
LTAG-spinal and the Treebank
a new resource for incremental, dependency and semantic parsing

Libin Shen (lshen@bbn.com)
BBN Technologies, 10 Moulton Street, Cambridge, MA 02138, USA

Lucas Champollion (champoll@ling.upenn.edu)
Department of Linguistics, 619 Williams Hall, University of Pennsylvania, Philadelphia, PA
19104, USA

Aravind K. Joshi (joshi@seas.upenn.edu)
Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut
Street, Philadelphia, PA 19104, USA

September 25, 2007

Abstract. We introduce LTAG-spinal, a novel variant of traditional Lexicalized Tree Ad-
joining Grammar (LTAG) with desirable linguistic, computational and statistical properties.
Unlike in traditional LTAG, subcategorization frames and the argument-adjunct distinction
are left underspecified in LTAG-spinal. LTAG-spinal with adjunction constraints is weakly
equivalent to LTAG. The LTAG-spinal formalism is used to extract an LTAG-spinal Treebank
from the Penn Treebank with Propbank annotation. Based on Propbank annotation, predicate
coordination and LTAG adjunction structures are successfully extracted. The LTAG-spinal
Treebank makes explicit semantic relations that are implicit or absent from the original PTB.
LTAG-spinal provides a very desirable resource for statistical LTAG parsing, incremental pars-
ing, dependency parsing, and semantic parsing. This treebank has been successfully used to
train an incremental LTAG-spinal parser and a bidirectional LTAG dependency parser.

Keywords: Tree Adjoining Grammar, LTAG-spinal, treebank, dependency parsing

Abbreviations: LTAG – Lexicalized Tree Adjoining Grammar

Table of Contents

1 Introduction 2
2 Formalism 5
3 Extracting an LTAG-spinal Treebank 6
4 The LTAG-spinal Treebank 10
5 Properties of the LTAG-spinal Treebank 14
6 Conclusions and Future Work 18
References 19

© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

lre.tex; 25/09/2007; 9:54; p.1

2 Libin Shen, Lucas Champollion, and Aravind K. Joshi

1. Introduction

Lexicalized Tree Adjoining Grammar (LTAG) (Joshi and Schabes, 1997) has
attractive properties from the point of view of Natural Language Processing
(NLP). LTAG has appropriate generative capacity (LTAG languages belong
to the class of mildly context-sensitive languages) and a strong linguistic
foundation.

In this article, we introduce LTAG-spinal, a variant of LTAG with very
desirable linguistic, computational and statistical properties. LTAG-spinal with
adjunction constraints is weakly equivalent to traditional LTAG.

We first provide a brief introduction of LTAG in Section 1.1. In Section
1.2, we describe the motivation for the LTAG-spinal formalism. In Section 2,
we introduce the definition of LTAG-spinal. Then we describe the process of
extracting an LTAG-spinal Treebank from the Penn Treebank (PTB) (Marcus
et al., 1994), together with Propbank annotation (Palmer et al., 2005) in Sec-
tion 3. We illustrate the extracted LTAG-spinal Treebank and its treatment
of certain syntactic phenomena of linguistic interest in Section 4. We also
present the statistical properties of the LTAG-spinal Treebank in Section 5,
especially the compatibility with the Propbank. We discuss our conclusions
and future work in Section 6.

1.1. LEXICALIZED TREE ADJOINING GRAMMAR

Tree Adjoining Grammar (TAG) was first introduced in (Joshi et al., 1975).
A recent review of TAG is given in (Abeillé and Rambow, 2001), which
provides a detailed description of TAG with respect to linguistic, formal, and
computational properties (see also (Frank, 2002)). In this section, we briefly
describe the TAG formalism and the relation to linguistics.

In traditional lexicalized TAG, each word is associated with a set of
elementary trees, or e-trees for short. Each e-tree represents a possible tree
structure for the word.

There are two kinds of e-trees, initial trees and auxiliary trees. A deriva-
tion always starts with an initial tree. Auxiliary trees must have a foot node,
a leaf node whose label is identical to the label of the root. E-trees can be
combined through two operations, substitution and adjunction. Substitution
is used to attach an initial tree α into a substitution slot of a host tree α

�

. Sub-
stitution slots are specially marked leaf nodes whose label must be identical
with the root of α. Adjunction is used to attach an auxiliary tree α to a node n
of a host tree α

�

. n must carry the same label as the root and foot nodes of α.
Adjunction is carried out by replacing the node n with the entire tree α. The
foot node of α is then replaced by the subtree under n.

The tree resulting from the combination of e-trees is called a derived
tree. We can record the history of a derivation by building a derivation tree, in

lre.tex; 25/09/2007; 9:54; p.2

LTAG-spinal and the Treebank 3

which every e-tree used in the derivation is represented by a single node and
every operation by a single arc, whose parent is the host tree of the operation.

1.2. MOTIVATION FOR LTAG-SPINAL

For the purpose of statistical processing, we need a large scale LTAG style
treebank. As far as automatic treebank extraction and statistical processing is
concerned, a variant of traditional LTAG, namely LTAG-spinal, turns out to
be more attractive. We now illustrate these two aspects in turn.

1.2.1. LTAG Treebank Extraction
LTAG encodes the subcategorization frames of predicates explicitly by mod-
eling each predicate as an e-tree that contains substitution slots for (oblig-
atory) arguments but not for (optional) adjuncts. Predicates with more than
one subcategorization frame are represented with multiple e-trees.

In previous work of LTAG treebank extraction (Xia, 2001; Chen et al.,
2006), heuristic rules were used to distinguish arguments from adjuncts. How-
ever, e-trees extracted in this way are different from the e-trees of a hand-
crafted LTAG grammar, e.g. the XTAG English grammar (XTAG-Group, 2001).
It turns out to be a non-trivial task to map the automatically generated tem-
plates to those in the XTAG grammar. One extracted e-tree can be mapped to
several XTAG e-trees which differ in their feature structures. It is difficult to
obtain this information from the original resources.

