 10th International Conference on Extending Database Tech-
nology, 2006.

[82] T. Legler, W. Lehner, and A. Ross, “Data mining with the SAP NetWeaver BI
accelerator,” in VLDB ’06: Proceedings of the 32nd international conference
on Very large data bases, pp. 1059–1068, VLDB Endowment, 2006.

[83] H.-G. Li, S. Chen, J. Tatemura, D. Agrawal, K. S. Candan, and W.-P. Hsiung,
“Safety guarantee of continuous join queries over punctuated data streams,”
in VLDB ’06: Proceedings of the 32nd international conference on Very large
data bases, pp. 19–30, VLDB Endowment, 2006.

[84] W.-S. Li, V. S. Batra, V. Raman, W. Han, and I. Narang, “QoS-based data
access and placement for federated systems,” in VLDB ’05: Proceedings of the
31st international conference on Very large data bases, pp. 1358–1362, VLDB
Endowment, 2005.

[85] L. F. Mackert and G. M. Lohman, “R* optimizer validation and perfor-
mance evaluation for distributed queries,” in VLDB ’86: Proceedings of the
12th International Conference on Very Large Data Bases, (San Francisco, CA,
USA), pp. 149–159, Morgan Kaufmann Publishers Inc., 1986.

[86] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman, “Continuously adaptive
continuous queries over streams,” in SIGMOD ’02: Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, pp. 49–60,
ACM Press, 2002.



138 References

[87] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic,
“Robust query processing through progressive optimization,” in SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD international conference on Manage-
ment of data, (New York, NY, USA), pp. 659–670, ACM Press, 2004.

[88] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku,
C. Olston, J. Rosenstein, and R. Varma, “Query processing, resource manage-
ment, and approximation in a data stream management system,” in CIDR ’03:
First Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, 2003.

[89] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and R. Ramakrishnan, “Magic is
relevant,” in SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD interna-
tional conference on Management of data, (New York, NY, USA), pp. 247–258,
ACM Press, 1990.

[90] K. Munagala, S. Babu, R. Motwani, and J. Widom, “The pipelined set cover
problem.,” in ICDT ’05: Proceedings of the 10th International Conference,
Edinburgh, UK, pp. 83–98, 2005.

[91] K. Munagala, U. Srivastava, and J. Widom, “Optimization of continuous
queries with shared expensive filters,” in PODS ’07: Proceedings of the twenty-
sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, (New York, NY, USA), pp. 215–224, ACM Press, 2007.

[92] J. Naughton, D. DeWitt, D. Maier, A. Aboulnaga, J. Chen, L. Galanis,
J. Kang, R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy, J. Shan-
mugasundaram, F. Tian, K. Tufte, S. Viglas, Y. Wang, C. Zhang, B. Jackson,
A. Gupta, and R. Chen, “The niagara internet query system,” IEEE Data
Engineering Bulletin, June 2001.

[93] N. Polyzotis, “Selectivity-based partitioning: A divide-and-union paradigm
for effective query optimization,” in CIKM ’05: Proceedings of the 14th
ACM International Conference on Information and knowledge management,
pp. 720–727, New York, NY: ACM Press, 2005.

[94] V. G. V. Prasad, Parametric Query Optimization: A Geometric Approach.
Master’s thesis, IIT Kanpur, 1999.

[95] V. Raman, A. Deshpande, and J. M. Hellerstein, “Using state modules for
adaptive query processing.,” in ICDE ’03: Proceedings of the 19th Interna-
tional Conference on Data Engineering, Bangalore, India, pp. 353–364, 2003.

[96] V. Raman and J. M. Hellerstein, “Partial results for online query process-
ing,” in SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, pp. 275–286, ACM Press, 2002.

[97] V. Raman, B. Raman, and J. M. Hellerstein, “Online dynamic reordering for
interactive data processing,” in VLDB ’99: Proceedings of the 25th Interna-
tional Conference on Very Large Data Bases, pp. 709–720, Edinburgh, Scot-
land: Morgan Kaufmann, 1999.

[98] S. V. U. M. Rao, Parametric Query Optimization: A Non-Geometric
Approach. Master’s thesis, IIT Kanpur, 1999.

[99] L. Raschid and S. Y. W. Su, “A parallel processing strategy for evaluating
recursive queries,” in VLDB ’86: Proceedings of the 12th International Con-



References 139

ference on Very Large Data Bases, pp. 412–419, Morgan Kaufmann Publishers
Inc., 1986.

[100] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Efficient and extensible
algorithms for multi query optimization,” in SIGMOD ’00: Proceedings of the
2000 ACM SIGMOD international conference on Management of data, (New
York, NY, USA), pp. 249–260, ACM Press, 2000.

[101] E. A. Rundensteiner, L. Ding, T. M. Sutherland, Y. Zhu, B. Pielech, and
N. Mehta, “CAPE: Continuous query engine with heterogeneous-grained
adaptivity,” in VLDB ’04: Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases, Toronto, Canada, pp. 1353–1356, 2004.