Therefore, we desire a framework in which the representations for ar-
guments and adjuncts are similar. In this way, we can encode the ambiguity
with a single structure, and leave the disambiguation for further processing.

Our solution is a sister adjunction like operation. Sister adjunction was
previously proposed to represent adjuncts in (Chiang, 2000) for Tree Insertion
Grammars (TIG) (Schabes and Waters, 1995), as well as in D-Tree substi-
tution grammars (Rambow et al., 2001). We call our operation attachment
(see below for a definition). We use attachment both for arguments and for
non-predicate adjuncts1 , thereby encoding argument-adjunct ambiguity.

The extended domain of locality (EDL) (Joshi and Schabes, 1997) of
LTAG is still retained in the sense that syntactically dependent arguments
are directly attached to the predicate. By domain of locality, we mean a do-
main over which various kinds of syntactic dependencies can be specified.
In traditional LTAG, EDL is expressed in terms of hard constraints via the
structure of e-trees representing extended projections of lexical items. In our

1 By non-predicate adjuncts, we mean the auxiliary trees whose foot node does not sub-
categorize for the anchor; these are essentially modifier trees. LTAG also uses auxiliary trees
to model phenomena other than non-predicate adjuncts. Examples are raising verbs and par-
entheticals. In going from LTAG to LTAG-spinal, we do not change the analysis of these
phenomena. See Section 4 for further discussion.

lre.tex; 25/09/2007; 9:54; p.3

4 Libin Shen, Lucas Champollion, and Aravind K. Joshi

An

B1A1

Bn

initial: auxiliary:

B1*

Bi

Figure 1. Spinal e-trees

presentation, EDL is expressed in terms of soft constraints, in particular in
terms of the distributions of argument and adjunct attachment operations.

As a result, our e-trees are in the so-called spinal form since arguments
do not appear in the e-tree of the predicate.

1.2.2. Statistical Processing
The complexity of using automatically extracted LTAG templates in parsing
is greatly increased due to increased local ambiguity (i.e., the average number
of e-trees per word). According to the coarse to fine approach (Charniak
and Johnson, 2005), it is attractive to use some structure to encode these
templates, so as to make the search space more tractable at each step of
parsing.

The LTAG-spinal formalism, which we formally introduce in the next
section, substantially reduces the local ambiguity. For example, the e-tree of
a transitive verb and the e-tree of a ditransitive verb have identical spines from
the S node to the V node. In parsing, when we encounter a predicate of a given
sentence, we do not need to guess its subcategorization frame immediately.
Instead, we use the spinal form to represent a verb without its subcatego-
rization frame. We defer identifying the correct subcategorization frames to
a later stage in the processing chain, when enough contextual information
becomes available, in a way similar to (Charniak, 1997; Collins, 1999).

To sum up, the key reasons that lead us to adopt the LTAG-spinal frame-
work are these: Unlike traditional LTAG, LTAG-spinal does not encode the
argument-adjunct distinction explicitly, which makes it easier to automati-
cally convert the PTB to LTAG-spinal format. LTAG-spinal trees generalize
over predicates with different subcategorization frames, which follows the
coarse to fine spirit and alleviates the sparse data problem for a parser. In
particular, the parser is not forced to make a decision on subcategorization
without enough contextual information.

lre.tex; 25/09/2007; 9:54; p.4

LTAG-spinal and the Treebank 5

2. Formalism

In LTAG-spinal, just as in traditional LTAG, we have two kinds of e-trees,
initial trees and auxiliary trees (see Figure 1). What makes LTAG-spinal novel
is that e-trees are in the spinal form. A spinal initial tree is composed of a
lexical spine from the root to the anchor, and nothing else. A spinal auxiliary
tree is composed of a lexical spine and a recursive spine from the root to the
foot node. For example, in Figure 1, the lexical spine for the auxiliary tree is
B1 ������� Bi ������� Bn, the recursive spine is B1 ������� Bi ������� B

�

1.
There are two operations in LTAG-spinal, namely, adjunction and at-

tachment. Adjunction in LTAG-spinal is the same as in traditional LTAG (see
Section 1.1). To attach an initial tree α to a node n of another tree α

�

, we add
the root of α to n as a new child. Unlike in the substitution operation, α

�

need
not have a substitution slot that subcategorizes for the root of α. Attachment
applies to initial trees only, and adjunction applies to auxiliary trees only.

Attachment can be modeled as a special case of adjunction. We can
add artificial root and foot nodes to an initial tree to build an auxiliary tree,
and simulate the attachment of an initial tree by a (non-wrapping) adjunc-
tion of the artificial auxiliary tree, as in TIG. On the other hand, attachment
is similar to substitution in that, unlike adjunction, it can not generate any
non-projective dependencies.

However, the flexibility of attachment can be constrained by null (NA),
obligatory (OA) and selective (SA) attachment constraints analogous to ad-
junction constraints in traditional LTAG (Joshi and Schabes, 1997). With
these constraints, LTAG-spinal is weakly equivalent to traditional LTAG. A
detailed proof is given in (Shen, 2006).

As for the LTAG-spinal Treebank described in this article, we do not use
the three hard constraints described above, which means that the predicate e-
trees do not contain slots for their arguments. In our data oriented approach,
the constraints are represented in a soft way via statistics. In other words, even
ungrammatical sentences receive a (low probability) parse. However, this
does not represent a theoretical commitment on our part. As the weak equiv-
alence with LTAG shows, it is perfectly possible to write an LTAG-spinal
grammar that assigns no structure to ungrammatical sentences.

An example of LTAG-spinal derivation trees is shown in Figure 2. Each
arc is associated with a label which represents the type of operation. We use
att for attach and adj for adjoin.

In Figure 2, seems adjoins to new as a wrapping adjunction, which
means that the leaf nodes of the adjunct subtree appear on both sides of the
anchor of the main e-tree in the resulting derived tree. Here, seems is to the
left of new and to me is to the right of new. Wrapping adjunction allows
us to describe non-projective dependencies. In this case, the dependency be-

lre.tex; 25/09/2007; 9:54; p.5

6 Libin Shen, Lucas Champollion, and Aravind K. Joshi

JJ

VP

S

VP *VBZNNDT

XP

WDT TO

XP

PRP

newseemswhich

att

adj

att

VPXP XP

att

a parser meto

XP

att
att

Figure 2. An example of an LTAG-spinal derivation

tween to and seems is non-projective. It should be noted that attachment/sister
adjunction does not allow wrapping structures like this one.

3. Extracting an LTAG-spinal Treebank

3.1. PREVIOUS WORK

For the purpose of statistical processing, many attempts have been made for
automatic construction of LTAG treebanks. Joshi and Srinivas (1994) pre-
sented a supertag corpus extracted from the Penn Treebank with heuristic
rules. However, due to certain limitations of the supertag extraction algo-
rithm, the extracted supertags of the words in a sentence cannot always be
successfully put together. Xia (2001) and Chen et al. (2006) described deter-
ministic systems that extract LTAG-style grammars from the PTB. In their
systems, a head table in Magerman’s style (1995) and the PTB functional
tags were used to resolve ambiguities in extraction. Chiang (2000) reported a
similar method of extracting an LTAG treebank from the PTB, and used it in
a statistical parser for Tree Insertion Grammar.

3.2. OUR APPROACH

We automatically extracted an LTAG-spinal Treebank from the PTB together
with Propbank annotation. The following two properties make our extracted
treebank different from previous work: incorporation of Propbank informa-
tion and treatment of coordination. In this section, we discuss each of these
properties in turn and then describe our extraction algorithm.

3.2.1. Propbank guided extraction
Propbank provides annotation of predicate-argument structures and semantic
roles on the Penn Treebank, and was unavailable to most of the previous
LTAG treebank extraction systems.2

2 Most recently, subsets of the PTB and Propbank have been reconciliated by hand (Babko-
Malaya et al., 2006; Yi, 2007). Our own extraction process was carried out automatically

lre.tex; 25/09/2007; 9:54; p.6

LTAG-spinal and the Treebank 7

There is an obvious connection between Propbank argument sets and
e-trees in LTAG. Therefore, one of the goals of our work is to incorporate
Propbank annotation into the extracted LTAG-spinal Treebank. In this way,
the extracted e-trees for each lexical anchor (predicate) will become seman-
tically relevant. At the same time, as explained below, Propbank provides
syntactic information that helps us successfully extract various structures of
interest.

In (Chen and Rambow, 2003), in a procedure called head filtering, a head
table was used as a first step to recognize the head constituent for each phrase.
Propbank annotation was then used to distinguish arguments from adjuncts,
the second step of the extraction procedure. We employ Propbank annotation
as early as the head filtering step. This turns out to be helpful for recognizing
structures that are hard to discover with a head table. For example, Propbank
annotation on discontinuous arguments helps us recognize auxiliary trees:

EXAMPLE 1. (the market could)arg1 � 1 (continue)Pred (to soften)arg1 � 2 in the
months ahead

Example 1 illustrates raising. The Propbank annotation tells us that the market
could . . . to soften is ARG1 of continue. Unlike Propbank, the PTB does not
distinguish raising from control. Based on the Propbank information, we can
avoid mistakenly taking the market by itself as an argument of continue, as
we would want to do if this was a control structure. (The extracted tree is
shown in Figure 5.)

3.2.2. Treatment of predicate coordination
Predicate coordination structures such as VP coordination and Right Node
Raising can be seen as predicates either sharing or dropping some of their
arguments. Traditional LTAG’s notion of locality requires each predicate to
carry its complete subcategorization frame with it “hard-coded” as a part of
its elementary tree. For this reason, an account of coordination cannot easily
be given in traditional LTAG. Previous work has suggested contracting shared
substitution slots (Sarkar and Joshi, 1996). That approach extends the notion
of a derivation tree to an acyclic derivation graph. Alternatively, it can be
viewed as transforming the e-trees of some of the conjuncts (e.g. the right
conjunct in VP coordination) into auxiliary e-trees lacking some arguments.

LTAG-spinal does not share traditional LTAG’s notion of fixed con-
stituency, so representing predicate coordination becomes much easier. Pred-
icate e-trees do not contain slots for their arguments, so we do not have to
transform them.

In the LTAG-spinal Treebank, predicate coordination is represented with
a special structure. We conjoin two spinal e-trees, which are of the same

before that data became available and covers the entire PTB and Propbank. To a certain extent,
it has been informed by that ongoing work.

lre.tex; 25/09/2007; 9:54; p.7

8 Libin Shen, Lucas Champollion, and Aravind K. Joshi

JJ

VP

S

JJ

VP

S

CC

VP *VBZNN WDTDT

XP

TO PRP

XP

new and

att

att

adj

con

VPXP XP XP

whichparsera seems interesting

att

attatt

meto

XP

att

Figure 3. An example of conjoining in LTAG-spinal

category, as shown in Figure 3. We conjoin interesting onto new, and obtain
a coordination structure, which is represented as a box in the figure. Here
conjoining is a special operation to build predicate coordination structures
incrementally.3

This method is more flexible than the well-known treatment of coordina-
tion in Combinatory Categorial Grammar (CCG) (Steedman, 2000) and the
CCG treebank (Hockenmaier and Steedman, 2002). In CCG, the conjuncts
of the same category are combined first, and then combined with the shared
arguments. In our approach, we do not need to combine the conjuncts first as
in CCG.