[102] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access path selection in a relational database management system,”
in SIGMOD ’79: Proceedings of the 1979 ACM SIGMOD International Con-
ference on Management of Data, 1979.

[103] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst.,
vol. 13, no. 1, pp. 23–52, 1988.

[104] P. Seshadri, J. M. Hellerstein, H. Pirahesh, T. Y. C. Leung, R. Ramakrishnan,
D. Srivastava, P. J. Stuckey, and S. Sudarshan, “Cost-based optimization for
magic: Algebra and implementation,” in SIGMOD ’96: Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, pp. 435–
446, ACM Press, 1996.

[105] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex query decorrelation,”
in ICDE ’96: Proceedings of the Twelfth International Conference on Data
Engineering, New Orleans, LA, pp. 450–458, February 26–March 1 1996.

[106] M. A. Shah, J. M. Hellerstein, and E. Brewer, “Highly available, fault-tolerant,
parallel dataflows,” in SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, (New York, NY, USA),
pp. 827–838, ACM Press, 2004.

[107] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, J. F. Naughton, and D. Maier,
“Architecting a network query engine for producing partial results,” in ACM
SIGMOD Workshop on the Web (WebDB) 2000, Dallas, TX, pp. 17–22, 2000.

[108] M. A. Shayman and E. Fernandez-Gaucherand, “Risk-sensitive decision-
theoretic diagnosis,” IEEE Transactions on Automatic Control, vol. 46,
pp. 1166–1171, 2001.

[109] H. Simon and J. Kadane, “Optimal problem-solving search: All-or-none solu-
tions,” Artificial Intelligence, vol. 6, pp. 235–247, 1975.

[110] U. Srivastava, K. Munagala, and J. Widom, “Operator placement for
in-network stream query processing,” in PODS ’05: Proceedings of the
Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 250–258, 2005.

[111] U. Srivastava, K. Munagala, J. Widom, and R. Motwani, “Query optimiza-
tion over web services,” in VLDB ’06: Proceedings of the 32nd international
conference on Very large data bases, pp. 355–366, VLDB Endowment, 2006.

[112] M. Stillger, G. Lohman, V. Markl, and M. Kandil, “LEO – DB2’s LEarning
Optimizer,” in VLDB ’01: Proceedings of 27th International Conference on
Very Large Data Bases, Morgan Kaufmann, September 11–14 2001.



140 References

[113] M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design and imple-
mentation of Ingres,” ACM Transactions on Database Systems, vol. 1, no. 3,
pp. 189–222, 1976.

[114] M. Templeton, H. Henley, E. Maros, and D. J. V. Buer, “InterViso: Dealing
with the complexity of federated database access,” The VLDB Journal, vol. 4,
no. 2, 1995.

[115] F. Tian and D. J. DeWitt, “Tuple routing strategies for distributed eddies,” in
VLDB ’03: Proceedings of 29th International Conference on Very Large Data
Bases, pp. 333–344, Berlin, Germany: Morgan Kaufmann, September 9–12
2003.

[116] P. A. Tucker and D. Maier, “Exploiting punctuation semantics in data
streams,” in ICDE ’02: Proceedings of the 18th International Conference on
Data Engineering, (Washington, DC, USA), p. 279, IEEE Computer Society,
2002.

[117] T. Urhan and M. J. Franklin, “XJoin: a reactively-scheduled pipelined join
operator,” IEEE Data Engineering Bulletin, vol. 23, no. 2, pp. 27–33, 2000.

[118] T. Urhan, M. J. Franklin, and L. Amsaleg, “Cost based query scrambling
for initial delays,” in SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, pp. 130–141, Seattle, WA:
ACM Press, June 2–4 1998.

[119] E. Viglas and S.-J. F. Naughton, Novel Query Optimization and Evaluation
Techniques. PhD thesis, University of Wisconsin at Madison, 2003.

[120] S. Viglas, J. F. Naughton, and J. Burger, “Maximizing the output rate of
multi-way join queries over streaming information sources,” in VLDB ’03:
Proceedings of the 29th International Conference on Very Large Data Bases,
Berlin, Germany: Morgan Kaufmann, September 9–12 2003.

[121] A. N. Wilschut and P. M. G. Apers, “Dataflow query execution in a par-
allel main-memory environment,” in PDIS ’91: Proceedings of the First
International Conference on Parallel and Distributed Information Systems,
Fontainebleu Hilton Resort, Miami Beach, FL, pp. 68–77, IEEE Computer
Society, 1991.

[122] E. Wong and K. Youssefi, “Decomposition — strategy for query processing,”
ACM Transactions on Database Systems, vol. 1, no. 3, pp. 223–241, 1976.

[123] D. Zhang, J. Li, K. Kimeli, and W. Wang, “Sliding window based multi-join
algorithms over distributed data streams,” in ICDE ’06: Proceedings of the
22nd International Conference on Data Engineering (ICDE’06), (Washington,
DC, USA), p. 139, IEEE Computer Society, 2006.

[124] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman, “Dynamic plan migration
for continuous queries over data streams,” in SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on Management of data, (New
York, NY, USA), pp. 431–442, ACM Press, 2004.