In (Sturt and Lombardo, 2005), it is shown that a combination order
other than that of CCG’s is more preferable from the viewpoint of psycholin-
guistics and incremental parsing. In their order, a complete sentence structure
is first built using the first conjunct, and then the second conjunct is intro-
duced into the derivation. Our formalism is flexible enough to accommodate
either order. For example, in Figure 3, we could either conjoin interesting
to new first as in CCG, or attach new to parser first as in (Sturt and Lom-
bardo, 2005). The order of operations for predicate coordination is flexible in
LTAG-spinal.

In traditional LTAG, constituency is fixed once the e-trees are defined.
Any continuous string generated in LTAG always has a semantic type, which
can be read off from the derived tree built so far. It is not required that there
be a single constituent dominating just that string. As for LTAG-spinal, e-
trees are in the spinal form, so that we could easily employ underspecification
of argument sharing. In this way, representation of predicate coordination
becomes even simpler.

The example in Figure 3 illustrates adjective coordination. In the tree-
bank, S and VP coordination and right node raising are represented in a

3 We treat conjoining as if it were a distinct operation. Theoretically, though, conjoining
can be seen as a special case of the attachment operation. This is somewhat similar to tradi-
tional LTAG, where substitution is a distinct operation but can be seen as a special case of
adjunction. Indeed, historically the first definition of TAG does not refer to substitution at all
(Joshi et al., 1975).

lre.tex; 25/09/2007; 9:54; p.8

LTAG-spinal and the Treebank 9

similar way. As for gapping, we have not pursued the question of how to rep-
resent it in LTAG-spinal, mainly because the traces of the gapped predicates
are not annotated in PTB and so we could not extract this information.

3.2.3. Extraction algorithm
We now describe the algorithm that we have used to extract the LTAG-spinal
Treebank from the PTB with Propbank annotation. We use a rule-based method
for treebank extraction. We take a PTB tree as an LTAG derived tree. The
algorithm is implemented in several rounds of tree traversal. Each round is
implemented with a recursive function over trees. Therefore, whenever possi-
ble, we try to divide different operations into different rounds so as to simplify
the implementation. The following is a list of the steps for extraction.

1. We first automatically generate the annotation for be, since the latest
release of Propbank does not provide annotation for the verb be.

2. Then we reconcile PTB and Propbank by tree transformations on PTB
trees to make them compatible with Propbank annotations. 4

3. We recognize LTAG predicate adjunction and predicate coordination in
the PTB with respect to Propbank annotations.

The recognition of predicate adjunction is based on discontinuous ar-
guments as shown in the example in Section 3.2.1. Auxiliary trees are
extracted for raising verbs, Exceptional Case Marking (ECM) Verbs and
predicate parentheticals. In all other cases, auxiliary trees are mapped to
initial trees (see step 5). The resulting structures are shown in Section 4.

Predicate coordination is detected if there are several predicates whose
arguments are under the same lowest dominating node, and there exist
connectives between each pair of adjacent predicates in the sentence.

For both predicate adjunction and predicate coordination, we transform
the PTB tree by cutting it into segments and reconnecting them with the
LTAG derivation operations, i.e. attachment, adjunction and coordination.
For each connected tree segment, we simply use head information to
recursively recognize the LTAG derivation tree and e-trees that generate
the segment.

4. Then we extract LTAG e-trees from the transformed PTB subtrees recur-
sively, with respect to Propbank annotations for predicates and a head
table for all other constituents.

4 Detailed operations for tree transformations were described in (Shen, 2006). Similar work
was reported in (Babko-Malaya et al., 2006; Yi, 2007).

lre.tex; 25/09/2007; 9:54; p.9

10 Libin Shen, Lucas Champollion, and Aravind K. Joshi

VP

VBX

VP

VBX
aux_4

VP* VP*
aux_3

VP

S

aux_2
VBX S*

XP

init_2

init_6
VBX

init_3
X

VP

XP

S

X
init_1

VP

VBX
init_5

VP

S

init_4
VBX S*

VP

S

aux_1
VBX

X

Figure 4. Types of normalized spinal e-trees

5. At the end, we map all of the e-trees into a small set of normalized e-
trees, as shown in Figure 4. For example, an e-tree (S (S (VP VB))) with
duplicated S nodes is normalized to (S (VP VB)). Phrasal projections
(NP, PP, etc.) are all mapped to “XP” since this information is already
encoded in the POS tags.

We map a non-predicate auxiliary tree to an initial tree by removing
its foot node and root node. As a result, we have only 6 different kinds of
initial trees (3 for verbs and 3 for non-verbs) and 4 different kinds of full
auxiliary trees. In Figure 4, VBX represents a verbal POS tag, and X represents
a non-verbal POS tag.

4. The LTAG-spinal Treebank

In this section, we focus on linguistic phenomena of special interest to us.
Some are difficult to represent with CFG, but are easy with TAG thanks
to the use of adjunction, such as raising verbs (i.e. continue, begin, etc.),
Exceptional Case Marking (ECM) verbs (i.e. expect, believe, etc.), and par-
entheticals. Some are important in order to make the parsing output useful,
such as the treatment of relative clauses as well as predicative nominals and
adjectives5 .

The figures used in this section were generated with the graphical inter-
face of our treebank API (see Section 6). In the figures, solid lines are used
within e-tree spines, and dotted arrows are used between e-trees. Auxiliary
trees are recognizable by their footnodes, which are marked with an asterisk.
Empty elements (*-1, *t*-48, etc.) are carried over from the PTB into the

5 For a general reference for the use of LTAGs for linguistic description, see (Frank, 2002).

lre.tex; 25/09/2007; 9:54; p.10

LTAG-spinal and the Treebank 11

Section: 2 File: 30 Sentence: 0

 #19
the

 #20
market

 #21
could

 #22
continue

 #23
*-1

 #24
to

 #25
soften

 #26
in

 #27
the

 #28
months

 #29
ahead

S 19-29

VPXP 19-20

S 21-29 XP 23-23

VBTO 24-24NNDT 19-19

VP

VB S*MD 21-21 XP 26-29

IN XP 27-29

NNSDT 27-27 RB 29-29

NONE

Figure 5. the market could continue to soften in the months ahead

LTAG-spinal Treebank.6 For convenience, the root node of every e-tree is
annotated with the span that this tree and its descendants cover in the string.

4.1. RAISING VERBS AND PASSIVE ECM VERBS

In the LTAG-spinal Treebank, raising verbs and passive ECM verbs are asso-
ciated with an auxiliary tree. For example, in Figure 5, the e-tree for continue
adjoins onto the S node of the e-tree for soften. Furthermore, in attaches to
continue. Since soften is between continue and in in the flat sentence, this
is a case of a non-projective dependency. We use the adjoining operaion to
distinguish raising verbs from control verbs.

4.2. RELATIVE CLAUSES

In the LTAG-spinal Treebank, a relative clause is represented by attaching the
predicate of the clause to the head of the phrase that it modifies. For example,
in Figure 6, the predicate of the relative clause is shown. which attaches onto
shown, and shown attaches onto earnings.

4.3. PARENTHETICALS

In the LTAG-spinal treebank, parentheticals containing a predicate, such as
"Mr. Green testified", are treated using adjunction. This predicate adjoins into

6 Coindexation information is not maintained in the trees because Propbank can be used to
recover it. We have included these traces in the LTAG-spinal treebank to record the annotation
decisions of the PTB. We do not attach any theoretical significance to these traces and provide
them for informational purposes only. If this information is not needed, a purely lexicalized
version of our treebank can be easily obtained by stripping off the e-trees anchored in traces.

lre.tex; 25/09/2007; 9:54; p.11

12 Libin Shen, Lucas Champollion, and Aravind K. Joshi

Section: 2 File: 11 Sentence: 0

 #4
earnings

 #5
,

 #6
which

 #7
t-48

 #8
were

 #9
mistakenly

 #10
shown

XP 4-10

NNS

S 5-10

VP

, 5-5

XP 6-6 XP 7-7

VBNVBD 8-8

XP 9-9WDT NONE

RB

Figure 6. ... earnings, which were mistakenly shown ...

Section: 2 File: 67 Sentence: 49

 #0
eventually

 #1
,

 #2
mr.

 #3
green

 #4
testified

 #5
0

 #6
t-1

 #7
,

 #8
he

 #9
began

S 0-9

VPXP 0-0

S 1-7

S 5-6 XP 8-8

VBD

RB

VP, 1-1 XP 2-3

VBD S* , 7-7NNPNNP 2-2

VP

XP

NONENONE 5-5

PRP

Figure 7. Eventually, Mr. Green testified, he began ...

the verb of the clause that contains the parenthetical. The argument structure
of that clause is not disrupted by the presence of the parenthetical. For exam-
ple, in Figure 7, testified adjoins into began from left. Arguments and adjuncts
of began are attached directly to began, even when they are separated from it
by the parenthetical, as is the case with eventually.

4.4. PREDICATIVE TREES

In the current version of the LTAG-spinal Treebank, most of the predicate
nominals and adjectives are not annotated as the head predicate. Instead, in
order to avoid propagating potential errors, we treat the copula as the head of
the sentence. For example, in Figure 8, writer attaches to is.

We are aware that, in the XTAG English grammar, predicate nominals
and adjectives are regarded as the head. Our differing treatment is due to the
difficulty in finding the head of a noun phrase. In the PTB, NP representation
is flat (Vadas and Curran, 2007), so that it is non-trivial to recognize coordi-
nation at the NP level automatically. For example, the NP those workers and

lre.tex; 25/09/2007; 9:54; p.12

LTAG-spinal and the Treebank 13

Section: 2 File: 7 Sentence: 38

 #1
waleson

 #2
is

 #3
a

 #4
free-lance

 #5
writer

S 1-5

VPXP 1-1

VBZ XP 3-5NNP

NNDT 3-3 JJ 4-4

Figure 8. Waleson is a free-lance writer ...

Section: 0 File: 3 Sentence: 12

 #11
28

 #12
ich-1

 #13
have

 #14
died

 #15
--

 #16
more

 #17
than

 #18
three

 #19
times

 #20
the

 #21
expected

 #22
number

S 11-22

VP

XP 11-12 VBNVBP 13-13 : 15-15 XP 16-22

CD XP 12-12

NONE NN

XP 16-19 DT 20-20 VBN 21-21

CDJJ 16-16 IN 17-17 NNS 19-19

Figure 9. ... 28 have died – more than three times the expected number ...

managers and the NP the US sales and marketing arm are both represented
as flat NPs.

Furthermore, appositives and NP lists are represented in the same way.
The problem of distinguishing NP coordination from coordination within an
NP results in the difficulty of choosing the head of NPs.

4.5. EXTRAPOSITION

Extraposition is a class of dependencies that cannot be represented with tra-
ditional LTAG7. It is also a problem for the LTAG-spinal formalism. For the
sentence in Figure 9, more than three times the expected number should mod-
ify 28. However, in the LTAG-spinal Treebank, number, the head of the NP,
attaches to the predicate died instead.

7 Extraposition can be handled by multi-component LTAG (MC-LTAG) (Kroch and Joshi,
1985; Frank, 2002). Our LTAG-spinal Treebank at present does not support MC-LTAG.

lre.tex; 25/09/2007; 9:54; p.13

14 Libin Shen, Lucas Champollion, and Aravind K. Joshi

5. Properties of the LTAG-spinal Treebank

In this section, we describe the LTAG-spinal Treebank in numbers, and argue
that LTAG-spinal as an annotation format represents an improvement on the
PTB since it facilitates the recovery of semantic dependencies.

We ran the extraction algorithm on 49,208 sentences in the PTB. How-
ever, 454 sentences, or less than 1% of the total, were skipped. 314 of these
454 sentences have gapping structures. Since the PTB does not annotate the
trace of deleted predicates, additional manual annotation would be required to
handle these sentences. For the rest of the 140 sentences, abnormal structures
are generated due to tagging errors.

5.1. STATISTICS

In the LTAG-spinal Treebank extracted from the remaining 48,754 sentences
in the PTB, there are 1,159,198 tokens, of which 2,365 are auxiliary trees and
8,467 are coordination structures. 5% of all sentences contain at least one
adjunction and 17% at least one coordination.

In the grammar extracted from 48,754 sentences in the PTB using steps
1-4 of the algorithm described in section 3.2.3, there are 1,224 different types
of spinal e-trees, and 507 of them appear only once in the LTAG-spinal Tree-
bank. This result is compatible with the long tail of the distribution observed
in (Xia, 2001; Chen et al., 2006). Many of these e-trees are just noise. On
the other hand, after executing step 5 (normalization), there remain only 135
different normalized spinal e-trees, and only 7 of them appear only once in the
treebank. We also avoid the sparse data problem by using normalized e-trees.

5.2. COMPATIBILITY WITH PROPBANK

This section shows that our treebank maintains a high level of compatibility
with Propbank and that its derivation trees, for the most part, permit easy
recovery of Propbank predicate-argument relationships.

Propbank arguments are represented as word spans, not subtrees. So
the first question is whether they correspond to subtrees in the LTAG-spinal
derivation tree. We say that an argument is well-formed in the LTAG-spinal
Treebank if it can be generated by a subtree some of whose direct children
trees may be cut away. For example, and the stocks is generated by a sub-
derivation tree anchored on stocks, while and and the attach to the tree for
stocks. Then we say that the argument the stocks is well-formed because we
can get it by cutting the and tree, a direct child of the stocks tree.

lre.tex; 25/09/2007; 9:54; p.14

LTAG-spinal and the Treebank 15

Table I. Distribution of pred-arg pairs
with respect to the distance between
predicate and argument.

Distance Number Percent

1 261554 88.4

2 12287 4.2

3 10789 3.6

�
4 3426 1.2

ill-formed 1661 0.6

complex arg 6135 2.1

total 295852 100.0

As shown in Table I, we have 295,852 pairs8 of predicate-argument
structures. Only 1661 arguments, 0.6% of all of the arguments, are not well-
formed. Most of these cases are extraposition structures.

For the remaining 294,191 arguments, we now ask how easy it is to
recover the argument from a given subtree containing it. By using a few
heuristic rules, for example, removing the subtrees for the punctuation marks
at the beginning and at the end, we can easily recover 288,056, or 97.4%
of all the arguments. For the remaining 6,135 arguments, more contextual
information is required to recover the argument. For example, we have a
phrase NP PP SBAR (a book in the library that has never been checked out),
where both PP and SBAR attach to the NP as modifiers. Here NP, instead of
NP PP, is an argument of the main verb of SBAR in the Propbank. In order to
handle cases like these, learning methods should be used. However, we have
a baseline of 97.4% for this task, which is obtained by just ignoring these
difficult cases.

The next question is how to find the subtree of an argument if we are
given a predicate. We evaluate the LTAG-spinal Treebank by studying the
pattern of the path from the predicate to the argument for all the predicate-
argument pairs in the treebank. Table I shows the distribution of the distances
between the predicate and the argument in derivation trees. Distance = 1
means the predicate and the argument are directly connected.

The following is a list of the most frequent patterns of the path from the
predicate to the argument. P represents a predicate, A represents an argument,
V represents a modifying verb, and Coord represents predicate coordination.

8 For the sake of convenience, particles are represented as arguments.

lre.tex; 25/09/2007; 9:54; p.15

16 Libin Shen, Lucas Champollion, and Aravind K. Joshi

Table II. Distribution of pred-arg pairs with respect to the path
from the predicate to the argument.

Path Pattern Distance Number Percent

1 P � A 1 243796 82.4

2 P � A 1 14658 5.0

3 P � Px � A 2 10990 3.7

4 P � Coord � Px � A 3 5613 1.9

5 V � A 1 3100 1.0

6 P � Ax � Py � A 3 3028 1.0

7 P � Coord � Px � A 2 839 0.3

8 P � Px � Py � A 3 704 0.2

other patterns 2 458 0.2

other patterns 3 1444 0.5

other patterns
�

4 3426 1.2

ill-formed 1661 0.6

complex arg 6135 2.1

total 295852 100.0

Arrows point to the child from the parent. The number of the arrows is the
distance between the predicate and argument, except for the case of a con-
junct and its parent, which are considered directly connected although there
is an artificial Coord node in between. Conjuncts are regarded as two steps
apart from each other. We use Ax, Px and Py to represent other arguments or
predicates appearing in the sentence.

1. P � A
ex: (What)arg1 (will)argM happen (to dividend growth)arg2 ?

2. P � A (relative clause, predicate adjunction)
ex: (the amendment)arg0 which passed today
ex: (the price)arg1 � 1 appears (to go up)arg1 � 2

3. P � Px � A (subject and object controls, Figure 10a)
ex: (It)arg0 plans to seek approval. (Px = plans)

lre.tex; 25/09/2007; 9:54; p.16

LTAG-spinal and the Treebank 17

4. P � Coord � Px � A (shared arguments)
ex: (Chrysotile fibers)arg1 are curly and are more easily rejected by the
body. (Px = are on the left.)

5. V � A
ex: the Dutch publishing (group)arg0

6. P � Ax � Py � A (Figure 10b)
ex: (Mike)arg0 has a letter to send. (Ax = letter, Py = has)

7. P � Coord � Px � A (control+coordination)
ex: (It)arg0 expects to obtain regulatory approval and complete the trans-
action. (Px = expects)

8. P � Px � Py � A (chained controls, Figure 10c)
ex: (Officials)arg0 began visiting about 26,000 cigarette stalls to remove
illegal posters. (Px = visiting, Py = began)

These eight patterns account for 95.5% of the total 295,852 pred-arg
pairs in the treebank. Table II shows the frequency of these patterns. Patterns
1, 2 and 5 account for all the directly connected pred-arg pairs in Table I.

We take this result to provide empirical justification for LTAG’s notion
of EDL. In addition, this result shows that the LTAG-spinal derivation tree
provides support for automatically identifying predicate-argument relation-
ships in a way that PTB annotation by itself does not.

5.3. UNLABELED ARGUMENT IDENTIFICATION

For the purpose of showing the compatibility of the LTAG-spinal Treebank
with the Propbank, here we present a preliminary experiment on unlabeled
argument identification, a task which is used to generate all the argument
candidates for an argument classification system. We compare the perfor-
mance of a rule-based approach for extracting unlabeled Propbank arguments
from the LTAG-spinal Treebank with a SVM-based approach (Pradhan et al.,
2005) for extracting the same information from the PTB. The point of this
section is to evaluate how easily Propbank information can be recovered from

It seek

plans Mike letter

has

send

Officials visiting

begin

remove

Figure 10. Patterns: (a) P � Px � A (b) P � Ax � Py � A (c) P � Px � Py � A

lre.tex; 25/09/2007; 9:54; p.17

18 Libin Shen, Lucas Champollion, and Aravind K. Joshi

Table III. Unlabeled non-trace argument identification on Section 23

Model Training Data Recall% Precision% F-score%

rules on LTAG 0 90.8 91.7 91.3

SVMs on PTB 1M 96.2 95.8 96.0

LTAG-spinal annotation. The comparison with (Pradhan et al., 2005) (see
Table III) is given for informational purposes only since we used Propbank
information in the process of creating the LTAG-spinal Treebank (including
the LTAG-spinal test data).

In (Chen and Rambow, 2003), pattern 1 is used to recognize arguments.
However, it is not enough, since it only accounts for 82.4% of the total data.
We have implemented a simple rule-based system for unlabeled argument
identification by employing patterns 1-5 as follows. For each verbal predicate,
we first collect all the sub-derivation trees in the local context based on path
patterns 1, 2 and 5 in the previous section. If there is no argument candidate
in subject position, we look for the subject by collecting sub-derivation trees
according to patterns 3 and 4. Then we transform these sub-derivation trees
into phrases with a few simple rules as described in the previous section. We
achieved an F-score of 91.3% for unlabeled non-trace argument identification
on section 23 of this treebank9 , and 91.6% on the whole treebank.

This illustrates that the LTAG-spinal Treebank makes explicit semantic
relations that are implicit or absent from the original PTB. Training a parser
on the LTAG-spinal Treebank appears to be a very interesting alternative ap-
proach toward semantic role labeling, one in which syntax and semantics are
tightly connected.

6. Conclusions and Future Work

In this article, we have introduced LTAG-spinal, a novel variant of traditional
LTAG with desirable linguistic, computational and statistical properties. Un-
like in traditional LTAG, subcategorization frames and the argument-adjunct
distinction are left underspecified in LTAG-spinal. LTAG-spinal with adjunc-
tion constraints is weakly equivalent to traditional LTAG.

The LTAG-spinal formalism is used to extract an LTAG-spinal Tree-
bank from the Penn Treebank with Propbank annotation. Based on Propbank
annotation, predicate coordination and LTAG adjunction are successfully ex-
tracted. The LTAG-spinal Treebank makes explicit semantic relations that are

9 Section 23 of our treebank contains 2401 of the 2416 sentences in PTB section 23.

lre.tex; 25/09/2007; 9:54; p.18

LTAG-spinal and the Treebank 19

implicit or absent from the original PTB. It provides a very desirable resource
for statistical LTAG parsing, incremental parsing, dependency parsing, and
shallow semantic parsing.

In (Shen and Joshi, 2005), the LTAG-spinal Treebank was used to train
and evaluate an incremental parser for LTAG-spinal. In (Shen and Joshi,
2007), an efficient LTAG dependency parser was trained and evaluated on this
treebank, and it achieved an F-score of 90.5% on dependencies on section 23
of this treebank. In the future, we will extend our work to semantic parsing
based on this treebank.

The corpus is freely available for research purposes. The homepage of
this resource is http://www.cis.upenn.edu/˜xtag/spinal/. The two parsers de-
scribed above are also available for download at that page. We plan to release
this resource through LDC in the future, at which time we will be able to
include the mapping to the Propbank annotation.

We have created a comprehensive Java API that provides full access to
the LTAG-spinal Treebank, the output of our parsers, and the special format
of the Propbank annotation used in this work. It can be used for tasks such as
postprocessing the parser output and producing graphical representations as
in the illustrations. The API will be available under the link given above.

We hope this resource will promote research in statistical LTAG parsing,
as the Penn Treebank did for CFG parsing. In the future, we also plan to build
a standard LTAG treebank based on this LTAG-spinal Treebank.

Acknowledgements

We would like to thank our anonymous reviewers for valuable comments. We
are grateful to Ryan Gabbard, who has contributed to the code for the LTAG-
spinal API. We also thank Julia Hockenmaier, Mark Johnson, Yudong Liu,
Mitch Marcus, Sameer Pradhan, Anoop Sarkar, and the CLRG and XTAG
groups at Penn for helpful discussions.

References

Abeillé, A. and O. Rambow (eds.): 2001, Tree Adjoining Grammars: Formalisms, Linguistic
Analysis and Processing. Center for the Study of Language and Information.

Babko-Malaya, O., A. Bies, A. Taylor, S. Yi, M. Palmer, M. Marcus, S. Kulick, and L. Shen:
2006, ‘Issues in Synchronizing the English Treebank and PropBank’. In: Frontiers in
Linguistically Annotated Corpora (ACL Workshop).

Charniak, E.: 1997, ‘Statistical parsing with a context-free grammar and word statistics’. In:
Proceedings of the Fourteenth National Conference on Artificial Intelligence.

lre.tex; 25/09/2007; 9:54; p.19

20 Libin Shen, Lucas Champollion, and Aravind K. Joshi

Charniak, E. and M. Johnson: 2005, ‘Coarse-to-fine n-best parsing and MaxEnt discrimi-
native reranking’. In: Proceedings of the 43th Annual Meeting of the Association for
Computational Linguistics (ACL).

Chen, J., S. Bangalore, and K. Vijay-Shanker: 2006, ‘Automated extraction of Tree Adjoining
Grammars from treebanks’. Natural Language Engineering 12(3), 251–299.

Chen, J. and O. Rambow: 2003, ‘Use of Deep Linguistic Features for the Recognition and
Labeling of Semantic Arguments’. In: Proceedings of the 2003 Conference of Empirical
Methods in Natural Language Processing.

Chiang, D.: 2000, ‘Statistical Parsing with an Automatically-Extracted Tree Adjoining Gram-
mar’. In: Proceedings of the 38th Annual Meeting of the Association for Computational
Linguistics (ACL).

Collins, M.: 1999, ‘Head-Driven Statistical Models for Natural Language Parsing’. Ph.D.
thesis, University of Pennsylvania.

Frank, R.: 2002, Phrase Structure Composition and Syntactic Dependencies. The MIT Press.
Hockenmaier, J. and M. Steedman: 2002, ‘Generative Models for Statistical Parsing with

Combinatory Categorial Grammar’. In: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL).

Joshi, A. K., L. S. Levy, and M. Takahashi: 1975, ‘Tree adjunct grammars’. Journal of
Computer and System Sciences 10(1).

Joshi, A. K. and Y. Schabes: 1997, ‘Tree-Adjoining Grammars’. In: G. Rozenberg and A.
Salomaa (eds.): Handbook of Formal Languages, Vol. 3. Springer-Verlag, pp. 69 – 124.

Joshi, A. K. and B. Srinivas: 1994, ‘Disambiguation of Super Parts of Speech (or Supertags):
Almost Parsing’. In: Proceedings of COLING ’94: The 15th Int. Conf. on Computational
Linguistics.

Kroch, A. and A. K. Joshi: 1985, ‘The linguistic relevance of Tree Adjoining Grammar’.
Report MS-CIS-85-16. CIS Department, University of Pennsylvania.

Magerman, D.: 1995, ‘Statistical Decision-Tree Models for Parsing’. In: Proceedings of the
33rd Annual Meeting of the Association for Computational Linguistics.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz: 1994, ‘Building a Large Annotated
Corpus of English: The Penn Treebank’. Computational Linguistics 19(2), 313–330.

Palmer, M., D. Gildea, and P. Kingsbury: 2005, ‘The Proposition Bank: An Annotated Corpus
of Semantic Roles’. Computational Linguistics 31(1).

Pradhan, S., K. Hacioglu, V. Krugler, W. Ward, J. Martin, and D. Jurafsky: 2005, ‘Support
Vector Learning for Semantic Argument Classification’. Machine Learning 60(1-3), 11–
39.

Rambow, O., D. Weir, and K. Vijay-Shanker: 2001, ‘D-Tree substitution grammars’. Compu-
tational Linguistics 27(1), 89–121.

Sarkar, A. and A. K. Joshi: 1996, ‘Coordination in Tree Adjoining Grammars: Formaliza-
tion and Implementation’. In: Proceedings of COLING ’96: The 16th Int. Conf. on
Computational Linguistics.

Schabes, Y. and R. C. Waters: 1995, ‘A Cubic-Time, Parsable Formalism that Lexicalizes
Context-Free Grammar without Changing the Trees Produced’. Computational Linguistics
21(4).

Shen, L.: 2006, ‘Statistical LTAG Parsing’. Ph.D. thesis, University of Pennsylvania.
Shen, L. and A. K. Joshi: 2005, ‘Incremental LTAG Parsing’. In: Proceedings of Human

Language Technology Conference and Conference on Empirical Methods in Natural
Language Processing.

Shen, L. and A. K. Joshi: 2007, ‘Bidirectional LTAG Dependency Parsing’. Technical Report
07-02, IRCS, University of Pennsylvania.

Steedman, M.: 2000, The syntactic process. The MIT Press.

lre.tex; 25/09/2007; 9:54; p.20

LTAG-spinal and the Treebank 21

Sturt, P. and V. Lombardo: 2005, ‘Processing coordinated structures: Incrementality and
connectedness’. Cognitive Science 29(2).

Vadas, D. and J. Curran: 2007, ‘Adding Noun Phrase Structure to the Penn Treebank’. In:
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics
(ACL).

Xia, F.: 2001, ‘Automatic Grammar Generation From Two Different Perspectives’. Ph.D.
thesis, University of Pennsylvania.

XTAG-Group: 2001, ‘A lexicalized tree adjoining grammar for English’. Technical Report
01-03, IRCS, University of Pennsylvania.

Yi, S.: 2007, ‘Robust Semantic Role Labeling Using Parsing Variations and Semantic Classes’.
Ph.D. thesis, University of Pennsylvania.

Address for Offprints:
KLUWER ACADEMIC PUBLISHERS PrePress Department,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands
e-mail: TEXHELP@WKAP.NL
Fax: +31 78 6392500

lre.tex; 25/09/2007; 9:54; p.21

lre.tex; 25/09/2007; 9:54; p.22

